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Abstract. The concept of distance rationalizability of voting rules has been explored in
recent years by several authors. All previous work has dealt with a definition in terms of
preference profiles. However most voting rules in common use are anonymous and most are
also homogeneous. In this case there is a much more succinct representation (using the voting
simplex) of the rule. This representation has been widely used in the voting literature, but
not in the context of distance rationalizability.

We first define distance rationalizability in this new framework and explain in detail the
connection to the original definition. In doing so we unify, correct, and extend previous work.
The simplex interpretation yields a natural connection to areas of continuous mathematics
not seen before in the voting literature, namely Wasserstein spaces and Minkowski spaces.

We prove some positive and some negative results about the decisiveness of distance
rationalizable rules on the simplex. The positive results connect with the recently developed
theory of hyperplane rules, while the negative ones exploit the fact that the `1-norm is not
strictly convex.

1. Introduction

The number of possible social choice rules is huge, and even the number of those singled
out in the literature for analysis is large. Researchers have tried many different axioms in
order to classify and characterize these rules, sometimes leading to impossibility theorems.
New rules are still being introduced, and the subject is far from tidy.

A promising unifying framework is that of distance rationalization (abbreviated DR),
whereby some subset D (the consensus set) of the set of elections is distinguished. This
subset is further partitioned into finitely many subsets, on each of which there is a different
social outcome. We choose a distance measure d on elections, and for each election E outside
D, an outcome is chosen socially if and only if it is chosen in some profile in D minimizing
the distance under d to E. The basic idea is very old (it is essentially a generalization of
the maximum likelihood interpretation of voting stemming from work of Condorcet), and has
been studied in particular by Nitzan and coauthors [18, 1]. This approach “decomposes” a
rule into simpler components D and d.

More recently, distance rationalization was explicitly formalized as a unifying principle by
Meskanen and Nurmi [15]. Elkind, Faliszewski, and Slinko have further developed the theory
[9, 10, 7, 8, 6]. In particular, they have studied sufficient conditions on consensus and dis-
tance for the resulting rule to satisfy desirable properties such as monotonicity, anonymity,
homogeneity. Their work shows that almost every rule can be represented in the DR frame-
work, and the main interest in the subject is when we can choose the distance and consensus
notations to be natural and computationally tractable.

Our motivation here is to explore in detail the relationship between the distance ratio-
nalizability framework and other representations of voting rules. In particular, we wish to
specialize to the case of anonymous and homogeneous rules, which include most rules used in
practice, and most appearing in the research literature. In this case there is a known geometric
interpretation using simplices, popularized by Saari [20], which is very useful for considering
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many questions. We aim to clarify just how the geometric idea of distance rationalization
connects to the simplex representation, and use this to sharpen results about anonymous and
homogeneous rules using the distance rationalizability framework.

1.1. Our contribution. Our approach, of deriving general results about distance rational-
izability, rather than special results for a few known rules, is similar to that of Elkind, Fal-
iszewski and Slinko, whose results we improve in some places.

We deal with a large number of foundational and definitional issues, many of which have not
been discussed by previous authors (in some cases because the level of generality they operated
in was not sufficient to distinguish these concepts). These questions must be considered
systematically in order for us to make further progress. Some of our contribution consists of
a more efficient and rigorous presentation of known material. However, most of the present
article deals with new ideas.

Section 2 develops the basic notation and terminology. Our approach is similar to that
taken by previous researchers, but there are some improvements. We aim to operate generally
(for example, by using a hemimetric rather than a metric), and explicitly distinguish several
concepts that have sometimes been conflated in previous work. We pose, and give a partial
answer to in Example 2.26 and Proposition 2.27, an important question regarding uniqueness
of representation in the DR framework, which does not appear to have been noticed before.

In Section 3 we deal with anonymous rules. We characterize anonymous DR rules in Propo-
sition 3.8. We go deeper in the case of standard distances, and obtain Proposition 3.16 which
connects the two definitions of distance rationalizability. The definition of totally anonymous
distance and the formula for the quotient distance in Proposition 3.14 are important, and, as
far as we can tell, new. This section shows the connection between `1-votewise distances and
the Earth Mover distance.

All previous work on distance rationalizability of which we are aware has dealt directly
with profiles, and hence has a discrete flavour. Section 4 goes further, to connect the DR
representation with the usual simplex representation, allowing an interpretation in terms of
continuous mathematics. This leads to Proposition 4.5, which looks obvious only because
the definitions have been correctly made. We focus in Section 4.2 on the special case of
`p-votewise distances, where the connection to Wasserstein distances, Minkowski spaces, and
the continuous theory of optimal transportation is very clear. This gives a completely new
perspective not yet seen in the voting literature, and suggests not only new voting rules but
also a possible way to attack harder questions in the DR framework. A weakness of the DR
framework is that good sufficient conditions for a rule to be homogeneous are not known. We
make some modest improvements in Proposition 4.10.

In Section 6 we explore the decisiveness of homogeneous DR rules. On the positive side, we
give a sufficient condition in Corollary 6.5 for rules from a wide class to be hyperplane rules
and therefore be rather decisive. In particular, any rule defined using an `p votewise norm
and the strong or weak unanimity consensus satisfies this condition. On the negative side, we
show in Proposition 6.9 that large tied sets occur often with `1 votewise metrics, and subtle
interactions between consensus and distance must be analysed. We conclude in Section 7 with
some ideas for future work.

2. Basic definitions

We use the standard conventions of social choice theory.

Definition 2.1. Let C be a finite set of m candidates and V a finite set of n voters. For
each s with 1 ≤ s ≤ m, an s-ranking is a strict linear order of s elements chosen from C.
The set of all s-rankings is denoted Ls(C). When s = m we write simply L(C). The set of
profiles is P := P(C, V ) := L(C)V . An election is a triple (C, V, π) with π ∈ P(C, V ). We
denote the set of all elections by E.
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A social rule of size s is a function that takes each election to a subset of Ls(C). When
there is a unique s-ranking chosen, the word “rule” becomes “function”. When s = 1, we have
the usual social choice function, and when s = m the usual social welfare function.

For each subset D of E (a domain restriction) we can consider a D-social rule to be
defined as above, but with domain restricted to D.

2.1. Consensus. A consensus is simply a socially agreed unique outcome on some set of
elections.

Definition 2.2. Let 1 ≤ s ≤ m. An s-consensus is a D-social function of size s, for some
D 6= ∅. We usually denote a consensus by K. The domain D of K is called an s-consensus
set and is partitioned into the inverse images Kr := K−1({r}), with r ∈ Ls(C). We will
sometimes identify K with its domain D(K) = ∪r∈Ls(C)Kr. If K,K′ are s-consensuses with
Kr ⊆ K′r for each r ∈ Ls(C), we say that K is a refinement of K′ and write K ⊆ K′.

The integer s is part of the definition. Every s-consensus K yields an s′-consensus for
each s′ ≤ s, by restricting to an initial segment of the preference order. We call this the
s′-restriction of K.

Several specific consensuses have been described in the literature. We unify the presentation
here.

Definition 2.3. (unanimity consensus)

Let 1/2 ≤ α < 1. The (α, s)-unanimity consensus S(α,s) is the s-consensus with domain
consisting of all profiles in which there is some fraction strictly more than α of voters, all of
whom agree on the order of the top s candidates.

The limiting value as α→ 1 is the case of complete unanimity. We denote this by Ss, the
strong unanimity consensus. When s = m, we simply write S, whereas when s = 1, we
denote it W, the weak unanimity consensus.

When α = 1/2, we obtain the majority s-consensus Ms.

Definition 2.4. (Condorcet consensus)

Let 1/2 ≤ α ≤ 1. The (α, s)-Condorcet consensus C(α,s) has domain consisting of
all elections for which an (α, s)-Condorcet partial ranking exists. That is, there is a chain
c0, . . . , cs−1 such that for each i and each c ∈ C \ {c0, . . . , ci}, a fraction strictly greater than
α of voters rank ci above c. When s = 1 we obtain the concept of α-Condorcet winner;
such a candidate is necessarily unique.

When α = 1/2 we denote this by Cs, and when furthermore s = 1, we write simply C.
When α→ 1, we obtain Ss.

Definition 2.5. (“single-peaked consensus”)
Consider the set of single-peaked profiles (those for which there is a fixed ordering of C

with respect to which the following is true: for each voter v, there is an “ideal” element ci
such that if k ≤ j ≤ i or i ≤ j ≤ k, v prefers ci to cj to ck).

If n := |V | is odd, the median of the ideal elements ci is the consensus winner. In this case,
for each r ∈ L1(C), every single-peaked election with median element r also belongs to Cr.
When n is even, it is not clear how to define SP.

Definition 2.6. The positional scoring rule defined by a vector w with 1 = w1 ≥ · · · ≥
wm = 0 elects all candidates with maximal score, where the score of a in the profile π is defined
as
∑

v∈V wπ(v)−1(a). Consider the set of all profiles for which all positional scoring rules yield
the same unique winner. By convexity of the set of weight vectors, it suffices to check the
finite set of rules defined by weight vectors (1, 1, . . . , 1, 0, . . . 0) where the number of 1’s is k;
in other words the k-approval rules for 1 ≤ k ≤ m−1. We denote this consensus Σ. It has
been called the Lorenz consensus.

Remark 2.7. Σ contains W but otherwise there is no containment relation between Σ and
any of the other consensuses above. Another interpretation is that a is the winner in Σ if and
only if a has the most first-place votes, the greatest total of first- and second-place votes, etc.
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Each of the consensuses described above is a social rule satisfying anonymity, meaning that
the consensus is invariant under any permutation of the voter set. Each also satisfies several
other normative properties which we discuss in Section 5. The basic idea behind distance
rationalizability is to extend each consensus in a simple way to a social rule with full domain,
while keeping as many of these properties as possible. Usually, it is not possible to retain
all desirable properties (social choice theory is notorious for such impossibility results). Thus
consensuses are strongly related to the topic of domain restrictions.

2.2. Distances. We require a notion of distance on elections. We aim to be as general as
possible.

Definition 2.8. (distance) By a distance (or hemimetric) on E we mean a function d :
E × E → R+ ∪ {∞} that satisfies the identities d(x, x) = 0 and d(x, z) ≤ d(x, y) + d(y, z). A
distance that is symmetric (d(x, y) = d(y, x)) and distinguishes points (d(x, y) = 0⇒ x = y)
is called a metric. We call a distance standard if d(E,E′) = ∞ whenever E and E′ have
different sets of voters or candidates.

One commonly used class of distances consists of the votewise distances formalized in [10].
They are each based on distances on L(C). See [5] for basic information about metrics on the
symmetric group.

Example 2.9. The most commonly used such distances on L(C) are:

• the discrete metric dH , with dH(ρ, σ) = 1 if and only if ρ 6= σ, and dH(ρ, ρ) = 0;
• the inversion metric dK (also called the swap, bubblesort or Kendall-τ metric),

where dK(ρ, σ) is the minimal number of swaps of adjacent elements required to convert
ρ to σ;
• Spearman’s footrule dS, defined to be

∑
i |ρ(i)− σ(i)|, where we interpret L(C) as

permutations of {1, . . . , n}.

Recall that a seminorm is a real-valued function N on Rn such that N(x+y) ≤ N(x)+N(y)
and N(λx) = |λ|N(x) for all λ ∈ R and all x, y ∈ Rn. It follows that N(x) ≥ 0. If N(x) = 0
only if x = 0, then we say N is a norm. A commonly used norm is the `p-norm given by
||x||p = (

∑n
i=1 |xi|p)1/p for fixed 1 ≤ p < ∞. The `∞ norm ||x||∞ = max1≤i≤n |xi| has also

been used.

Definition 2.10. (votewise distances)
Fix a distance d on L(C), and choose a family {Nn}n≥1 of seminorms, where Nn is defined

on Rn. Extend d to a function on P by taking n = |V | and defining for σ, π ∈ P
dN (π, σ) := Nn(d(π1, σ1), . . . , d(πn, σn)).

This yields a distance on elections having the same profile set. We complete the definition of
the extended distance (which we denote by dN ) on E by declaring it to be standard.

We use the abbreviation dp for d`p, and sometimes we even use just d for dN if the meaning
is clear.

Note that if d is a metric and N is a norm, then dN is a metric.

Example 2.11. (famous votewise distances)
The `1-votewise distances on E based on dH and dK are called respectively the Hamming

metric and Kemeny metric. To avoid confusion, note that some authors have considered
the Hamming metric on L(C) itself. The Hamming metric measures the number of voters
whose preferences must be changed in order to convert one profile to another, and as such
has an interpretation in terms of bribery. The Kemeny metric measures how many swaps of
adjacent candidates in a single preference order are required, and is related to models of voter
error.

Among the many other votewise metrics, we single out the `1-votewise metric based on dS,
sometimes called the Litvak distance dL.
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Example 2.12. (tournament distances) Given an election E, we form the pairwise tourna-
ment digraph with nodes indexed by the candidates, where the arc from a to b has weight equal
to the net support for a over b in a pairwise contest. Note that there are some redundant arcs
compared to the definitions of some other authors.

The weighted adjacency matrix M(E) is antisymmetric. Given a matrix seminorm N , we
define the N -tournament distance by dN (E,E′) = N(M(E) −M(E′)). A closely related
distance is defined in the analogous way, but where each element of the adjacency matrix is
replaced by its sign (1, 0, or −1). We call this the N -reduced tournament distance. We
denote the special cases where N is the `1 norm on matrices by dT and dRT respectively. A
(reduced) tournament distance cannot be a metric, even if N is a norm, because it does not
distinguish points — small profile changes usually do not change the majority tournament.
However, it is symmetric (a pseudometric).

Example 2.13. (nonsymmetric and nonstandard distances) In this paper we focus on sym-
metric standard distances. Nonsymmetric distances occur when considering the cost of chang-
ing a vote (whether through bribery or for reasons known only to the voter). For example,
it may be much more costly (for social reasons) to change a vote away from unanimity than
towards it. A distance that fails to be a metric only because of asymmetry is called a quasi-
metric.

Some rules, for example Young’s rule, are defined in terms of deletion of voters and for
this nonstandard distances are needed. For example, let ddel(E,E

′) (respectively dins(E,E
′))

be defined as the minimum number of voters we can delete from (insert into) election E in
order to reach election E′ (or +∞ if E′ can never be reached). Each is nonstandard, and so
are their symmetrized versions, which are metrics [9].

Example 2.14. (shortest path distances)
We can use E as the underlying set of a digraph, by defining an arc between E and E′ if and

only if d(E,E′) = 1. Then the length of a shortest path on such a digraph gives a quasimetric
d′, which is a metric if the underlying digraph is a graph. Sometimes, d′ = d. For example,
dH , dK , dins, ddel are essentially defined via this construction.

While shortest path distances occur often in the literature, they are rather special.

Proposition 2.15. A quasimetric on E is a shortest path distance for some nonempty edge
relation on E if and only if it takes integer values, and for each y, x ∈ E such that 2 ≤ d(y, x) <
∞, there is z ∈ E , z 6= x, z 6= y such that d(y, z) + d(z, x) = d(y, x).

Proof. Each shortest path quasimetric satisfies the given conditions. For the converse, suppose
that d is a quasimetric on E satisfying the given conditions. It follows that for every y, x,
there are x0, . . . , xk such that d(y, x) = k and each d(xi, xi+1) = 1. Define an arc between
E and E′ if and only if d(E,E′) = 1. Let d′ be the shortest path distance on the associated
digraph. It follows by induction on the minimal value of k that d = d′. �

Note that if we allowed arbitrary nonnegative weights on the edges of the digraph, every
distance could be represented as a shortest path distance.

2.3. Combining consensus and distance. In order for a rule to be definable via the DR
construction, it is necessary that the following property holds, and we shall assume this from
now on.

Definition 2.16. Let d be a distance and K a consensus. Say that (K, d) distinguishes
consensus choices if whenever x ∈ Kr, y ∈ Kr′ and d(x, y) = 0, then r = r′.

We use a distance to extend a consensus to a social rule in the natural way. The choice at
a given election E consists of all s-rankings r whose consensus set Kr minimizes the distance
to E. We introduce the idea of a score in order to use our intuition about positional scoring
rules. Note that if Kr is empty, then |r| =∞.
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K/d S W C Cm

d1K Kemeny Borda Dodgson
d1H modal ranking plurality VRR
dL Litvak Borda Dodgson
dT Kemeny Borda maximin
dRT Copeland Copeland Copeland Slater
dins trivial trivial maximin
ddel modal ranking plurality Young
Table 1. Some known rules in the DR framework

Definition 2.17. Let 1 ≤ s ≤ m and suppose that K is an s-consensus and d a distance on
E. Fix an election E ∈ E. The (K, d, E)-score of r ∈ Ls(C) is defined by

|r| := min
E′∈Kr

d(E,E′).

The rule R := R(K, d) is defined by

(1) R(E) = arg min
r
|r|.

We say that R is distance rationalizable (DR) with respect to (K, d).

Note that the scores are defined so that they are nonnegative, and higher score corresponds
to larger distance. This is not consistent with the usual scoring rule interpretation in Exam-
ple 2.18 — our DR scores typically have the form M − s where s is the score associated with
the rule and M depends on E but not on any r ∈ Ls(C).

Table 1 presents a few known rules in this framework. Most of these entries are well known.
We single out the following less obvious references: modal ranking rule [2]; voter replacement
rule [9]. The entries marked “trivial” are so labelled because in those cases every profile not
in K is at distance +∞ from every Kr. Missing entries reflect on the authors’ knowledge, and
may have established names. Our table overlaps with that in [15] — note that the (C, d1H)
entry is incorrect in that reference.

Example 2.18. (scoring rules) Every positional scoring rule defined by weight vector w with
w1 ≥ w2 ≥ · · · ≥ wm and w1 > wm has the form R(W, d1w) where dw is the distance on
rankings defined by

dw(ρ, ρ′) =
∑
c∈C
|wρ−1(c) − wρ′−1(c)|.

Plurality and Borda are special cases, where dw simplifies to d1H and dL respectively. As
far as the distance to W or C is concerned, dL and dK are proportional, but contrary to the
misstatement in [9, Section 3], they are not proportional in general [15, p. 298–299].

Remark 2.19. Note that dw is a metric on Ls(C) if and only if w1, . . . , ws are all distinct.
The score of r under the rule defined by w is the difference nw1−|r|. For example, for Borda
with m candidates, the maximum possible score of a candidate c is (m − 1)n, achieved only
for those profiles in Wc. The score of c under Borda is exactly (m − 1)n − K where K is
the total number of swaps of adjacent candidates needed to move c to the top of all preference
orders in π(E).

Example 2.20. (Copeland’s rule) Copeland’s rule can be represented as R(C, dRT ). In-
deed, in an election E, the Copeland score of a candidate c (the number of points it scores in
pairwise contests with other candidates) equals n− 1− s, where s is the minimum number of
pairwise results that must be changed for E to change to a profile that belongs to Cc.

Example 2.21. (maximin rule)
The maximin rule is R(C, dins) [9]. The DR score is related to the maximin score in a
similar way to the previous example.
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Every rule R(K, d) where K is a 1-consensus automatically yields a social rule Rs(K, d) as
follows.

Definition 2.22. Let 1 ≤ s ≤ m and suppose that K is a 1-consensus and d a distance on E.
We define a social rule Rs(K, d) of size s as follows. For each (C, V, π) ∈ E, report the top
s alternatives in descending order of score. If ties occur, report all possible such subsets of s
alternatives.

Remark. If the s′-consensus K′ is the s′-restriction of the s-consensus K, it is not necessarily
the case that R(K, d) = Rs(K′, d). For example, consider the social welfare rule R(Mm, dH).
This elects the modal ranking, the ranking represented most often among voters. However
Rm(M1, dH) ranks alternatives in descending order of plurality score.

2.4. Existence and uniqueness. The DR framework is not very restrictive without further
assumptions on K and d. We give necessary and sufficient conditions, a slight extension of
[10, Theorem 3.1].

Definition 2.23. For each rule R, there is a unique maximal consensus K∗, namely that
whose consensus set D∗ consists of all elections on which R gives a unique output, which
output we define as the consensus choice.

Proposition 2.24. A rule R is distance rationalizable if and only if every r ∈ Ls(C) that is
chosen at some profile is also the unique choice at some profile. That is, for each r ∈ Ls(C),
if there exists E ∈ E such that r ∈ R(E), then there exists E′ ∈ E such that R(E′) = {r}.
Proof. The condition is necessary, because no r can occur as a winner in R(K, d) unless
it wins somewhere in K. If the condition holds, take K = K∗. We can recapture R as
R(K, d) by defining (as in the proof of [10, Theorem 3.1]) d to be the shortest path distance
on the graph having an edge between E and E′ if and only if exactly one of E and E′

(without loss of generality, E) belongs to D(K), and R(E) ⊂ R(E′). Note that if r 6= r′ and
R(E) = {r}, R(E′) = {r′}, then d(E,E′) ≥ 2, while if |R(E)| ≥ 2, E is at distance 1 from
precisely those Kr for which r ∈ R(E). �

Remark 2.25. If a rule satisfies the usual nonimposition axiom (every r can win uniquely
in some profile), then by Proposition 2.24 it is distance rationalizable [10, Theorem 3.1].
However this assumption is not necessary — consider the rule in which R(E) = {a} for every
election E, and use an arbitrarily chosen distance.

Furthermore [9, Theorem 3.3] a rule R can be distance-rationalized by some d with respect
to a fixed K if and only if R agrees with K on its domain (called compatibility in [9]). Thus
for example, every rule satisfying the usual unanimity axiom can be rationalized with respect
to S. In view of the flexibility of the DR framework, it is clear that the key idea is to make an
appropriate choice of a “small” K and “natural” d so as to recapture rule R via R = R(K, d).

We now turn to the question of how much flexibility there is in the choice of K and d. The
construction in the proof of Proposition 2.24 shows that changing both of them can lead to
the same rule. When K is fixed and d varies, the rule often changes, but not always. A general
class of examples where the rule does not change is discussed at the end of Section 3.1.

Similarly, when d is fixed and K varies, the rule sometimes does not change. For example,
consider Copeland’s rule, which can be described as R(C, dRT ). It can also be described as
R(W, dRT ), because for each a ∈ C, every point of Ca is at distance zero from Wa with
respect to dRT . A key foundational question is: if R has the form R(K, d), is it necessarily
the case that R = R(K∗, d)? The answer is no in general, as we now show.

Example 2.26. Let K = S and fix a ranking r. We define d for elections y and z on same
voter set and candidate set by

d(y, z) =


0 if y = z

d1H(y, z) + 42 if y ∈ Sr or z ∈ Sr

d1H(y, z) if y 6∈ Sr and z 6∈ Sr.
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and we complete this definition by setting d to take +∞ if the voter or candidate sets differ.
It is easily checked that d is a standard distance. Then, consider elections on 43 voters. All
elections which have 42 voters voting r and one voting r′ 6= r are tied. But elections where
41 voters vote for r and 2 vote for r′ are won by r′. Thus, these elections are in K∗, so K∗r′
is considerably extended compared to Kr′. On the other hand, K∗r = Kr is unchanged. Thus,
in R(K∗, d), elections where 42 voters vote r and one votes r′ 6= r are won by r′ and are not
tied anymore.

However, in many cases, the equality R = R(K∗, d) is true. We denote by Kε the refinement
of K∗ containing all elections at distance at most ε under d from K.

Proposition 2.27. If R = R(K, d) and d is a shortest path distance, then R = R(Kε, d) for
all ε. In particular, R = R(K∗, d).

Proof. Consider an election E. If E ∈ Kε then it has the same winner according to R and
R(Kε, d) because K is a refinement of Kε. Now suppose that E 6∈ Kε and consider a ranking
r. The distance from E to Kr is finite if and only if there exists a path in the underlying
graph of d from E to Kr. Then, by definition of Kε, the last bεc points of this path are in
Kε, and all the other points are not. So the distance from E to Kεr is at most d(E,Kr)− bεc.
Conversely, d(E,Kr) − bεc ≥ d(E,Kεr), because, one can extend a path from E to Kεr in a
path from E to Kr.

Now, for any E ∈ K∗, there exists ε such that E ∈ Kε. Then, since Kε is a refinement of
K∗, we have that E has the same winner according to R and to R(K∗, d). �

3. Anonymity

Anonymous social rules occur very often in practice. In this section, we show how to express
distance rationalization for anonymous rules using only anonymous objects and functions.

Informally, a voting rule is anonymous if it depends only on the set of votes cast, not
on the identity of the voters. Most commonly used rules have this property. In order to
define an anonymous rule in the DR framework, we need to discuss anonymous distances and
consensuses. The second concept is obvious, but the first contains some subtleties. We shall
therefore be more formal than usual.

Example 3.1. Consider R := R(W, d1H), plurality rule. The consensus W is anonymous,
because identities of voters are not important (they all vote the same way in the consensus).
The distance d1H is not anonymous, however, in the following sense. Consider the case of two
voters and three candidates, and the profiles π = (abc, acb), σ = (acb, abc). Then d(π, σ) 6=
0 = d(π, π), although both π, σ belong to Wa and one is a permutation of the other.

Note that below we do use the term “anonymous” in a way that includes d1H , and “totally
anonymous” to describe the stronger property above.

One obvious solution to this problem is to consider, instead of d itself, the quantity
mine,e′ d(e, e′) where the minimum is taken over all e equivalent to E and e′ equivalent to
E′. This construction is intuitive when we think of d as measuring cost of changing profiles:
since the ordering of voters should be irrelevant, we simply choose the optimal ordering of
voters to minimize the cost. We make this idea precise below.

3.1. Formal description. We can define two elections E,E′ to be equivalent if they have
the same candidate sets and the multiset of votes associated to each election is the same.
A rule is anonymous if and only if it respects this equivalence relation. In other words, the
identities of the voters are irrelevant, as is any ordering of them. We give an equivalent,
slightly different, and more formal definition below.

Definition 3.2. Define the vote number map N on E by sending E = (C, V, π) to the map
that assigns to each ρ ∈ L(C) the number of entries of π equal to ρ:

N (E)ρ = #{v | πv = ρ}.
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We denote by V the quotient of E modulo N , and the quotient map by E 7→ E.
By a partial social rule on V of size s we mean a function defined on a subset of V,

taking values in Ls(C).

Definition 3.3. Let R be a partial social rule. Then R is anonymous if and only if R is
constant on each fibre of N .

Proposition 3.4. The following conditions are equivalent for a partial social rule R of size
s.

(i) R is anonymous.
(ii) There is a partial social rule R of size s on V, such that R(E) = R(E) for every E ∈ E.

�

Remark 3.5. For each E = (C, V, π), define G(E) to be the group of all bijections of V . For
each E ∈ E and each g ∈ G(E), define g(E) = (C, V, g(π)), where g(π) is the profile for which
voter g(v) votes as v did in π. If R is anonymous, then R(g(E)) = R(E) for all E ∈ E and
all g ∈ G(E). Other authors take this as the definition of anonymity.

From now on we aim to describe R in the DR framework without any explicit mention of
profiles, but only using V. We can define a rule to be distance-rationalizable in V if it
can be defined via a consensus and distance on V analogously to Definition 2.17. The main
question is how such rules relate to rules defined on E . We need to discuss anonymity of
distance in some detail.

Definition 3.6. A distance is totally anonymous if d(E,E′) = d(F, F ′) whenever N (E) =
N (F ) and N (E′) = N (F ′).

Remark 3.7. In particular d(g(E), g′(E′)) = d(E,E′) for all E,E′ ∈ E and all g ∈ G(E), g′ ∈
G(E′). Note that we do not require d to be standard. Note that a totally anonymous distance
d is not a metric, because whenever N (E) = N (E′), necessarily d(E,E′) = 0.

Proposition 3.8. The following conditions are equivalent for a social rule R.

(i) R is anonymous and distance rationalizable.
(ii) R = R(K, d) for some K and d, where K is anonymous and d is totally anonymous.

(iii) R is distance-rationalizable in V, R = R(K, δ) for some K and δ.

If these conditions hold, then we can choose d and δ so that δ(E,E′) = d(E,E′) for all
E,E′ ∈ E.

Proof. To show that the first condition implies the second, the construction of Proposition 2.24
suffices. Now suppose that R = R(K, d) for some K and d, where K is anonymous and d is
totally anonymous. Then R is constant on each fibre of N and R = R(K, δ) where δ is defined
by δ(E,E′) = d(E,E′). Note that δ is well defined precisely because d is totally anonymous.
Finally, if R = R(K, δ) then clearly R is anonymous and by composing with the map N , we
can define a consensus K and distance d on E , such that R = (K, d) satisfies R = S, K = K
and d(E,E′) = δ(E,E′) for all E,E′ ∈ E . Then d is totally anonymous. �

Totally anonymous distances occur often in practice.

Proposition 3.9. The following results hold.

(i) Every tournament distance is totally anonymous.
(ii) No votewise distance is totally anonymous.

(iii) dins and ddel are totally anonymous.

�

Thus rules based on tournament distances and anonymous consensus, such as Copeland’s
rule or the minimax rule, relate in an obvious way to rules defined on V, and distance com-
putations in V correspond directly to distance computations in E . However, it turns out that
for rules defined by distances that are not totally anonymous, such as votewise distances,
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the situation is more complicated. We know that such a rule can also be defined by a totally
anonymous distance, but we want to do this while not changing the consensus. This is possible
in some cases, as we now proceed to show.

Definition 3.10. A standard distance d on E is anonymous if it satisfies d(g(E), g(E′)) =
d(E,E′) for all E,E′ ∈ E such that E = (C, V, π) and E′ = (C, V, π′), and all g ∈ G(E).

Clearly, every totally anonymous distance is anonymous, but the converse is not true.

Example 3.11. A votewise distance is anonymous if each of the family of norms defining
it is symmetric (meaning that it is invariant under permutations of its arguments). In that
case, letting s = {sn1

1 , . . . , s
nk
k } denote the multiset of weight n corresponding to the n-tuple

(a1, . . . , an) ∈ Rn, we can define N(s) = Nn(a), where n =
∑

i nisi can be computed knowing
only s.

The following is a generalization of [10, Thm 4.5], which was stated for votewise distances
and four specific consensuses.

Proposition 3.12. If K is anonymous and d is standard and anonymous, then R(K, d) is
anonymous.

Proof. Let E = (C, V, π) and E′ = g(E) = (C, V, π′) be two elections with the same candidate
and voter sets. Since K is anonymous, g(Kr) = Kr for all g and r. Then d(E,Kr) =
d(g(E), g(Kr)) = d(E′,Kr). �

When d is anonymous and standard, there is a simple formula which allows us to derive a
similar result to Proposition 3.8.

Definition 3.13. The general definition of quotient distance with respect to an equivalence
relation ∼ uses a shortest path construction:

(2) d(x, y) = min d(E,E′1) + d(E2, E
′
2) + · · ·+ d(Ek, E

′)

where the minimum is taken over all admissible paths, namely paths such that E′i ∼ Ei+1 for
1 ≤ i ≤ k − 1, E projects to x and E′ to y.

We apply this in the case where ∼ is the kernel of the map N , yielding an induced distance
d on V.

We now show how to compute d from d when d is anonymous. As noted in the intro-
duction to Section 3, each anonymous distance d on E induces a map on V, via (x, y) 7→
minE,E′ d(E,E′), where E is a preimage under of x and E′ is a preimage of y. This type of
construction for a general equivalence relation does not satisfy the triangle equality. However,
in our main situation of interest, the simpler formula does indeed suffice to define the quotient
mapping.

Proposition 3.14. Let d be an anonymous standard distance on E. Then the quotient dis-
tance induced on V is given by

(3) d(x, y) = min
E′

d(E,E′) = min
g
d(E, g(E′))

where E is any preimage of x, the first minimum is taken over all preimages E′ of y, and the
second minimum can be taken over all g for a fixed preimage E′ of y.

Proof. We first show that the minimum value of k for paths achieving the minimum in (2) is
0. Assume that this is not the case, so there exist a minimal k > 0 and admissible paths such
that

d(x, y) =
k∑
i=1

d(Ei, E
′
i) <∞.
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Choose g so that g(Ek) = E′k−1 (possible by definition of ∼). Note that d(Ek, E
′
k) < ∞ and

so since d is standard, Ek and E′k have the same number of voters. Thus g can be applied to
E′k also. Then by anonymity and the triangle inequality

d(Ek−1, E
′
k−1) + d(Ek, E

′
k) = d(Ek−1, E

′
k−1) + d(E′k−1, g(E′k))

≥ d(Ek−1, g(E′k)).

This contradicts the minimality of k, and this gives the first displayed equality. The second
follows because all E′ projecting to y are equivalent, so that each can map onto any other via
some g. �

Remark 3.15. Non-standard distances can violate this result. For example, take d = d′ins.

Then d(E,E′) is finite iff V ⊂ V ′ or the inverse. So the expression for d in (3) is always
infinite, because distinct elections E and E′ of the same size are at infinite distance. But the
quotient metric is finite (use a path going through an election including both E and E′).

Proposition 3.16. Let d be an anonymous standard distance and K an anonymous consensus.
The anonymous rule R(K, d) satisfies R(K, d) = R(K, d), where d is as in Proposition 3.14.
Furthermore, for every r and E, d(E,Kr) = d(E,Kr).

Proof. We have

d(E,Kr) = min
E′∈Kr

d(E,E′) = min
E′∈Kr

min
E′′∼E′

d(E,E′′) = min
E′′∈Kr

d(E,E′′) = d(E,Kr).

�

At first sight, Propositions 3.8 and 3.16 may seem inconsistent. The explanation is that
given an anonymous standard d and anonymous K, R can be written not only in the form
(K, d) but also in the form (K, d′) where d′ is totally anonymous and d′ = d. In fact d′(E,E′)
equals the familiar quantity ming d(E, g(E′)).

3.2. Interpretation in terms of optimal transportation. The problem of optimal trans-
portation originated with Monge in the 19th century and was generalized by Kantorovich in
the 1940s. Indeed, such transportation problems were at the heart of Kantorovich’s seminal
work in linear programming. In the discrete case, the problem amounts to minimizing the
cost of transferring mass from one histogram to another while incurring the minimal cost, and
can be solved by linear programming.

In the anonymous and standard case, the distance d is the solution of an optimal trans-
portation problem, because we must move voter mass between types of voters while incurring
the minimal cost (distance). The assumption that d is standard is equivalent to saying that
conservation of mass (number of voters) holds. This is a special case of the transportation
problem known as the assignment problem. The minimum can be computed in polynomial
time via the “Hungarian method” [17]. We shall explore this topic more in Section 4.

Example 3.17. Consider the Hamming distance d := d1H . For each x, y ∈ V, the distance

d(x, y) is the minimum number of voters whose votes must be changed in order to transform
x into y. For example if x is a voting situation with 2 abc voters and 3 bac voters, while y has

2 bac voters and 3 cba voters, then d1H(x, y) = 3. Note that for the Kemeny metric d := d1K ,

d(x, y) = 8.

4. Homogeneity

So far nothing in our definitions has required any coherence in definitions of a voting rule for
different values of n. Most voting rules used in practice satisfy the coherence property called
homogeneity, which we now explore. From now on we deal only with anonymous rules. Also,
we fix C and hence m, and define M = m!. In this case there is a well known representation
of equivalence classes of elections in terms of the M -dimensional standard simplex ∆. We
want to define everything in the DR framework directly on ∆, in terms of fractions of voters
with a given preference.
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Definition 4.1. For elections E = (C, V1, π1) and E′ = (C, V2, π2) where V1 ∩ V2 = ∅, we
define E +E′ to be the election with candidate set C, voter set V1 ∪ V2 and profile π given by
πv = (π1)v if v ∈ V1 and (π2)v otherwise. For each k ≥ 1, define kE to be the election formed
by cloning each voter k − 1 times and adding repeatedly as above (in an arbitrary but fixed
order). An anonymous rule R is homogeneous if for each E and k, R(kE) = R(E). For a
set S of elections, kS means the set of all kE as E ranges over S.

Let ∆(L(C)) be the set of probability distributions over L(C), and let ∆Q consist of all such
distributions where the probability of every subset of L(C) is rational. Define the vote dis-
tribution map that takes each election E = (C, V, π) to x ∈ ∆Q by declaring the probability
of ρ ∈ L(C) to be N (E)ρ/|V |.

An anonymous rule is homogeneous if and only if it is well-defined on ∆Q. We declare
elections E,E′ to be equivalent if E′ = kE for some k ≥ 1, and denote the map E 7→ ∆Q
described above by E 7→ x := E. From now on we shall deal with homogeneous rules, so
there should be no confusion with the related map with the same notation from Section 3.
We can now choose a point x of ∆Q, and unambiguously talk about the winner of the rule
at such a point, knowing only the fractions of voters of each type, being free to choose an
arbitrary n (provided nxρ is an integer for all ρ ∈ L(C)) and preimage election E on n voters.
Equivalently, we can simply define a rule on ∆Q in the obvious way, and this immediately
yields an anonymous and homogeneous rule on E .

Adopting this point of view, we can also deal with consensus and distance rationalization.
A consensus in ∆Q is simply a partial social function with domain a subset of ∆Q. Given
a consensus K and a distance δ on ∆Q, the rule R(K, δ) is defined in the obvious way.

We now want to connect the two definitions of distance rationalizability.

Definition 4.2. An anonymous distance on E is homogeneous if for each k ≥ 1 and each
E,E′ ∈ E, d(E,E′) = d(kE, kE′). A family of symmetric seminorms N is homogeneous if

N(x(k)) = N(x) for all x ∈ Rn and all k ≥ 1. Here x(k) denotes the element of Rnk obtained
by concatenating k copies of x.

The reader should avoid confusion by noting that the term homogeneous is often used for
the different property of a seminorm expressed by the identity N(λx) = |λ|N(x).

Example 4.3. Consider the `p norm for 1 ≤ p ≤ ∞. If we normalize this, the resulting
family of norms is homogeneous. Specifically, on Rn we define ||x||∗p := n−1||x||p.

Note that being rationalizable with respect to this normalized form is equivalent to being
rationalizable with respect to the original norm, since the two norms differ only by a constant
multiple.

Proposition 4.4. Each of the following distances is anonymous and homogeneous.

• Every votewise distance based on a homogeneous seminorm.
• Every reduced tournament distance.
• Every tournament distance based on a homogeneous seminorm.

�

The proof of the next result is analogous to that of Proposition 3.14.

Proposition 4.5. Let d be an anonymous and homogeneous standard distance on E. The
distance d induced by d on ∆Q is given by

d(x, y) = min
E′

d(E,E′)

where E is of a size n so that there are elections of size n projecting to x and y, E = x and
the minimum is taken over elections E′ of size n such that E′ = y. �

The connection between the two definitions is by now unsurprising.

Proposition 4.6. If K and d are anonymous and homogeneous, d is standard, and R(K, d)

is homogeneous, then R(K, d) = R(K, d). �
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4.1. Homogeneity of R(K, d). An obvious weakness in Proposition 4.6 is that it is not
explicit about when R(K, d) is homogeneous. Note that we cannot provide a result analogous
to Proposition 3.4 for homogeneity, because, for example, Dodgson’s rule is known not to be
homogeneous [11]. In [8, Section 4] some sufficient conditions for homogeneity of a rule were
stated (without proof). We give some small generalizations here.

Definition 4.7. Suppose that d is votewise and anonymous, and K is anonymous. Say
that (K, d) satisfies the votewise minimizer property (VMP) if the following condition is
satisfied.

For each r ∈ Ls(C) and each election E = (C, V, π) ∈ E, there exists a mini-
mizer (C, V, π∗) ∈ Kr of the distance from E to Kr, so that for all i, d(πi, π

∗
i )

depends only on πi and r.

Remark 4.8. The VMP implies that d(E,Kr) depends only on E and r. Furthermore
d(πi, π

∗
i ) has the form δ(t, r) where t, r ∈ L(C), and d(E,Kr) has the form N(s) where s

is the multiset of all values of δ(t, r), for t ∈ L(C), counted with multiplicity.

Proposition 4.9. Let d be an anonymous votewise distance on E.

(i) Suppose that K is defined on ∆ as follows: for each r ∈ L(C), there is a nonempty subset
Sr of L(C) such that Kr = {x|xρ = 0 for all ρ ∈ Sr}. Then (K, d) satisfies the VMP.

(ii) (W, d) and (S, d) satisfy the VMP;
(iii) (C, d), (M, d) and (Σ, d) do not necessarily satisfy the VMP.

Proof. For (i), the minimizer in question is obtained by, for each i, choosing the closest element
of L(C) under the underlying distance. Part (ii) follows immediately, because we can take
Sr = {ρ | ρ 6= r} for S and Sr = {ρ | ρ(1) 6= r(1)} for W. Finally, (C, dH) and (C, dK) do not
satisfy the VMP. For example, consider the election E = (C, V, π) where C = {a, b}, V has
size 5, and π = {ab, ab, ba, ba, ba}. Then d(E,Ca) = 1 for d ∈ {dH , dK}, and every minimizer
differs from π only in that precisely one of the ba voters (say vi) switches to ab. This also
shows that (M, d) and (Σ, d) need not satisfy the VMP, because each coincides with C when
m = 2. �

Proposition 4.10. Suppose that K is homogeneous, d is votewise with respect to a homoge-
neous norm and (K, d) satisfies the VMP. Then R(K, d) is homogeneous.

Proof. Since (K, d) satisfies the VMP, we have that for all E and r, d(E,Kr) = N(x) where

x = (d(π1, r), ...d(πn, r)). Thus, for all k, d(kE,Kr) = N(x(k)). By homogeneity of N, we have
d(E,Kr) = d(kE,Kr). So the winning rankings r in E and kE are the same and the rule is
homogeneous. �

Corollary 4.11. If d is votewise and based on the `p-norm for 1 ≤ p ≤ ∞, then R(S, d) and
R(W, d) are homogeneous. This generalizes [8, Thm 4.1]). Thus we recapture the well-known
facts that positional scoring rules and Kemeny’s rule are homogeneous, as is Copeland’s rule.

The case p =∞ allows for formally stronger results, as in [8, Thm 4.6].
Corollary 4.11 shows, for example, that although Dodgson’s rule can be rationalized with

respect to S and some distance [10, Thm 3.3], no such distance can be homogeneous.

4.2. The `p-votewise case - Wasserstein distance. In the case of `p-votewise distances,
we can relate d to a well-known concept from probability theory. Let S be a finite set and let
∆(S) denote the set of probability distributions on S. For a distance d over S, the function
dpW : ∆(S)×∆(S)→ R is defined by

dpW (x, y)p = inf
A

∑
r,r′∈S

Ar,r′d(r, r′)p,

where the infimum is taken over all couplings of x and y, defined as nonnegative square
matrices of size m! whose marginals are x and y respectively (i.e. ∀r,

∑
r′ Arr′ = xr and

∀r′,
∑

r Arr′ = yr′). Basically, it represents the minimal cost to move from one configuration
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to another, where the underlying distance d defines the cost of each movement. Indeed, this
construction leads to a new distance.

Proposition 4.12. If d is a distance on S, then dpW is a distance on ∆(S). Moreover, if d
is a pseudometric (respectively quasimetric or metric), then so is dpW .

The function dpW is called the lp-transportation distance, or p-Wasserstein distance.
Now we are able to make the link with the votewise metrics.

Proposition 4.13. Let d be an lp-votewise distance. Then d = dpW .

Proof. Since d is homogeneous, d(x, y) = minE′ d(E,E′), where E = x, E′ = y and |V (E)| =
|V (E′)| = n, say. Let E = (C, V, π) and E′ = (C, V, π′). Then

d(x, y)p = min
π′

1

n

∑
i

d(πi, π
′
i)
p = min

a

1

n

∑
r,r′∈S

ar,r′d(r, r′)p,

where the ar,r′ ’s are integers such that for all r ∈ S,
∑

r

ar,r′
n = xr and for all r′ ∈ S,

∑
r′
ar,r′
n =

yr′ , which corresponds to the Wasserstein distance restricted to matrices A respecting the
conditions and with coefficients of the form k

n with 0 ≤ k ≤ n. So clearly, dpW (x, y) ≤ d(x, y).
Let assume that this inequality is strict: say the minimum in the definition of the Wasser-

stein distance is reached by a matrix A. Since maxr,r′ d(r, r′) < ∞ and we can choose n as
big as we want, A can be approximated arbitrarily close by a matrix A′ of the previous form.
We can get arbitrarily close to dpW (x, y) in this way, which proves the equality. �

Example 4.14. Let d1 be the restriction to ∆ of the `1 metric on RM . Then dH = 1
2d1 (also

called the total variation distance). This was observed (without the current notation) in
[16, Lemma 3.2]: if E,E′ are elections on (C, V ) with |V | = n, then

d1(E,E′) ≤
2

n
d(E,E′)

and given E,E ∈ ∆Q, we can choose n and the preimages E,E′ so that equality holds.

The 1-Wasserstein distance is also known as the Earth Mover’s distance or first Mallows
metric (used heavily in other areas of computer science, particularly image retrieval and
pattern recognition).

5. Other properties of consensus sets

We are already restricting to consensuses in ∆Q, that is, consensuses that satisfy anonymity
and homogeneity. All the examples we have used so far have also satisfied neutrality and
convexity.

We argue that convexity (defined in the usual way via restriction from RM ) of each Kr is
an essential condition. In the following example, it seems ridiculous that a should win at the
extra point.

Example 5.1. Consider the case m = 3, and the consensus formed by extending W so
that a is the winner whenever xbca = xcba = 1/2 (and similarly for b, c). This consensus is
anonymous and homogeneous, but Ka,Kb,Kc are not convex.

In the simplex model, convexity is equivalent to the notion of consistency: if we split the
voter set into two parts each of which elects r, the original voter set should elect r. It rules
out the above example and we shall assume it from now on. Note that we only require each
Kr to be convex, because convexity of the entire rule is a very restrictive assumption [23].

The group of permutations of C acts naturally on various sets. For example, it acts on
L(C) by g(a1, . . . , am) = (g(a1), . . . , g(am)) and on elections by g(C, V, π) = (C, V, g(π))
where g(π) = (g(π1), . . . , g(πn)). An object is neutral if it is invariant under this action of
G. Neutrality is a very natural condition for consensuses and for distances, and is satisfied
by all our main examples.
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Proposition 5.2. Rule R is neutral if and only if R has the form R(K, d) where K and d
are neutral.

Proof. Given a neutral R, the construction of Proposition 2.24 works. The converse is obvious
from the definition of neutrality. �

Note that in general, by symmetry, there is no social choice function on (C, V ) that is
anonymous and neutral (for certain values of |C| and |V |, such a function can exist). Thus in
general we expect to have non-uniqueness of output from our social rule.

We suggest that when applying the DR framework, consensus classes should be required
to satisfy (at least) anonymity, homogeneity, neutrality and convexity, while distances should
be required to be metrics. Even these conditions do not rule out counterintuitive behaviour,
as we see in Section 6.

6. Tied sets and decisiveness

All social rules used in practice encounter the problem of breaking ties. However, many
commonly used social rules have the property that the tied subset is small (for example
asymptotically negligible as n → ∞, for fixed m). This is important, because if the tied
region is small, then ties can be ignored for many purposes, whereas if the tied region is
asymptotically large, our rule may suffer extreme lack of decisiveness. In this section we give
“positive” (few ties) and negative (many ties) results.

The definitions in Section 2 fail to give a unique output precisely when there is some
election E which is equidistant from at least two regions Kr, each of which is closer to E than
all others. The following definition also makes sense when we restrict to a given set or number
of voters.

Definition 6.1. The boundary of the rule of size s defined by (K, d) is the set of all elections
at which the minimum in (1) is attained for at least two distinct r ∈ Ls(C).

Example 6.2. Suppose that m = 2, with alternatives a and b, and that K = C and d is
an anonymous neutral standard distance. The concepts of majority winner and Condorcet
winner coincide when m = 2. When n is odd, the boundary of the rule is empty, whereas
when n is even, the profiles having an equal number of ab and ba voters are in the boundary.
If d is homogeneous so that we define the rule on ∆Q, then the point (1/2, 1/2) is the unique
element of the boundary.

Example 6.3. (large boundary) Consider the Copeland rule whose boundary contains all
points with no unique Copeland winner. The sum of Copeland scores of all alternatives is
m(m− 1)/2. If m is odd, an m-way tie for first place is possible. The set of all such profiles
corresponds to a subset of ∆ having nonempty interior, so the boundary will certainly not be
“small” in any reasonable sense. Since dRT does not distinguish points, we might expect a
priori that such a phenomenon is possible.

Our intuition is that the boundary of a well-behaved homogeneous voting rule should be
“small” in ∆, and be geometrically “nice”. The relevant geometric theory is that of Voronoi
diagrams. We now digress to review some known results, which will help develop a more
refined intuition.

6.1. Geometric background. All definitions below work for an arbitrary Minkowski space.
For a fixed set of sites (subsets of the entire space), the open Voronoi cell of each site X
is defined as the set of points closer to X than any other site. The boundaries of the cells
are contained in the union of bisectors, where a bisector is the set of points equidistant from
two sites and denoted β(X,Y ).

Interpreting the sites as the consensus sets Kr, we see that the open Voronoi cell corre-
sponding to Kr is precisely the set on which (K, d) is single-valued with value r. Also, the
boundary as defined above is just the union of boundaries of all Voronoi cells, and this is
contained in the union of all bisectors.
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We first discuss bisectors, because if these are well-behaved, so will the boundary of the
rule be (this is not a necessary condition, however).

Example 6.3 shows that the distance strongly influences the structure of bisectors. Thus
we shall focus on the case of metrics from now on. We first restrict to the nicest situation,
namely Rn under the Euclidean `2-norm,where our intuition is greatest.

We start with the simplest case where sites are single distinct points X and Y (when
the sites are not single points, things can be more complicated even in `2). In Euclidean
space, β(X,Y ) is a hyperplane normal to the line joining the points, and the Voronoi cells are
therefore convex polyhedra that tile the entire space.

However, this situation is rather special. Consider a finite-dimensional normed space
(Minkowski space). It is known, in fact, that β(X,Y ) is a hyperplane for all X and Y
if and only if the space is `2 [4]. Thus we should expect to see bisectors that are not hy-
perplanes. Of course, such bisectors may still be “small” and “nice”. Note that β(X,Y ) is
homeomorphic to a hyperplane provided the norm is strictly convex and even sometimes when
it is not [12] (unfortunately, this does not preclude nasty space-filling curves, which will fail
to be “small” or “nice” under any reasonable definitions).

We conclude that small nice bisectors should not be expected in general. In the next section
we give some special cases.

6.2. Small bisectors and hyperplane rules. All our results in this section show that the
bisectors in question are contained in a finite union of hyperplanes. Rules which have a well-
defined winner on each component of the complement in ∆ of a finite set of hyperplanes have
been studied recently. Note that such rules are automatically anonymous and homogeneous.
Mossel, Procaccia and Racz [16] call them hyperplane rules and show their equivalence
with the generalized scoring rules of Xia and Conitzer [22]. These rules can be defined
axiomatically using finite local consistency [21].

Most rules that have ever been studied by social choice theorists are hyperplane rules. A
notable exception is Copeland’s rule. In order to interpret Copeland’s rule as a hyperplane
rule, [16] requires that the winner be (arbitrarily) specified on the tied region. This seems to
us to be stretching the definition too far.

In [16] it was shown that for a hyperplane rule, the minimum size of a coalition that can
change the winner, under the uniform distribution on P, follows a universal law. Many results
in [16] will extend to the case of rules with “small” boundary.

We now give a sufficient condition for a DR rule to be a hyperplane rule.

Proposition 6.4. Let d be `p-votewise for some 1 ≤ p <∞ and suppose that (K, d) satisfies
the VMP. Then on ∆, β(Kr,Kr′) is defined by∑

t∈L(C)

xt
[
δ(t, r)p − δ(t, r′)p

]
= 0.

Proof. We know that the distance between E = (C, V, π) and the minimizer m(E, r) =
(C, V, π∗) equals N(s) where s is the multiset with entries δ(t, r) occurring according to their
multiplicities nxt, for all t ∈ L(C). The specific form of N then shows that d(E,m(E, r))p =
n (
∑

t xtδ(t, r)
p). Applying the same argument for r′ and rearranging shows that the bisector

is defined by the displayed equation. �

Corollary 6.5. Suppose that d is `p-votewise with 1 ≤ p < ∞, and K is defined as in
Proposition 4.9. Then R(K, d) is a hyperplane rule.

Proof. By Proposition 4.9(i), VMP is satisfied. It suffices to show that the linear function
in Proposition 6.4 is not identically zero. The distance from x to Kr is attained at a point
m(x, r) where m(x, r)t = xt for all t 6∈ S, and d(x,Kr) =

∑
t∈S xtδ(t, r)

p. If r 6= r′ then
by definition Sr 6= Sr′ . Thus taking t 6∈ S ∩ S′, without loss of generality δ(t, r) = 0 and
δ(t, r′) 6= 0. �
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Corollary 6.6. Every rule of the form R(S, d) or R(W, d), where d is `p-votewise and
1 ≤ p <∞, is a hyperplane rule.

Remark 6.7. This result does not extend to general distances. For example, Copeland’s rule
as we have defined it is not a hyperplane rule, having a large tied set in general, yet it can be
defined as R(W, dRT ).

Note that when p =∞, we do not obtain a hyperplane rule. In fact, every point x ∈ ∆Q for
which every coordinate is nonzero is equidistant from all Sr, so the rule is almost maximally
indecisive.

6.3. Large bisectors — analysis of `1-votewise metrics. Despite the positive results
above, we already know enough to expect negative results. Large bisectors occur often when
the unit ball in a Minkowski space is not strictly convex. We now show in Proposition 6.9
that this geometric property holds for all `1-votewise metrics.

We have already seen that dH leads to the restriction of the usual `1-metric to ∆Q. That
metric is induced by a norm and hence has some useful properties, in particular translation-
invariance. We first generalize this result.

Let c = (1, 1, . . . , 1)/M ∈ RM be the center of the simplex. Now, we translate the center
c to the origin, and we denote by ∆′ the image of the simplex under this translation. We
denote by H the hyperplane containing ∆′. Our study of the geometry under the Wasserstein
distance will be facilitated by the following observation.

Proposition 6.8. Let d be a distance. Then dpW is translation-invariant.

Proof. For any vector v, let v+ = (max(v1, 0), . . . ,max(vn, 0)). We show that for all integer
p and for all points x and y, dpW (x, y) = dpW ((x − y)+, (y − x)+), which implies that dW is
translation-invariant.

Clearly, dpW (x, y) ≤ dpW ((x − y)+, (y − x)+). To show that dW (x, y) = dW ((x − y)+, (y −
x)+), we show that there exists A such that dw(x, y)p =

∑
r 6=r′ Ar,r′d(r, r′)p and ∀r,Ar,r =

min(xr, yr).
Assume that it is not the case, and choose A reaching the minimum with a maximal

trace (we always have Arr ≤ min(xr, yr) because of the marginals condition): there exists r
such that Arr < min(xr, yr). By the marginals condition, it implies that there also exists r′

and r′′ such that Ar,r′ and Ar′′,r are strictly positive. Then, define the nonnegative square
matrices A′ of size m! whose marginals are x and y respectively, and such that A′r,r = Ar,r +
min(Ar,r′ , Ar′′,r), A

′
r′′,r′ = Ar′′,r′ + min(Ar,r′ , Ar′′,r), and for all other couples c different from

(r′, r) and (r′′, r), A′c = Ac. It verifies
∑

r 6=r′ A
′
r,r′d(r, r′)p ≤

∑
r 6=r′ Ar,r′d(r, r′)p because

d(r′′, r′) ≤ d(r′′, r) + d(r, r′). Since A′ has a strictly bigger trace than A, this contradicts our
original assumption. �

Restricting to `1, we can obtain a normed space.

Proposition 6.9. Let d be an `1-votewise distance. Then

(i) d induces a norm N on H. Explicitly, for each x ∈ ∆′, we have N(x) = d1W (x+ c, c);
(ii) the unit ball of the norm N is not strictly convex.

Proof. By Proposition 6.8 it suffices to show that the transportation metric is homogeneous
(in the usual sense of the norm property) over ∆′, and as we just said, N is its homogeneous
extension to H. We want to show that for any x ∈ ∆′ and λ such that λx ∈ ∆′, d1W (λx +
c, c) = |λ|d1W (x + c, c). We fix now λ and x. Let A be a matrix achieving the minimum
equal to d1W (x + c, c) and satisfying the corresponding conditions. Let A′ be the matrix
with marginals λx + c and c such that, for r 6= r′, A′rr′ = λArr′ if λ > 0, and |λ|(tA)rr′
otherwise: because of the conditions on the marginals, we get ∀r,A′rr = min(λxr + cr, cr).
The matrix A′ is nonnegative if and only if λx ∈ ∆′: it is nonnegative if and only for all
r, min(λxr + cr, cr) ≥ 0 which occurs if and only if λx + c is in the simplex. In addition,∑

r,r′∈S A
′
r,r′dS(r, r′)p = |λ|

∑
r,r′∈S Ar,r′dS(r, r′)p, so we obtain d1W (λx+c, c) ≥ |λ|d1W (x+c, c).
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In the other hand, x = 1
λλx, and so, by the same argument, we have that d1W (λx+ c, c) ≤

|λ|d1W (x+ c, c): we have the equality, and N is a norm, yielding (i).
For (ii), fix a ranking r ∈ L(C) and consider the subset Sr of all points x where only the

component corresponding to r is negative. In Sr, we have

N(x) =
∑
r′

xr′d
1
W (r′, r).

Thus the intersection of Sr with the unit sphere is contained in a hyperplane and hence not
strictly convex. �

Remark 6.10. This result is not true for the other Wasserstein metrics, because they do not
satisfy the homogeneity property of norms. For example, if x ∈ ∆′ is such that xr ≥ 0 and ∀r 6=
r′, xr′ ≤ 0, then dpW (x+ c, c)p =

∑
r′ |xr′ |d(r, r′)p, and dpW (λx+ c, c) = |λ|

1
p
∑

r′ |xr′ |d(r, r′)p =

|λ|
1
pdpW (x+ c, c).

We can now show that large bisectors occur in the DR framework. We say that a subset
of a Minkowski space is large if it contains an open ball, and small otherwise.

Example 6.11. (large bisector) Let m = 3 and consider the line segment L1, L2 which join
the centre of ∆ to the points xabc = 1 and xbca = 1 respectively. Let Ka = L1,Kb = L2 and
Kc be the single point xcab = 1. Every point in the cone spanned by the normals to L1, L2,
and making an acute angle with at least one of these normals, lies on the bisector of L1, L2

with respect to the usual `2-metric. Every point in this set that is closer to the centre of ∆
than to Kc is in the boundary of the rule, which is therefore large. Note that K satisfies strong
unanimity, anonymity, homogeneity, but not neutrality. Furthermore, every Kr is a convex
polyhedral subset of the simplex.

Presumably the same behaviour occurs with many other metrics. Assuming neutrality
makes it harder to construct such examples.

We now show that even for consensuses that consist of isolated points, large bisectors can
occur.

Proposition 6.12. Consider a norm N induced over H by an `1-votewise metric. Let r, r1, r2
be rankings. We denote by d1 and d2 the distances d(r, r1) and d(r, r2). Let ε > 0. We define
x and y as the two points of H such that xr = −xr1 = ε

d1
, yr = −yr2 = ε

d2
and all other

components are equal to zero. Then, any point z ∈ H such that zr ≥ 1− ε
min(d1,d2)

is equidistant

from x and y according to N .

Proof. Let z be such a point. Then, x− z and y − z have only one negative component: the
one corresponding to the ranking r. So N(x − z) =

∑
r′(xr′ − zr′)d(r, r′) and N(y − z) =∑

r′(yr′ − zr′)d(r, r′). Since the only components where x and y differ are r1 and r2, they are
equidistant of z if and only if (xr1−zr1)d1 +(xr2−zr2)d2 = (yr1−zr1)d1 +(yr2−zr2)d2, which
is equivalent to xr1d1 + xr2d2 = yr1d1 + yr2d2, which is in turn equivalent to xr1d1 = yr2d2,
which is always true by definition. �

Corollary 6.13. Let d be an l1-votewise metric. Then there is a consensus K consisting of
isolated points, so that the boundary of R(K, d) is large.

Proof. Write xε and yε for points x and y of the form defined in Proposition 6.12. That
proposition implies that, by setting Ka = {xε} and Kb = {yε} and choosing a sufficiently
small ε, then β(Ka,Kb) will be large. Also, for any other candidate c, if we set Kc = {xε′}
with ε < ε′, then for any z such that zr ≥ 1− ε

min(d1,d2)
, N(z,Ka) = N(z,Kb) < N(z,Kc). �

Remark 6.14. Note that the consensus in the proof of Corollary 6.13 is somewhat unnatural.
For example, it is not neutral.

The next question is how often this kind of situation happens. For simplicity we focus on
the case of `1. We can give an exact characterization of when two points have a large bisector.
This is directly connected with the well-known integer partition problem.
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Proposition 6.15. Let x, y ∈ RM . We denote by S the set of values (xi − yi). Then x
and y have a large bisector under `1 if and only if there exists a subset S′ ⊂ S such that∑

e∈S′ e =
∑

e6∈S′ e.

Proof. By definition β(x, y) = {z|
∑

i |xi−zi| =
∑

i |yi−zi|}. We divide RM into 4M subspaces
corresponding to the possible signs of the the values (xi − zi) and (yi − zi). Let V be one of
these subspaces: in V , the equality

∑
i |xi− zi| =

∑
i |yi− zi| is equivalent to

∑
i εi(xi− zi) =∑

i ε
′
i(yi− zi), where ∀i, εi, ε′i = ±1. There are two cases. First, if ∃i, εi 6= ε′i then the equation

can be put into the form xi = kjxj + C, where kj ∈ {−2, 0, 2} and some kj 6= 0 and so this
part of β(x, y) lies in a hyperplane and is therefore small. The other case is when ∀i, εi = ε′i.
Then V ∩ β(x, y) is large if and only if

∑
i εi(xi− yi) = 0, which is equivalent to the fact that

there exists S′ ⊂ S,
∑

e∈S′ e =
∑

e6∈S′ e. �

We can now characterize further, if it exists, the shape of the large bisector of two points:
any ball included in the bisector is contained in a subset defined by a set of equations zi ≤
min(xi, yi) or zi ≥ max(xi, yi) for all i. It implies, for example, that if the points are corners of
the simplex, the large bisector in RM does not intersect ∆. Thus, for example, large bisectors
cannot occur with S (which we already know from Corollary 6.5).

Definition 6.16. Define the decision problem LARGE-BISECTOR as follows. Input is a
pair (x, y) of integer points of RM and we must decide whether β(x, y) contains an open ball
in `1. Note that M is part of the input.

Corollary 6.17. LARGE-BISECTOR is NP-complete, and so the analogous decision problem
for rational points of ∆ is NP-hard.

Proof. We use Proposition 6.15. Given an instance (x, y,M) of LARGE-BISECTOR, let
zi = xi − yi, giving an instance of the known NP-complete problem PARTITION. Given an
instance (z1, . . . , zM ) of PARTITION, let xi = zi, yi = 0. This gives an instance of LARGE-
BISECTOR. In each case the original instance is a yes instance of the associated decision
problem if and only if the derived instance is. �

We suspect the analogue of LARGE-BISECTOR to be NP-hard for every l1-votewise met-
ric.

The situation is quite subtle, because large bisectors do not occur when the consensus sets
are hyperplanes instead of points.

Proposition 6.18. The bisector of two distinct hyperplanes under any norm on Rn is con-
tained in a union of at most two hyperplanes.

Proof. The distance from a point x to a hyperplane H defined by aTx = b is equal tod(x,H) =
|aT x−b|
||a||∗ where ∗ denotes the dual norm (see for example [14]). Now, let H ′ be another hy-

perplane defined by the equation a′x = b′. We assume that ||a||∗ = ||a′||∗ (without loss of
generality since multiplying by a scalar still defines the same hyperplane). The bisector of H
and H ′ can be defined as the set of points x verifying |aTx − b| = |a′Tx − b′|. So, we have
two cases, depending on the sign of these absolute values: either

∑
i(ai − a′i)xi = b − b′ or∑

i(ai + a′i)xi = b+ b′. Since H 6= H ′, each of these is the equation of a hyperplane. �

Even when large bisectors do occur, the boundary of the rule is often small. We do not
know of any “natural” rule based on a votewise metric for which the boundary is large.

7. Future work

Systematic exploration of rules (K, d), where K satisfies the properties suggested at the
end of Section 5 and d is an `p-votewise metric, may prove fruitful in finding new rules with
desirable properties. Even the rules defined by (S, d) and (W, d), where d is `p-votewise, have
not been thoroughly explored, to our knowledge. They are hyperplane rules, which is a major
point in their favour as far as decisiveness goes. After projection to the permutahedron (which
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is just changing the underlying distance in our framework), the cases p = 2 (mean proximity
rules) [13] and p = 1 (mediancenter rules) [3] have received attention.

Some important questions, some of which partially motivated the present work, remain
unanswered.

• The question of whether Dodgson’s rule is a hyperplane rule has not been settled here
or in [16]. Is there a natural DR rule, defined with respect to a votewise metric and
a homogeneous consensus, that is not a hyperplane rule?
• What are good sufficient conditions on K and d in ∆ to guarantee that the boundary

of R(K, d) is small? For example, is some combination of the following assumptions
sufficient: K and d are neutral, d is a votewise metric, the sets Kr are separated, and
(K, d) satisfies the VMP?
• We have only a few sufficient conditions for homogeneity of a DR rule. In [11] a way

around the nonhomogeneity of Dodgson’s rule was found, by using a homogenization
process. How is the homogenization of a DR rule defined in general?

There are some more issues that may be of interest.

• If we use other distances on ∆, not derived from distances on profiles, do we find any-
thing interesting? Note that statistical distances such as Kullback-Liebler distance
are heavily used in many areas.
• In [19] a related notion of convexity was investigated. In that case, the authors

worked directly on profiles and only with the Kemeny distance. Their notion can be
generalized immediately to any shortest path distance. This notion of convexity differs
from ours, but the precise relationship between them is not clear to us and should be
further studied.
• Although the Wasserstein p-distance is not induced by a norm in general, perhaps the

topology is similar enough that we can derive results to those in the normed case.
• The hypothesis that distances be standard can probably be weakened in several results.
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