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Abstract
[Slinko and White, 2008] have recently introduced
a new model of coalitional manipulation of vot-
ing rules under limited communication, which they
call safe strategic voting. The computational as-
pects of this model were first studied by [Hazon
and Elkind, 2010], who provide polynomial-time
algorithms for finding a safe strategic vote under k-
approval and the Bucklin rule. In this paper, we an-
swer an open question of [Hazon and Elkind, 2010]
by presenting a polynomial-time algorithm for find-
ing a safe strategic vote under the Borda rule. Our
results for Borda generalize to several interesting
classes of scoring rules.

1 Introduction
Voting is an important tool for preference aggregation in
multi-agent systems [Ephrati and Rosenschein, 1997]. How-
ever, essentially all voting rules are vulnerable to manipula-
tion, i.e., voters may have an incentive to misrepresent their
preferences to get a more desirable outcome [Gibbard, 1973;
Satterthwaite, 1975]. This problem becomes especially se-
vere when we assume that manipulating voters can form
coalitions in order to coordinate their actions.

To assess the potential impact of coalitional manipulation
in the context of multi-agent systems, where both the num-
ber of voters and the number of alternatives can be large,
one needs to know whether manipulators can easily com-
pute their optimal strategies. For this reason, the algorith-
mic complexity of coalitional manipulation received consid-
erable attention in the multiagent research community (see
[Faliszewski et al., 2008; 2010; Xia et al., 2009; 2010;
Zuckerman et al., 2009]). Indeed, the complexity of coali-
tional manipulation under the Borda rule is commonly viewed
as one of the most interesting open questions in the emerging
area of computational social choice.

Now, standard models of manipulation presuppose per-
fect communication and co-ordination within the manipu-
lating coalition. Such conditions would be difficult—if not
impossible—to attain in reasonably large elections where
there could be thousands of agents opting to manipulate. In
light of this, [Slinko and White, 2008] have proposed a more
plausible model, where the coalition consists of voters with

identical preferences, a single coalition member broadcasts a
strategic vote, and every voter in the coalition has a choice be-
tween casting the proposed strategic vote or voting sincerely.

Since the original manipulator does not know how many
followers he will have, manipulation in this sense can be
risky: it may happen that, while the manipulation is useful
when the number of followers is small, it may result in an un-
desirable candidate being elected when many coalition mem-
bers opt to manipulate, or vice versa. Thus, the manipulator
may want to identify a strategic vote that never produces an
undesirable outcome, no matter how many coalition members
choose to follow him. [Slinko and White, 2008] call such a
vote a safe strategic vote. The main result of [Slinko and
White, 2008] is that the Gibbard–Satterthwaite theorem can
be extended to this notion of manipulation: every manipula-
ble voting rule is safely manipulable. The probability of safe
manipulation has been recently investigated by [Reyhani and
Wilson, 2010].

Just as in the standard model of coalitional manipulation,
the practical significance of this form of manipulation de-
pends on whether a safe strategic vote can be computed effi-
ciently. This problem was first studied by [Hazon and Elkind,
2010], who provided polynomial-time algorithms for finding
a safe strategic vote, even with weighted voters, under the
k-approval rule (for fixed k which may depend on the num-
ber of candidates — this includes the plurality and veto rules)
and the Bucklin rule. For Borda, they have shown a coNP-
hardness result for weighted voters; however, the unweighted
case was left as an open question.

In this paper, we continue the investigation of algorith-
mic complexity of safe strategic voting initiated by [Hazon
and Elkind, 2010]. Our main result is a polynomial-time
algorithm for finding a safe strategic vote under the Borda
rule with unweighted voters. The Borda rule is perhaps the
most prominent representative of a large class of voting rules
known as scoring rules: recall that a scoring rule for an m-
candidate election is described by a vector (α1, . . . , αm) with
α1 ≥ . . . ≥ αm, where each candidate receives αi points
from each voter that ranks him in position i. Thus, it is natu-
ral to ask whether our algorithmic results for Borda extend to
other scoring rules. We answer this question in the affirma-
tive, by identifying a large class of scoring rules for which we
can find a safe strategic vote in polynomial time. In particu-
lar, this is the case for all top-heavy scoring rules, i.e., rules



that satisfy α1 − α2 ≥ αi − αi+1 for all i = 2, . . . ,m − 1,
as well as for all rules where the increments αi −αi+1 take a
small number of different values.

Another interesting class of scoring rules that is not cap-
tured by our original approach consists of rules for which
the scoring vector consists of a constant number of “blocks”.
For such rules, we propose a polynomial-time algorithm for
finding safe strategic votes that is based on a different idea.
Though we have not (yet!) designed polynomial-time algo-
rithms for safe manipulation under all scoring rules, we be-
lieve that our results contribute to the understanding of the
computational complexity of safe strategic voting.

2 Preliminaries
An election E = (A, V ) is described by a set of alternatives
(sometimes called candidates) A, |A| = m, and a set of vot-
ers V , |V | = n. Every voter i ∈ V is associated with a
preference orderingRi, which is a total order overA; we will
also refer to a voter’s preference ordering as his type. For in-
stance, if A = {a, b, c, d}, a voter may rank c first, followed
by b, followed by d, followed by a; we will abbreviate the
type of this voter as cbda. The list of all voters’ preference
orderings R = (R1, . . . , Rn) is called the preference profile.
A voting correspondence is a mapping F from the set of all
preference profiles overA to the set 2A\{∅} of all non-empty
subsets ofA; the elements of the setF(R) are called the elec-
tion winners. A voting correspondence F is called a voting
rule if there is a unique winner for each preference profile,
i.e., |F(R)| = 1 for any preference profile R. A voting cor-
respondence is said to be anonymous if its output does not
change when the entries ofR are permuted.

A scoring rule Fα is a voting correspondence given by a
score vector α = (α1, ..., αm) that satisfies α1 ≥ ... ≥ αm.
Under Fα, each candidate a receives

∑
i αisi points, where

si is the number of voters ranking a in position i. The
candidate(s) with the highest score are the election winners.
The k-approval rule is the scoring rule with αi = 1 for
i ≤ k, αi = 0 for i > k; here k is a given function of
m. The Borda rule is the scoring rule with the score vector
(m − 1,m − 2, . . . , 0). Note that a scoring rule is defined
for a fixed number of candidates m. Since we are interested
in asymptotic complexity results, we will abuse notation and
use the term “scoring rule” to refer to efficiently computable
families of scoring rules, i.e., sets that contain a scoring rule
for each value of m and admit an efficient algorithm that,
given a value of m, computes the scoring rule corresponding
to m. Note that both Borda and k-approval can be viewed as
efficiently computable families of scoring rules.

The definitions in the previous paragraph assume that all
voters have equal power. A more general setup allows for
weighted voters. In a weighted election, we are given a vector
w = (w1, . . . , wn), where wi is the weight of the i-th voter;
all weights wi are required to be positive integers given in
binary. To determine the winner of a weighted election under
a voting rule F , we replace a voter with weight wi with wi
unweighted voters and apply F to the resulting profile.

To transform a voting correspondence into a voting rule.
we need a tie-breaking rule, i.e., a mapping T : 2A → A

that given a set of tied alternatives S ⊆ A outputs a single
alternative T (S) such that T (S) ∈ S. Clearly, ifF is a voting
correspondence, then the composition of T and F , i.e., the
mapping T ◦F given by (T ◦F)(R) = T (F(R)), is a voting
rule. A tie-breaking rule T is said to be lexicographic if there
exists an ordering � over A such that, for each set S ⊆ A,
T (S) is the first element in S according to �.

Consider an election E = (A, V ) where the voters’ pref-
erences are given by a profile R, and a voting rule F . Fix
a voter v of type R, and let M denote the set of all voters
in V who also have type R. We are interested in situations
where v announces a manipulative vote L 6= R and a subset
of voters in M may decide to vote L, while all the remaining
voters vote truthfully. Given a set of voters X , we denote by
R−X(L) the preference profile obtained fromR by replacing
the vote of every voter in X with L. Let w = F(R) be the
election winner if everyone votes truthfully. We will say that
an alternative a ∈ A is good if it is ranked above w in R;
we say that a is bad if it is ranked below w in R. We denote
the set of all good alternatives by G, and the set of all bad
alternative by B.

The following definition is adapted from [Slinko and
White, 2008; Hazon and Elkind, 2010].
Definition 1. Consider an election E = (A, V ) with a pref-
erence profile R, a voting rule F , a type R ∈ R, and the set
M = {i ∈ V | Ri = R}. Let L be a preference order over
A. Then
• L is safe for M if for any X ⊆ M we have
F(R−X(L)) ∈ G ∪ {w}.
• L is strategic for M if there exists an X ⊆ M and a
g ∈ G such that F(R−X(L)) = g.

A vote is said to be a safe strategic vote if it is both safe and
strategic.
Example 1. Consider a Borda election with A = {a, b, c, d},
5 voters of type bacd, 4 voters of type abcd, 4 voters of type
dcab, 2 voters of type badc, 2 voters of type cdba, 1 voter
of type bdac, 1 voter of type dacb and 1 voter of type dcba.
Under truthful voting, b is first with 35 points, a is second
with 33, c and d are tied for last with 26. Suppose that a voter
of type abcd opts to manipulate, so G = {a}, B = {c, d}.
Consider first the vote adcb. This vote is strategic because if
the manipulating coalition is of size 2, b’s score will fall to
31, below that of a, while d’s score will only rise to 30, so the
highest scoring alternative is a, which is in G. However, the
vote is not safe: if the manipulating coalition is of size 4, then
d will score 34 points and thus the election winner will be an
alternative in B.

On the other hand, consider the vote acbd. This time, even
if all voters of type abcd manipulate, c’s score will only rise
to 30, while b’s will fall to 31, and the election winner will be
a. Thus, the vote abcd is a safe strategic vote.

We will now define the algorithmic problem that is the fo-
cus of this work.

EXISTSAFE(F): given an election E = (A, V ) with a pref-
erence profile R, a type R, and the set M that consists of
all voters of type R in R, does M have a safe strategic vote
under a voting rule F?



3 Complexity of EXISTSAFE for Borda
In this section, we study the complexity of EXISTSAFE with
unweighted voters under the Borda rule. Almost all of our
preliminary results (Lemmas 1–5 and Propositions 1 and 2)
hold for all scoring rules, so we state and prove them for
an arbitrary fixed scoring rule F . We then present our
main result of this section—a polynomial-time algorithm for
EXISTSAFE(Borda). In the next section, we show how to
extend our proof to a large class of scoring rules.

To simplify the presentation, throughout this section, we
assume that ties are broken adversarially to the manipulator,
i.e., the tie-breaking rule is lexicographic with respect to the
ordering obtained by reversing the manipulator’s preference
ordering. However, all of our proofs can be adapted to work
for arbitrary lexicographic tie-breaking rules; we will com-
ment on this after presenting the main proof.

Throughout this section, we assume that a scoring ruleF is
fixed, and we are given an election (A, V ) with a preference
profile R and a manipulating set M ⊆ V that consists of all
voters with a certain type R. We set w = F(R), and let
G and B be the candidates ranked above and below w in R,
respectively. We will refer to the position of w in R as w’s
sincere position.

For any X ⊆ M , any a ∈ A and any vote L, we denote
by SX(a, L) the score of a in F(R−X(L)); when X = ∅,
the quantity SX(a, L) does not depend on L, so we omit L
and write S∅(a). Note that the score SX(a, L) is well-defined
even if L is a partial vote, i.e., if the positions of some alter-
natives in L are unknown, as long as the position of a itself is
known. Let Lk denote the set of all votes that rank w in posi-
tion k. We say that an alternative a ∈ A overtakes b ∈ A if a
loses to b under truthful voting, but beats it when all voters in
M vote L. A position k is said to be promising if there exists
an L ∈ Lk such that SX(w,L) > SX(b, L) for all b ∈ B and
all X ⊆ M . Observe that if k is a promising position, then
there exists a safe vote with w ranked in position k. Further,
w’s sincere position is necessarily promising.

We start by establishing the existence of an interval of w’s
positions where strategic votes exist, and an interval where
safe votes exist. We then show that if these intervals intersect,
we are assured that either the lowest promising position or the
highest non-promising position fall into that intersection.
Lemma 1. If there exists a safe strategic vote, then there ex-
ists a safe strategic vote in which every good alternative is
ranked above every bad alternative.

Proof. Assume we have a safe strategic vote L with some
b1 ∈ B ranked above some g1 ∈ G. Construct L′ by swap-
ping b1 with g1. This does not decrease the score of g1, does
not increase the score of b1, and does not change the score of
any other alternative.

Consider a subset X ⊆ M . Since L is safe, the winner
at R−X(L) is either w or some g ∈ G. Since SX(a, L′) ≥
SX(a, L) for all a ∈ G∪ {w} and SX(b, L′) ≤ SX(b, L) for
all b ∈ B, the winner at R−X(L′) is also either w or some
g′ ∈ G, so vote L′ is also safe.

Further, since L is strategic, there is a subset Y ⊆ M
such that the winner at R−Y (L) is some g ∈ G. Since
SY (a, L′) ≥ SY (a, L) for all a ∈ G and SY (b, L′) ≤

SY (b, L) for all b ∈ B ∪ {w}, the winner at R−Y (L′) is
also some g′ ∈ G. Thus, L′ is also strategic.

Given this result, from now on we will assume that every
vote we deal with has the good alternatives ranked above the
bad alternatives.

Lemma 2. If k is a promising position, k − 1 is a promising
position.

Proof. Since k is a promising position, there is a vote L ∈ Lk
such that SX(w,L) > SX(b, L) for all X ⊆ M and all b ∈
B. Construct L′ from L by swapping w with the alternative
directly above it. This does not decrease the score of w, and
does not increase the score of any b ∈ B. Hence, we have
SX(w,L′) > SX(b, L′) for all X ⊆ M and all b ∈ B. i.e.,
L′ is a witness that k − 1 is a promising position.

Lemma 3. If k is a promising position and there is no strate-
gic vote in Lk, there is no strategic vote in Lk−1.

Proof. We prove the contrapositive. Suppose there is a strate-
gic vote L ∈ Lk−1, i.e., there exists a set X ⊆ M and a
candidate g ∈ G such that SX(g, L) > SX(a, L) for all
a ∈ B ∪ {w}. Consider the vote L′ obtained from L by
swapping w with the alternative directly below it. This does
not increase the score of w and does not decrease the score
of g, so we have SX(g, L′) > SX(w,L′). Further, since k
is a promising position, we can reorder the bad alternatives
in L′ (without changing the positions of w and g) so that the
resulting vote L′′ satisfies SY (w,L′′) > SY (b, L′′) for all
Y ⊆ M and all b ∈ B. Thus, substituting X = Y , we
have SX(g, L′′) = SX(g, L′) > SX(w,L′) = SX(w,L′′) >
SX(b, L′′) for all b ∈ B, so the vote L′′ is also strategic.

Lemma 4. If there is no safe vote in Lk, there is no safe vote
in Lk+1.

Proof. We prove the contrapositive. Assume there exists a
safe vote L ∈ Lk+1. Consider the alternative a ranked di-
rectly above w in L. If a ∈ G, w must be ranked at or above
its sincere position, since by Lemma 1 every good alternative
is ranked above every bad alternative. Since w’s sincere po-
sition is promising, Lemma 2 implies that k is a promising
position as well, so there must be a safe vote in Lk.

On the other hand, if a ∈ B, construct L′ ∈ Lk by swap-
ping w with a. This swap does not increase the score of any
b ∈ B and does not decrease the score of w or any g ∈ G.
Therefore, if L ∈ Lk+1 is safe, so is L′ ∈ Lk.

Lemma 5. If k is not a promising position, and some L ∈ Lk
is safe, L is also strategic.

Proof. Since k is not promising, there exists some manipu-
lating coalition X ⊆ M such that for some b ∈ B it holds
that SX(b, L) > SX(w,L) and hence w is not the winner at
R−X(L). Since L is safe, the winner at R−X(L) must be
some candidate g ∈ G. Therefore L is strategic.

Lemma 6. If k is a promising position, and Lk contains a
vote L such that SX(g, L) > SX(w,L) for some g ∈ G and
X ⊆M , then Lk contains a safe strategic vote.



Proof. Since k is a promising position, we can reorder the
bad alternatives in L without changing the positions of g
and w so that the resulting vote L′ satisfies SY (w,L′) >
SY (b, L′) for any b ∈ B and any Y ⊆ M , i.e., L′ is
safe. Further, substituting X = Y , we obtain SX(g, L′) =
SX(g, L) > SX(w,L) = SX(w,L′) > SX(b, L′) for any
b ∈ B, so L′ is also strategic.

Proposition 1. Let k be the lowest promising position. If a
safe strategic vote exists, then there exists one in Lk ∪ Lk+1.

Proof. We prove the contrapositive. Assume that there are no
safe strategic votes in Lk ∪ Lk+1. By Lemma 6, Lk cannot
contain a strategic vote, and hence by Lemma 3, there are no
strategic votes in Li for any i ≤ k.

Further, by Lemma 5, any safe vote in Lk+1 is strategic.
Hence, there can be no safe vote in Lk+1, so by Lemma 4,
there are no safe votes in Lj for any j ≥ k+1. Thus, we have
argued that if there are no safe strategic votes in Lk ∪ Lk+1,
there are no safe strategic votes in Lj for any value of j.

The next lemma shows that, when considering the effects
of a manipulation on a given pair of candidates, it is enough
to check what happens when all voters in M choose to cast a
manipulative vote.

Lemma 7. For any vote L and any candidates x, y ∈ A such
that S∅(x) ≤ S∅(y) we have SM (x, L) > SM (y, L) if and
only if SX(x, L) > SX(y, L) for some X ⊆M .

Proof. The “only if” direction is obvious: we can take X =
M . To prove the “if” direction, suppose that SX(x, L) >
SX(y, L) for some X ⊆ M . Let γ and δ denote, respec-
tively, the change in x’s and y’s score when one voter in M
switches from R to L; we have SZ(x, L) = S∅(x, L) + γ|Z|,
SZ(y, L) = S∅(y, L) + δ|Z| for any Z ⊆ M . Since we
have S∅(x, L) ≤ S∅(y, L), it follows that γ > δ. There-
fore, SM (x, L) = SX(x, L) + γ(|M | − |X|) > SX(y, L) +
δ(|M | − |X|) = SM (y, L).

Proposition 2. Testing whether a given position k is promis-
ing is in P.

Proof. We know that w’s sincere position is promising, so,
by Lemma 2, if k ≤ |G| we can output “yes”. If k > |G|, we
construct a (partial) vote L as follows. We rank w in position
k, and place the good alternatives in the top |G| positions in
any order. Then we construct a bipartite graph (U,D), where
U = B and the set D consists of positions in L unoccupied
by the alternatives inG∪{w}. There is an edge from b ∈ B to
a position p ∈ D if the partial vote L′ that ranks b in position
p satisfies SM (w,L′) > SM (b, L′). Using Lemma 7, it is
easy to check that k is a promising position if and only if
(U,D) contains a perfect matching (which can be checked in
polynomial time).

The following crucial lemma does not extend to general
scoring rules if m ≥ 5 (counterexample omitted for space
reasons).

Lemma 8. Under the Borda rule, if k is a promising posi-
tion and there is no strategic vote in Lk, then for any vote
L ∈ Lk+1 there is at most one g ∈ G such that SM (g, L) >
SM (w,L).

Proof. Assume, for contradiction, that there is no strategic
vote in Lk, but there exists a vote L ∈ Lk+1 and two good
alternatives g1, g2 ∈ G such that SM (g, L) > SM (w,L) for
g ∈ {g1, g2}. Since only one of g1 and g2 can be ranked
in the top position in L, assume without loss of general-
ity that g2 is ranked second or lower. Construct L′ from L
by swapping g2 with the alternative right above it and then
swapping w with the alternative right above it. Note that
since SM (g2, L) > SM (w,L), g2 is ranked above w in L,
and therefore the latter swap does not affect the position of
g2. We have L′ ∈ Lk; further, we have SM (w,L′) =
SM (w,L) + |M | and SM (g2, L

′) = SM (g2, L) + |M |, be-
cause bothw and g2 gain one point for every voter that opts to
rank them one position higher. Thus, we have SM (g2, L

′) =
SM (g2, L) + |M | > SM (w,L) + |M | = SM (w,L′). Since
k is a promising position, by Lemma 6 we can transform L′

into a safe strategic vote in Lk, a contradiction.

Theorem 1. EXISTSAFE(Borda) is in P.

Proof. Given Proposition 1, we only need to check votes in
Lk and Lk+1, where k is the lowest promising position. First,
we use the algorithm of Proposition 2 to find k. Then we try to
construct a safe strategic vote in Lk. To this end, for each g ∈
Gwe construct a voteLg that ranks g first, ranksw in position
k and ranks all other candidates arbitrarily, and check whether
SM (g, Lg) > SM (w,Lg). If this is the case for some g ∈ G,
since k is promising, by Lemma 6 we can transform Lg into a
safe strategic vote. If we have SM (g, Lg) ≤ SM (w,Lg) for
all g ∈ G, then no g ∈ G can overtake w and hence no vote
in Lk can be strategic.

Now, suppose that no strategic vote has been found in Lk.
Then, by Lemma 8, if there is a safe strategic vote L ∈ Lk+1,
then there is at most one alternative g such that SM (g, L) >
SM (w,L). By Lemma 7, this implies that for any X ⊆ M
and any g′ ∈ G \ {g} we have SX(g′, L) ≤ SX(w,L). Since
L is safe, this means that for any X ⊆ M and any b ∈ B
it holds that SX(b, L) < max{SX(w,L), SX(g, L)}. Ob-
serve also that if we swap g with the alternative ranked in the
top position in L (which, by Lemma 1, we can assume to be
an alternative in G), the resulting vote will remain safe and
strategic. Hence, if Lk+1 contains a safe strategic vote, then
there exists some alternative g and a vote L ∈ Lk+1 such
that L ranks g first and for any b ∈ B and any X ⊆ M we
have SX(b, L) < max{SX(w,L), SX(g, L)}. Thus, to find
a safe strategic vote in Lk+1, we proceed as follows. For each
g ∈ G we construct a partial vote Lg that ranks g first, fol-
lowed by other votes in G in an arbitrary order, and ranks w
in position k + 1 (note that since k + 1 is not promising, the
sincere position of w is k or higher, so |G| ≤ k − 1, i.e., af-
ter the alternatives in G are ranked, the position k + 1 is still
unoccupied).

Then, as in the proof of Proposition 2, we construct a bi-
partite graph (U,D), where U = B and the set D consists
of positions in L unoccupied by the alternatives in G ∪ {w}.



There is an edge from b ∈ B to a position p ∈ D if the
partial vote L′ that ranks b in position p satisfies SX(b, L) <
max{SX(w,L), SX(g, L)} for allX ⊆M . The latter condi-
tion can be verified in polynomial time, since the Borda rule is
anonymous and hence it suffices to check this condition for an
arbitrary manipulating coalition of size s for s = 1, . . . , |M |.
It is easy to see that Lk+1 contains a safe strategic vote if and
only if (U,D) contains a perfect matching.

It remains to explain how to extend our algorithm to arbi-
trary lexicographic tie-breaking rules. This can be achieved
by replacing each expression of the form “SX(a, L) >
SX(b, L)” by “either (a) SX(a, L) > SX(b, L) or (b)
SX(a, L) = SX(b, L) and a � b”, where � is the given
lexicographic order. Equivalently, assuming that� orders the
candidates as am � . . . � a1, we can set ε = 1/(m2) and
modify the score of each candidate by setting S′X(ai, L) =
SX(ai, L) + iε. Since we consider scoring rules with inte-
ger entries only, the modified scores of any two candidates
are different, and S′X(a, L) > S′X(b, L) if and only if (a)
SX(a, L) > SX(b, L) or (b) SX(a, L) = SX(b, L) and
a � b. We can now use the modified scores throughout the
proof. This argument allows us to assume that ties never oc-
cur; the proofs in Section 4 make use of this assumption.

4 Other scoring rules
In this section, we describe polynomial-time algorithms for
finding a safe manipulation for several classes of scoring
rules. First, we present results that can be obtained by gener-
alizing the arguments used for Borda. Then, we describe an
algorithm for scoring rules with a constant number of differ-
ent scores, which uses a different idea.

4.1 Extensions of Theorem 1
All results of Section 3 except Lemma 8 and Theorem 1 hold
for all scoring rules. We will now show that we can prove an
analogue of Lemma 8 for a large class of scoring rules, and,
as a result, obtain polynomial-time algorithms for finding a
safe strategic vote with respect to such rules.

We first introduce additional notation. Given a scoring rule
Fα with α = (α1, . . . , αm), let ∆αi = αi − αi+1 for i =
1, . . . ,m−1, and set I(α) = {∆αi | i = 1, . . . ,m−1}. Let
∆min = min{∆αi | i = 1, . . . ,m−1}, ∆max = max{∆αi |
i = 1, . . . ,m−1}. Set s(t) =

∑t
j=1 ∆αj , and define r(α) =

min{t | s(t) ≥ ∆max}.
Let k be the lowest promising position, and suppose that

there is no safe strategic vote in Lk. Consider a vote L ∈
Lk+1, and let G∗(L) = {g ∈ G | SM (g, L) > SM (w,L)}.
By Lemma 7, for any alternative g′ ∈ G \ G∗(L) and any
X ⊆ M we have SX(g′, L) ≤ SX(w,L), i.e., the alterna-
tives in G \G∗(L) never win. Thus we can move the alterna-
tives in G∗(L) into top |G∗(L)| positions (note that since k
is the lowest promising position, we have |G∗(L)| < k): the
resulting vote L′ is safe and strategic as long as L is. There-
fore, we can limit our attention to the votes L ∈ Lk+1 that
rank the alternatives in G∗(L) in top |G∗(L)| positions; we
will say that any such vote is nice.

Lemma 9. Let k be the lowest promising position, and sup-
pose that there is no strategic vote in Lk. Then any nice vote
L ∈ Lk+1 satisfies |G∗(L)| ≤ r(α).

Proof. Let r = r(α) and suppose for the sake of contradic-
tion that |G∗(L)| > r. Since L is nice, some alternative g
is ranked first in L, and some alternative g′ is ranked in po-
sition r + 1 in L. We construct the vote L′ by swapping g
and g′ in L, and then swapping w with the alternative right
above it. The resulting vote L′ is in Lk. By our choice of
r, we have s(r) ≥ ∆αk. Further, since g′ ∈ G∗(L), we get
SM (g′, L) > SM (w,L). Therefore, we have
SM (g′, L′) = SM (g′, L) + s(r)|M |

> SM (w,L) + ∆αk|M | = SM (w,L′).
Since k is a promising position, by Lemma 6 we can trans-
form L′ into a safe strategic vote in Lk, a contradiction.

Now, we can modify the algorithm given in the proof of
Theorem 1 as follows. Just as in that proof, we find the low-
est promising position k and check if there is a safe strate-
gic vote in Lk. If the answer is “no”, we try to construct a
safe strategic vote in Lk+1. Let r = min{r(α), |G|}. By
Lemma 9, we only need to decide which alternatives to put
in the top r positions; for any placement of good candidates
in top r positions, we rank the remaining good candidates
right below them, place w in position k + 1, and then use the
bipartite graph-based algorithm to rank the bad candidates,
as described in the proof of Theorem 1. There are at most(
m
r

)
r! = O(mr) ways to fill the top r positions. Thus, we

obtain the following result.
Theorem 2. EXISTSAFE(Fα) is in P for any scoring rule
Fα with r(α) = O(1).

The condition of Theorem 2 is somewhat technical. How-
ever, it covers many interesting classes of scoring rules and
we now present some consequences. For example, we say
that a scoring rule Fα is top-heavy if ∆α1 ≥ ∆αj for all j;
equivalently, r(α) = 1. Every convex scoring rule (one where
∆αi ≥ ∆αj when i ≥ j) is top-heavy.
Corollary 1. EXISTSAFE(Fα) is in P for any top-heavy
scoring rule Fα.

We can extend Corollary 1 to the case where the score
vector consists of “blocks”, with entries in each block being
equal. Formally, we say that a scoring ruleFα with the vector
α = (α1 . . . , αm) is blockwise with respect to a vector β =
(β1, . . . , β`) if α = (β1, . . . , β1, β2, . . . , β2, . . . , β`, . . . , β`);
with β1 > . . . > β`. Let ∆βj = βj − βj+1 for j =
1, . . . , ` − 1. If Fα is blockwise with respect to β, we say
that it is blockwise top-heavy if ∆β1 ≥ ∆βj for all j.

Given a blockwise top-heavy rule Fα, let q be the size of
the first block, i.e., q = |{αi | αi = β1}|. We have, for each
i = 1, . . . ,m−1, s(q) =

∑q
j=1 ∆αj = αq+1−αq = ∆β1 ≥

∆αi and hence r(α) ≤ q. This yields the following result.
Corollary 2. EXISTSAFE(Fα) is in P for any blockwise top-
heavy scoring rule Fα with first block of constant size.
Now, set ρ(α) = d∆max

∆min
e if ∆min > 0 and ρ(α) = +∞ oth-

erwise. We have
∑ρ(α)
j=1 ∆αj ≥ ρ(α)∆min ≥ ∆max. Thus,

r(α) ≤ ρ(α), and we obtain the following result.



Corollary 3. EXISTSAFE(Fα) is in P for any scoring rule
Fα such that ρ(α) = O(1).

4.2 Scoring rules with a constant number of blocks
Let R be the manipulator’s true preference ordering. For j =
1, . . . , `, let Aj be the set of candidates that obtain βj points
from R. Let ˆ̀= max{j | Aj ∩G 6= ∅}. For j = 1, . . . , ˆ̀, let
g∗[j] be the candidate inAj∩G that has the highest score under
truthful voting, i.e., g∗[j] = arg maxa∈Aj∩G S∅(a) (recall that
by the argument in the end of Section 3 we can assume that
there are no ties). Set G∗ = {g∗[j] | j = 1, . . . , ˆ̀}; clearly,
|G∗| ≤ `. We will argue that to find a safe strategic vote
with w in a non-promising position, it suffices to consider
all possible placements of the candidates in G∗ in top |G∗|
positions.

Lemma 10. Consider two good alternatives g, g′ ∈ G ∩Aj
and a safe strategic vote L. Let L′ be the vote obtained from
L by swapping g and g′. If S∅(g) ≥ S∅(g′) and g′ is ranked
above g in L, then L′ is also a safe strategic vote.

Proof. Since L′ ranks g higher than L does, we have
SX(g, L′) ≥ SX(g, L) for any X ⊆ M . Now, suppose L
ranks g′ in position i. Since S∅(g) ≥ S∅(g′), we have

SX(g, L′) = S∅(g) + (αi − βj)|X|
≥ S∅(g′) + (αi − βj)|X| = SX(g′, L).

Thus, for any X ⊆ M , if some a ∈ B ∪ {w} is beaten by g
or g′ atR−X(L), then a beaten by g atR−X(L), i.e., L′ is a
safe strategic vote.

By Lemma 10, when searching for a safe strategic vote,
we may limit our attention to the votes that rank g∗[j] above all

other alternatives in Aj ∩ G, for all j = 1, . . . , ˆ̀. Moreover,
for any such vote L we have SX(g∗[j], L) ≥ SX(g, L) for any
g ∈ G ∩Aj and any X ⊆M , i.e., the ranking of alternatives
in G \ G∗ is irrelevant to whether L is safe or not. Thus,
given a safe strategic vote L, we can move the alternatives
in G∗ to the top |G∗| positions; the resulting vote L′ is also
a safe strategic vote. Hence, when ranking the alternatives
in G, it suffices to consider all possible assignments of the
alternatives in G∗ to the top |G∗| positions, i.e., at most `!
possibilities. Now, substituting G∗ for G∗(L) in the proof of
Theorem 2, we obtain the following result.

Theorem 3. EXISTSAFE(Fα) is in P for any scoring rule
Fα that is blockwise with respect to a vector (β1, . . . , β`) with
` = O(1).

5 Conclusions and Future Work
We have demonstrated that for many scoring rules, including
the classic Borda rule, finding a safe strategic vote is easy.
An obvious question is whether these results extend to all
scoring rules (our proofs here do not), or whether safe ma-
nipulation is hard for some such rules. Other natural research
directions include developing polynomial-time algorithms for
EXISTSAFE under other common rules such as Copeland and
Maximin.

In contrast with the results of [Hazon and Elkind, 2010],
our results apply to unweighted voters only. It is tempting
to conjecture that some of our proofs could be extended to
weighted voters: for instance, the scoring rules considered in
Theorem 3 can be viewed as a rather modest extension of k-
approval and therefore one might expect that Theorem 3 holds
for weighted voters as well. However, the proof of Theorem 8
in [Hazon and Elkind, 2010] suggests that this is unlikely: the
construction in that proof essentially shows that both finding
a safe strategic vote and checking if a given vote is safe is hard
for the scoring rule given by the vector (4, 3, 2, 1, 0, . . . , 0).
Identifying scoring rules for which safe manipulation is easy
even with weighted voters is an interesting problem as well.
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