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ABSTRACT. We show that a primeness criterion for enveloping algebras of Le
superalgebras discovered by Bell is applicable to the Cartan type Lie superal-
gebras W(n), n even. Other algebras are considered but there are no definitive
answers in these cases.

Allen Bell has shown in [B] that if L is a finite-dimensional Lie superalgebra
over a field of characteristic zero, then the primeness of the universal enveloping
algebra U(L) is implied by the nonsingularity of the product matriz ([f;, f;]). Here
{fi,..., fs} is a basis for the odd part Ly of L, and the matrix is defined over
the polynomial algebra S(Lg). Bell used this result to show that the universal
enveloping algebra of a finite-dimensional classical simple Lie superalgebra is prime
except possibly in the case of algebras of type b(n). This outstanding case was
settled in the negative by a direct argument ([KK], [Z]). An obvious next step is
to consider the simple algebras of Cartan type.

Our main (new) result here is that for even n > 4, U(WW(n)) is prime.

A good basic reference for the properties of Cartan type Lie superalgebras is [S].

1. W(n)

1.1. Basics. Let K be a field of characteristic zero and let A = A(V) be the
exterior algebra of the vector space V' = K”. Then A is an associative superalgebra
of dimension 2" where the Zo-grading is induced by the Z-grading given by degree.
If {v1,...,v,} is a basis for V', then a basis for A is given by all v; = v;,v;, -+ - v;,
where T = {i1,...,4s} is an ordered subset of N = {1,...,n}. Of course the v;
anticommute and the centre of A is the span of all vy with |I| even. Let W =
W(n) = D(A) where D denotes the Lie superalgebra of superderivations. Then
W = @f:_ilWr is naturally Z-graded and this induces the Zy-grading. Here the
graded component W, consists of all superderivations which map V into A, ;1. For
homogeneous 9 € W and x,y € A, we have d(xy) = 0(x)y + 9(y) where the —
occurs if and only iff both « and J are odd. Every element of W restricts to a linear
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map V — A. Conversely every element of W arises in this way and we have the
isomorphism of vector spaces W = A @k V*. We shall use this identification for
computations.

Fix an ordered basis {vy,...,v,} for V and for 1 <i < n let 9; be the element
of W such that J;(v;) = é;;. An explicit basis for A @ V* is then given by the
set of all vy ® 0;, where here we identify J; with its restriction to V. We use the
isomorphism above to transfer the grading and multiplication from W to A ® V™.
It follows that the basis elements v; @ J; belonging to to the graded component of
degree r are those with [7| = r+1 and so dim W, = n(ril) and dim W = n2". We
obtain the multiplication formula for odd elements

*) [vr @ 0;,v5 @ 0;] = vr0i(vy) © 05 + vy0;(vr) @ ;.
Note that it is immediate from this formula that the product is zero if [TNJ| > 2.

1.2. Computation. From now on we restrict to the case where n is even. The
aim 1s to show that the determinant of the product matrix, which is a homogeneous
polynomial in n2?~1 variables, is not the zero polynomial. Even for n = 4 it is
hopeless to compute the determinant directly. We rely heavily on finding a good
specialization, that is we want to assign values in K to some of the variables and
show that the determinant of the matrix resulting from this is nonzero. Of course
this is not necessary — any homomorphism from the polynomial ring in n27~!
variables would suffice — but it is the most obvious method. The specialization we
employ below is a very simple one (we just set some variables to zero and others to
1).

We first consider the specialization which sets all the even components of W
to zero except the component of maximal degree n — 2. Then the product matrix
specializes to a block monomial matrix P. The nonzero blocks are the product
submatrices P, formed by W, and W, _o_, with r odd, —1 < r < n — 1. Note that

n n n
dim W, = = = = dim W, _ —r
i n(r—i—l) n(n—r—l) n((n—r—?)—i—l) i 2

so the P, are square. We make the further specialization which sends vy ® 9; to
zero if ¢ € I. The remaining n variables are x; = vy\ {5} @ O, and we specialize
these all to 1. Thus the product matrix specializes to a block monomial matrix ¢}
over K. We shall show that each block @, (the specialization of P,) is nonsingular.

We aim to decompose further each Q.. Say that (I,¢) is linked to (J,j) if the
image of the product [vr ® J;, vy ® J;] remains nonzero in (). This has an obvious
graph-theoretical interpretation. We now calculate explicitly conditions on (7, %)
and (J, j) which are equivalent to their being linked.

We see that the product in (*) is nonzero in W only if i € J or j € I. Also it is
clear that for the product in (*) to remain nonzero under our specialization it must
lie in the span of z; and z;.

First suppose that ¢ = j. The first term on the right side in (*) remains nonzero
under our specialization if and only if ¢ € J and

Tu I\ {i}) = N\ {i}.

Since |I| + |/]| = n, this is equivalent to IN.J =@ and TUJ = N. Thus ¢ ¢ I.
Similarly, if the second term remains nonzero then i € I, i ¢ J, INJ = § and
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T'UJ = N. Hence at most one term on the right side of (*) remains nonzero, and
the corresponding entry of @) equals %1.

Now suppose that ¢ # j. The first term in (*) remains nonzero if and only if
t € J and

TUIA\{i}) = N\ {7}

This is equivalent to the conditions ITNJ = {i}, TUJ = N\ {j}. Similarly the
second term remains nonzero if and only if j € I, INnJ = {j}, TUJ = N\ {i}. Note
that again both terms cannot remain nonzero simultaneously and so the product
in (*) specializes to 0 or +1.

Thus (1,%) and (J, j) are linked if and only if exactly one of the following condi-
tions 1s satisfied:

(1) iel,j¢ J I\{i} and JU{j} are mutually complementary in N
(2) i¢I,je J TU{i} and J\{j} are mutually complementary in N

In each case the corresponding entry in ) is just %1.

We now determine the components of the graph alluded to above and thereby
obtain a further block decomposition.

Say a pair (I,i) is of type (I,r) if ¢ € T and |I| = r+ 1, and of type (IL,r) if ¢ € [
and |I| = r+ 1. If » = —1 then all the (I,7) are of type I, and if r = n — 1 all
are of type II. Otherwise both types of variables occur. Now variables of the same
type are not linked, and so for 1 < r < n — 3 the matrix @, is, up to a reordering
of rows and columns, the direct sum of two square blocks. The symmetry of the
product matrix means that we need only consider the blocks formed by the product
of type I by type II variables. If (I,4) is of type (I,r) then by the above A = I U {i}
has size » + 2, and B = N \ A has size n — 2 — r. Conversely, given mutually
complementary A and B with respective sizes r + 2 and n — 2 — r, let ¢ and j
be elements of A. Then (A \ {¢},¢) and (B U {j},J) are linked and of type (I,r)
and (IT,n-2-r) respectively. Tt follows that each component of the graph consists of
all the (I,¢) and (J,j) determined by a given A. Thus after reordering rows and
columns if necessary, each @, can be taken to be block diagonal, where the blocks
have size r + 2 and each block has every entry either 1 or —1.

Now we fix such a block M of size » + 2. It suffices to prove M nonsingular.
For this, we need to determine the exact placement of the &+ signs in M, which is
facilitated by a slight change of basis. For each type (II,n-r) variable (J, j), write
J"=J\{j} and order J so that J' < j and J' is ordered naturally. This changes
the basis element vy to an element wjy which differs from vy by a factor of £1. If
we replace the basis elements vy corresponding to the (J, j) of type (II,n-r) by the
wy, then all of the above block decompositions hold for the new basis just formed.
Thus it is no loss of generality to assume that vy = wy for these (J, j) and we shall
do so from now on.

We need a few calculations to simplify the work below. From the way that we
have ordered J, the fact that |.J| is even and the fact that 9; is odd it follows that

@(w) = 6]'(—1}]'1}]/) = —vj.

Also if j € I then

v (vr) = vr



4 MARK CURTIS WILSON

(since if j is in an even position in I then J;(vr) incurs a minus sign, but then v;
requires an odd number of interchanges to get to its proper position — the other
case is similar).

For each (7,4) of type (I,r) , if J = I° and j = ¢ we have

[vr @ 05, v5 @ 0;] = vr0i(vy) ® O; = —vrvy @ 0,
whereas for the other (J,j) we have
[vr @ 0;,v5 @ 8;] = vyv; 05 (vr) ® O = vy @ 8 = vrvy @ 04,

the last equality holding because |I] is even so vy is central in A. Thus by reordering
the rows or columns of M and multiplying columns or rows by -1 if necessary, we
can arrange so that the only -1 entries occur along the leading diagonal and the
other entries are all 1, i.e. M can be taken to be

It is well known (and straightforward to show) that such a matrix is nonsingular if
its dimension is not 2 x 2. Since r # 0 (it is odd), M is nonsingular. This shows
that @, and hence P, is nonsingular.

Combining the above with Bell’s results yields

Theorem. If n is even and n > 2, then U(W(n)) is prime. O

2. OTHER CARTAN TYPE ALGEBRAS

Among the subalgebras of W(n) which are also simple Lie superalgebras is the
special algebra S(n). The exact definition need not concern us here. The essential
properties required are that S(n) has a Z-grading

n—2
SV)= P S,
r=-—1
and that dimS, = (n —r — 1)(:}1’11) Choosing bases for S consistent with this
grading gives a natural block structure to the product matrix. If n > 3 is odd then
this matrix looks like

0 So ... ... Sh_s
So Se ... Sh-s 0
Sp—z 0 ... 0 0

The block in the southwest corner labelled S, _3 is formed from products of basis
elements of S,,_o by those from S_; and is therefore of size (Zﬂ) x (n — 2). Thus
it has more rows than columns, and it follows immediately that the product matrix

is singular (in fact every term in the full expansion of the determinant is zero).
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3. COMMENTS

It is clear that the method used above for W(n) will not work for odd n. For
the first block decomposition, both » and n — 2 — » must be odd and this means
n must be even. Investigation of the cases n = 3 and n = b using a computer has
yielded the fact that the product matrix is nonsingular for n = 3; however I have
as yet no systematic approach in the odd case. The other outstanding Cartan type
superalgebras (S(n) for even n, H(n) and g(?n)) seem more difficult. Computer
investigation shows that the product matrix for S(4) is nonsingular, but again a
general argument has not been forthcoming.

The root space method which Bell used for the classical simple algebras fails
here since if A 1s an odd root, —A need not be an odd root, and even if it is, the
corresponding root spaces may have different dimensions. Since the dimensions
of the Cartan type algebras such as W(n) grow exponentially with n, and all ob-
vious decomposition methods fail to reduce this problem substantially, it seems
necessary to employ specializations setting many variables to zero. The one used
above for W(n) sets all but n variables to zero and the resulting matrix is man-
ageable. However it would be nice to have a more structural understanding of why
that specialization works so well, since a similar one which appeared promising in
preliminary calculations proved ultimately much less suitable.

The converse of Bell’s theorem has no known counterexample. Perhaps the
examples of the last section will provide one, though it seems a very difficult task
to show the enveloping algebra to be prime by ring-theoretic means.

I would like to thank the referee for a few helpful stylistic comments.
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