ASSOCIATIVE ALGEBRAS SATISFYING A SEMIGROUP IDENTITY
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ABSTRACT. Denote by (R,-) the multiplicative semigroup of an associative algebra R
over an infinite field, and let (R,o) represent R when viewed as a semigroup via the
circle operation z oy = = + y + zy. In this paper we characterize the existence of an
identity in these semigroups in terms of the Lie structure of R. Namely, we prove that the
following conditions on R are equivalent: the semigroup (R, o) satisfies an identity; the
semigroup (R, -) satisfies a reduced identity; and, the associated Lie algebra of R satisfies
the Engel condition. When R is finitely generated these conditions are each equivalent
to R being upper Lie nilpotent.

1. INTRODUCTION AND STATEMENT OF RESULTS

A well-known result due to Levitzki ([Lev46]) states that every finitely generated bounded
nil ring is nilpotent. Not long ago, Zel’'manov proved the Lie-theoretic analogue: every
finitely generated Lie ring satisfying the Engel condition is nilpotent ([Zel90]). The cor-
responding problem in the category of groups is the famous Burnside problem. The con-
struction by Adian and Novikov of infinite finitely generated groups of finite exponent
provided a negative solution to this problem (see [Adi79]).

The Burnside problem has some natural generalizations. For example, the problem of
whether or not every Engel group is locally nilpotent remains open ([Sha94]). Because
every nilpotent group is known to satisfy a semigroup identity ([Mal53, NT63]), a weaker
version of this problem has also been posed: does every Engel group satisfy a semigroup
identity ([MK95, Problem 2.82])7 Even the following question ([Rhe]) remains open: can
an Engel group contain a free (noncommutative) subsemigroup?

Recently, the present authors settled the ring-theoretic analogues of these problems.

Recall that R satisfies the FEngel identity of degree n if and only if

€Ep = [xayaya"' 7y]
—_——
n

is identically zero in R; whereas, R is said to be upper Lie nilpotent if the descending central
series of associative ideals {7*(R)} in R defined by v'(R) = R,y'TY(R) = ([y*(R), R])
reaches zero in finitely many steps. In addition to the usual multiplicative semigroup,
(R,-), R forms a semigroup, denoted by (R, o), under the circle operation zoy = z+y+xzy.
We proved in [RW] that every finitely generated associative ring R satisfying the Engel
condition is upper Lie nilpotent. From this result we were able to infer that whenever R
satisfies an Engel identity then both the associated circle and multiplicative semigroups
of R must satisfy a so-called Morse identity.
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Define sequences f, and g, by fi(z,y) = zy,¢1(z,y) = yz, and
fn+1($7 Y, T3, ... 7$n+2) = fn(xa Y, L3, - 7$n+1)$n+29n($, Y, Z3,.-- 7$Tl+1)7

gn+1($7 Y, L3y - 7$n+2) = gn(IL“, Y, T3, .- 7$n+1)$n+2fn($a Yy T35 7$Tl+1)7
for all n > 1. The nth Malcev identity ([Mal53]) is the semigroup identity

fn($7y7$37 N 7$n+1) = gn($7y7$37 s 7$n+1)7

while the nth Morse identity u,(z,y) = vy(z,y) ([Mor21]) is the nth Malcev identity with
r3=--=2apqy1 = L.

Consequently, neither (R, ) nor (R,o) can contain a free subsemigroup if R satisfies an
Engel identity.

The problem of characterizing finitely generated groups satisfying an arbitrary semi-
group identity has been studied by several authors (see, for example, [LL69], [SS93] and
[Sha93]). Because this class of groups contains the Burnside groups, this problem is highly
nontrivial — especially in light of the recent construction by Olshanskii and Storozhev of
a 2-generated group satisfying a semigroup identity that is not a periodic extension of a
locally soluble group ([OS96]).

In this article we study associative algebras that satisfy an arbitrary semigroup identity.
In fact, we obtain a partial converse to our former result.

Throughout the remainder of this paper, K will denote an infinite commutative domain
and R an associative K-algebra on which the action of K is torsion-free (this occurs, for
example, when K is an infinite field). All identical relations in algebraic objects will be
assumed to be nontrivial unless otherwise stated. A semigroup S satisfies an identity if
and only if there are distinct words u, v in the free semigroup on

X :{x:xlay:x%xi’)axﬁla"'}

so that v = v in S. The semigroup identity is left reduced if the first letters of v and v are
different, right reduced if the last letters of u and v are different and simply reduced if it
is both left and right reduced. In other words, u = v is reduced if and only if uv~' and
v~ 1y are reduced words in the free group on X. If (R,-) (respectively (R, o)) satisfies an
identity we often say that R satisfies a semigroup identity (respectively, a circle semigroup
identity). Clearly each of these corresponds to a polynomial identity in R. A generalization
of a multiplicative semigroup identity in R is a binomial identity, a polynomial identity of
the form aju1 + asus = 0, where uq, us are monomials and a1, as € K. The various types
of reduced binomial identities are defined in the obvious way.

V. Tasi¢ and the first author proved in [RT] that R is Lie nilpotent of class at most n if
and only if (R, o) satisfies the nth Malcev identity. The main result in the present article
further demonstrates the close relationship between the Lie structure of R and semigroup
properties of R:

Theorem 1.1. Let R be a K-algebra. Then the following statements are equivalent.

(i) R satisfies a circle semigroup identity;
(ii) R satisfies a reduced semigroup identity;

(iii) R satisfies a reduced binomial identity;

(iv) R satisfies an identity of the form Y & a;y'zy" ™" =0, o; € K, o9 # 0,0, # 0;
(v) R satisfies an Engel identity; and,

(vi) (R,o) satisfies a Morse identity.
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Furthermore, for any two conditions A, B from (i)—(vi), our proof gives (sometimes
theoretical) bounds for the degree of the identity in B in terms of the degree of the identity
in A. In particular, these bounds do not depend on R, K or the characteristic of K. Notice,
too, that since every finite semigroup (in particular (R, o) where R is a finite ring) satisfies
an identity, some hypothesis on the coefficient ring K is required. The following example
demonstrates that the distinction between reduced and arbitrary multiplicative semigroup
identities is also necessary.

Example 1.2. Let R be the subalgebra of the matrix algebra My(K) spanned by the
matrix units e;; and ejp. Then [R,R] C Keja, so R satisfies the semigroup identity
[z,y]z = zyz —yrz = 0. R does not satisfy any Engel identity, since [e11,e12] = ejo.
Thus, by Theorem 1.1, R does not satisfy any reduced semigroup identity, nor any circle
semigroup identity.

Theorem 1.3. Let R be a K-algebra where char K = p > 0. Then the following state-
ments are equivalent.
(i) R satisfies a semigroup identity;
(ii) R satisfies a binomial identity;
(iii) R satisfies an identity of the form Y & ayizy™ ' =0, i € K; and,
(iv) R satisfies an identity of the form y™epy™ = 0.

We remark that the characteristic zero analogue of Theorem 1.3 is stated in [GM82];
however, their result corresponding to our implication (iv) = (i) is not proved and does
not seem obvious to the present authors.

The fact that R is non-unital is essential to Example 1.2, as indicated by the following
proposition.

Proposition 1.4. Let R be a unital K-algebra. If R satisfies a semigroup identity then
R satisfies the corresponding reduced semigroup identity.

Theorem 1.5. There exists a function f, depending only on natural numbers d and n,
such that if o K-algebra R satisfies a circle semigroup identity of degree n and R s gen-
erated over K by d elements then R is upper Lie nilpotent of index at most f(d,n).

2. SEMIGROUP IDENTITIES

Our hypotheses on K were chosen to imply, by the usual Vandermonde determinant
argument, that every homogeneous component of a polynomial identity for R is also a
polynomial identity for R (see [Row88, 6.4.14]). We shall use this key fact freely, without
explicit mention.

By a partial linear identity we shall mean an identity of the form

n . .
> eyt =0,
=0

with «; € K. Such an identity will be called left reduced if g # 0, right reduced if o, # 0
and reduced if it is both left and right reduced.
Proposition 2.1. Let R be a K-algebra.

(i) If a semigroup S satisfies an identity in x,y, x3, ... which is left reduced, right reduced
or reduced, then S satisfies an identity, of the same type, in x and y only.
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(ii) If R satisfies a binomial identity then R is bounded nil or R salisfies a semigroup
identity.

(iii) If R satisfies a binomial identity which is left reduced, right reduced or reduced then
R satisfies a partial linear identity of the same type.

(iv) If R satisfies the identity y™ = 0 then R satisfies eap,—1 = 0.

Proof. Suppose without loss of generality that our left reduced identity has the form

Recall that we identify z = z; and y = x. Substituting z; = xy*,4 > 3, we obtain a left
reduced identity in = and y only. If the original identity were right reduced as well then

zi,, 7# Zj,. Thus, by an appropriate permutation of the variables, we obtain an equivalent
identity of the form

Ty Ty, & = Ty - 21, Y-

Substituting x; = zy’,7 > 3 into this identity and then concatenating on the right with
the 2-variable left reduced identity yields the 2-variable reduced identity:

l‘l‘il .. .$imxk)1 .. .l‘km$ frd yle .. ‘xjn$l1 .. .$lny‘

This, and symmetry, proves (i).

Next, given a binomial identity a;u; + aous = 0 holding in R, set all variables equal,
to y say. If the identity is not homogeneous then separating components shows that R is
bounded nil. On the other hand, if it is homogeneous then (a; + ag)y™ = 0 for some n,
so that either R is bounded nil or @y = —a9, in which case u; — uy = 0 holds in R. This
proves (ii).

In order to prove (iii), suppose that R satisfies a given binomial identity and observe
from (i) and (ii) that either R is bounded nil, in which case R satisfies a partial linear
identity by (iv) below, or R satisfies a semigroup identity of the form u(z,y) —v(z,y) = 0.
Thus we may assume that R is not bounded nil, and hence that the semigroup identity is
homogeneous. We assert that the homogeneous component of degree 1 in z of the identity
u(z 4+ vy,y) —v(xz +y,y) = 0 is a partial linear identity. To see why it is nontrivial, write
u = au',v = av', where a has length m and v’ = v’ is a left reduced equation. If (as we
may assume without loss of generality) u' starts with z and v" with y then in the expansion
of u(z 4+ y,y) there is precisely one monomial starting with y™z, whereas no monomial in
the expansion of v(z + y,y) begins with y™xz. This, and symmetry, yields (iii).

To prove the well-known fact (iv), let [, denote respectively the K-linear operators of
left and right multiplication by y. Then, since [ and r commute,

(1) em= (") = §<—1v (7)) = g(—ni (")t

Thus if m = 2n — 1 and R satisfies y” = 0 then every term in the sum on the right is
ZEro.

O

Proposition 1.4 is a consequence of the following result.

Proposition 2.2. Let R be a K-algebra.
(i) If (R,0) satisfies a semigroup identity then (R,-) satisfies the same identity.



ASSOCIATIVE ALGEBRAS SATISFYING A SEMIGROUP IDENTITY 5

(ii) If (R, o) satisfies a semigroup identity then (R, o) satisfies the corresponding reduced
identity.
(iii) If R is unital then (R,o0) = (R, ).

Proof. Let S be the unital hull of R, that is, S = R if R is unital and S = K1® R if R
is nonunital. The map ¢: r +— 1 + r is an injective semigroup map from (R, o) into (S, )
which is onto if (and only if) R = S. This proves (iii). The image under ¢ of an identity in
(R, o) is an identity in (1+ R, ) C (5,-). Only the bottom degree homogeneous component
of this identity involves 1 and the other homogeneous components yield identities in (R, -).
The highest degree component is precisely the original identity, yielding (i).

Assume that u(z,y) = v(z,y) is an identity for (R, o) of degree n. Write u = au'b,v =
av'b where v’ = v is a reduced equation. We show that u' = v’ also holds in (R,0). It
suffices, by symmetry and by induction on the maximum length of ¢ and b, to prove this
in the case when ¢ = z and b is empty. The identity zu'(z,y) = zv'(z,y) in (R,0) is
equivalent to the polynomial identity

1I+z)/(1+z,1+y)—(1+z)W'(1+z,1+y)=0

in R. Let m be an odd integer with m > n + 1. Then multiplying the last identity on the
left by 1 —x 4 --- + (—1)™z™ yields the polynomial identity

(T+2™ N A+ 2,1 4+y) — 1L+ (1 +2,1+y)=0.

m+1

Separating homogeneous components and using the fact that = has higher z-degree

than ' and v/, we obtain the polynomial identity
u(l4+z,14+y)—v(1+z,1+y)=0
in R, which is equivalent to «' = v' holding in (R, o). This proves (ii). O

The following lemma is crucial to our main theorems and is best possible in view of
Example 1.2s. A simpler argument, as in [GM82], is available in characteristic zero. That
argument fails in positive characteristic, where the situation is more delicate.

i

Lemma 2.3. Suppose that R satisfies y™oy® = 0 where o = > agylry™ .

(i) If o is right reduced then R satisfies y"™ e y* = 0.
(ii) If « is left reduced then R satisfies y™eny™t* = 0.
(iii) If o is reduced then R satisfies y™e3n_1y* = 0.

Proof. By symmetry, the proof of (ii) is entirely analogous to that of (i). If the conclusions
of (i) and (ii) hold then the conclusion of (iii) follows from equation (1):

2n—1 o —1 ) )
ym63n71yk — ym Z (_1)z< i >yzeny2n—1—zyk —0.
i=0
Thus it suffices to prove the conclusion of (i).

First assume that m = k& = 0. Make the substitution y — y(y + 1). Expanding
Yoyt (y+1) zy™ ¢ (y+1)""" = 0 by the binomial theorem and separating homogeneous
components yields identities vg = 0,...,v, = 0 for R, where v, is homogeneous of degree
n+r in y. We claim that

n

(2) S (1) 0" = anyen.

r=0
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2n—a

To establish equation (2), it suffices to show that the coefficients of y®zy on each

side are equal, whenever 0 < a < 2n.

First note that by equation (1), the coefficient of y%zy?"~® in y"e, is (—1)*~" (afn) if
a > n and 0 otherwise. With the usual convention on binomial coefficients, the expression
(=1)e="(," ) is valid for all a. Using the same convention we may sum over all values of
any index occurring.

Now we calculate the coefficient of y*zy?*~% in v,4y™ ", or, what is the same, the coeffi-

cient of y®zy" "% in v,. The binomial theorem expansion above shows that the coefficient

of y*zy! is precisely Ditjon Qi (,%) (tij). Putting s = a and ¢t = r + n — a, we obtain the

desired coefficient as 3, a;(,* ;) (rf(;z))
It follows that

- Zelo L) 2 al)

since the inner sum has the value zero unless n — i = 0, and 1 otherwise. This proves (i)
in the case m =k = 0.

In the general case, where m and k are not necessarily zero, the substitution y — y(y+1)
into the original identity yields an identity

(3) > aay* M oyb)y =0,
r+s+t<m-+n+k

for some coefficients ¢,s4 € K. For 0 < a < n, consider the homogeneous component of
(3) of degree m +n + k + a in y. The only v, occurring have r < @ and the only term
involving v, is precisely y™wv,y*. By induction on a, y™v,y* = 0 is an identity in R for
all 7 < a and hence so is y™v,y* = 0. We may now proceed exactly as in the special case

above and the conclusion follows.
O

2.1. Unital algebras. In case R is unital, more information can be obtained. Note that
en(z,y) = z(ady)” = z(ad(y + 1))" = e, (z,y + 1). Thus by substituting y — y + 1 into
the result of (i) or (ii) in Lemma 2.3 and separating out the component of degree n in y
we obtain e, = 0 in R.

In the rest of this subsection (which is not essential to the main results of the paper)
we give a characterization (for unital K-algebras) of the Engel identities.

For each m > 0, let W,, be the K-submodule of K{x,%) with basis all monomials 'z’
such that i +j =m,andlet V,, =5 Wy and V =3, V,. Note that Wy is spanned
by the monomial z, and that for n > 1, e, is a reduced element of W),.
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Define the difference operator A on V by Aa(z,y) = a(z,y + 1) — a(x,y). Note that
A:V, =V, 1, and that the homogeneous component of degree n — 1 in y of A« is simply
the formal partial derivative da/0y with respect to y (that is, the unique K-derivation of
K (x,y) sending y to 1 and z to 0).

Proposition 2.4. Let R be a unital K-algebra, and o € W,.

(i) Aa =0 if and only if o is a scalar multiple of e,,.
(ii) If char K =0 then 0a /Oy = 0 if and only if « is a scalar multiple of e,,.

Proof. Given a(z,y) = Y1, ciy'zy™ ¢, expand a(z,y + 1) by the binomial theorem. The
coefficient of y*zy’ in a(x,y + 1) is given by

@) [y°uy'] = {Zi ai(()("7), s+t<n

0, s+t=mn.

Now A« = 0 if and only if the coefficients of all monomials y'zy?, for i +j < n — 1, are
zero. This gives a system of linear equations in the n 4+ 1 unknowns ay, ..., a,. We claim
that the coefficient matrix M has rank exactly n. Indeed, by equation (4), the submatrix
of rows corresponding to the components of zy™,0 < m < n — 1 has the form

[ 0 0 0]
1 0 0

0

* 1 0

* % % ... x 1

which shows that the rank is at least n. However the rank is not n + 1, since, as observed
above, the coefficient vector oy = (—1)*(?) of ey, is in the kernel of M. This proves (i).

To prove (ii), it suffices to show that in characteristic zero, the submatrix of M consisting
of all rows corresponding to monomials y*zy’ with s+* = n—1 has rank n. By equation (4),
this submatrix has the form

n 1 0 0 0]
0 n—1 2 0 0
0 0 n—2 3 0
: : : oo 0
K 0 0 o 1n]
Since char K = 0 the submatrix consisting of the first n columns is nonsingular and (ii)
follows. -

3. PROOFS OF THEOREMS

We first prove Theorem 1.1. The implication (ii) = (iii) is obvious and (i) = (ii) and
(iii) = (iv) follow from Proposition 2.2 and Proposition 2.1 respectively. By Lemma 2.3,
(iv) and (v) are equivalent. Suppose then that R satisfies e, = 0. Let z,y € R. By [RW],
the subalgebra T of R generated by z and y is Lie nilpotent of class m depending on n
only. An easy induction on m shows that 7', and hence R, satisfies the Morse identity, in
the circle sense, of degree m. Indeed,

U, — U = [U1, V1,02, ..., Up—1].
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This proves (v) = (vi). The last implication (vi) =(i) is obvious.

We now prove Theorem 1.3. The implication (i) = (ii) is obvious, (ii) = (iii) follows
from Proposition 2.1, and (iii) = (iv) can be deduced from Lemma 2.3. If char K =p > 0
then (iv) = (i) since by increasing m if necessary we may assume that m = p', so that

Y oy =y ay” =y eyt = 0.

Finally, Theorem 1.5 follows from the quantitative form of Theorem 1.1 and [RW,
Theorem].

4. COMMENTS

The following questions arise naturally from the work in this paper. The converses were
shown to hold in [RW]. Here R is an arbitrary ring.

e If a ring R satisfies a reduced semigroup identity, does R necessarily satisfy an Engel

identity?

e If a ring R satisfies a reduced circle semigroup identity, does R necessarily satisfy an

Engel identity?

Even the case when R is unital appears difficult.

In [GM82] it was shown (using arguments special to characteristic zero) that the K-
algebra R satisfies a partial linear identity if and only if the algebra of 2x 2 upper triangular
matrices over K is not in the variety generated by R. Perhaps this is true in all charac-
teristics.

Acknowledgments. The first author received support from NSF-EPSCoR in Alabama,
and the University of Alabama Research Advisory Committee. The second author is
supported by a NZST Postdoctoral Fellowship. This work was done while the first author
visited the Department of Mathematics at the University of Auckland, and their hospitality
is gratefully acknowledged.

REFERENCES

[Adi79] S.I. Adian, The Burnside problem and identities in groups, Springer, 1979.

[GM82] I. Z. Golubchik and A. V. Mikhalev, On wvarieties of algebras with a semigroup identity, Vestnik
Moskov. Univ. Ser. I Mat. Mekh. 37 (1982), no. 2, 8-11.

[Lev46] J. Levitzki, On a problem of A. Kurosch, Bull. Amer. Math. Soc. 52 (1946), 1033-1035.

[LL69] J. Lewin and T. Lewin, Semigroup laws in varieties of solvable groups, Proc. Camb. Phil. Soc. 65
(1969), 1-9.

[Mal53] A. I Malcev, Nilpotent semigroups, Ivanov. Gos. Ped. Inst. U¢. Zap. Fiz.-Mat. Nauki 4 (1953),
107-111.

[MK95] V. D. Mazurov and E. I. Khukhro (eds.), Unsolved problems in group theory. The Kourovka
notebook., 13th ed., Russian Academy of Sciences Siberian Division, Institute of Mathematics,
Novosibirsk, 1995.

[Mor21] M. Morse, Recurrent geodesics on a surface of negative curvature, Trans. Amer. Math. Soc. 22
(1921), 84-100.

[NT63] B. H. Neumann and Tekla Taylor, Subsemigroups of nilpotent groups, Proc. Roy. Soc. Ser. A 274
(1963), 1-4.

[0S96] A. Yu. Olshanskii and A. Storozhev, A group variety of relatively free groups, J. Austral. Math.
Soc. Ser. A 60 (1996), 255-259.

[Rhe]  A. Rhemtulla, private communication.

[Row88] L. Rowen, Ring theory, Academic Press, 1988.

[RT] D. M. Riley and V. Tasié¢, Malcev nilpotent algebras, preprint.

[RW] D. M. Riley and Mark C. Wilson, Associative rings satisfying the Engel condition, to appear in
Proc. Amer. Math. Soc.



ASSOCIATIVE ALGEBRAS SATISFYING A SEMIGROUP IDENTITY 9

[Sha93] A. Shalev, Combinatorial conditions in residually finite groups. II., J. Algebra 157 (1993), 51-62.

[Sha94] A. Shalev, Finite p-groups, in Finite and locally finite groups (Istanbul, 1994), 401-450, NATO
Adv. Sci. Inst. Ser. C Math. Phys. Sci., 471, Kluwer Acad. Publ., Dordrecht, 1995.

[SS93] J. Semple and A. Shalev, Combinatorial conditions in residually finite groups. 1., J. Algebra 157
(1993), 43-50.

[Zel90] E. I. Zel’'manov, On the restricted Burnside problem, Siberian Math. J. 30 (1990), 885-891.

DEPARTMENT OF MATHEMATICS, THE UNIVERSITY OF ALABAMA, TUSCALOOSA, AL 35487-0350, USA
E-mail address: driley@gp.as.ua.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF AUCKLAND, PRIVATE BaG 92019 AUuCKLAND, NEW
ZEALAND
E-mail address: wilson@math.auckland.ac.nz



