Using Integrated GPUs to Perform
Image Warping for HMDs

Edward Peek
Department of Computer
Science
The University of Auckland
Auckland, New Zealand,
epee004@aucklanduni.ac.nz

Burkhard Wlnsche
Department of Computer
Science
The University of Auckland

Auckland, New Zealand
burkhard@cs.

Christof Lutteroth
Department of Computer
Science
The University of Auckland
Auckland, New Zealand
lutteroth@cs.auckland.ac.nz

auckland.ac.nz

ABSTRACT

In virtual reality applications, frame rate and latency are
critical performance metrics for maintaining a comfortable
user experience and avoiding simulator-sickness. Various
methods may be used to improve frame rate and latency,
however they often come at the cost of image quality or
other performance metrics.

One particularly beneficial method is synthesising additional
and/or lower-latency frames using image warping. However,
desktop graphics subsystems lack the required level of par-
allelism to effectively implement a complete image warping
solution on computers with a single GPU. Fortunately many
computers that are treated as single-GPU systems are, in
fact, multi-GPU due to the presence of a low-performance
secondary GPU integrated with the CPU package.

In this paper we describe an image warping system which ex-
ploits the hardware parallelism offered by integrated GPUs
to avoid the aforementioned graphics subsystem limitations.
This system improves both perceived frame rate and latency:
in contrast to alternative systems which only improve one
or the other.

We also evaluate the performance of performing image warp-
ing on integrated GPUs. Our system is able to perform
a warp in as little as 4.2ms at 1920 x 1080 resolution on
an Intel HD Graphics 2000 IGP at the cost of a 1.5ms in-
crease in application render time. This demonstrates that
the overhead of our system is manageable for current VR
applications even on several year old computer hardware.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage and that copies bear this
notice and the full citation on the first page. Copyrights for components of this
work owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions
from Permissions @acm.org.

IVCNZ ’14, November 19 - 21 2014, Hamilton, New Zealand

Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3184-5/14/11$15.00
http://dx.doi.org/10.1145/2683405.2683445

Categories and Subject Descriptors

1.3.3 [Computer Graphics]: Picture/Image Genera-
tion—>bitmap and framebuffer operations; 1.3.1 [Computer
Graphics]: Hardware Architecture—graphics processors,
parallel processing; D.2.8 [Software Engineering]: Met-
rics—performance measures

General Terms
Design, performance

Keywords
Image warping, integrated graphics processing unit, head-
mounted display, frame rate, latency

1. INTRODUCTION

In applications that deliver real-time 3D computer graph-
ics, image frames must be rendered at a fast enough rate
to induce the illusion of motion for the user. Interactive
applications have the additional requirement that the delay
between some interaction with the application and the vis-
ible result of that interaction be small enough so that the
response appears close to instantaneous. The performance
metrics corresponding to these requirements are frame rate
and latency, with both being essential for achieving a satis-
factory user experience.

Frame rate and latency are both highly dependent on the
time it takes the computer hardware to render each image
frame. In modern computer architectures, fast frame ren-
dering is typically realised through the use of a graphical
processing unit (GPU) that asynchronously executes ren-
der commands issued to it by the central processing unit
(CPU). Graphics application programming interfaces (API)
typically buffer some quantity of render commands to ensure
the GPU does run out of commands to process and stall,
which would be a waste of computational power. Batches
of commands issued to the GPU are also typically executed
atomically, which avoids the overhead and complexity of per-
forming execution context switches.

These optimisations are targeted towards achieving a bal-
ance of frame rate, latency and image quality for viewing
on flat-screen monitors. This balance is however subopti-
mal for many virtual reality (VR) applications and display
systems. This is because the various types of object and
body tracking in VR applications are prone to accentuate

Synchronous
deferred warp

No image
warping

Latency

Asynchronous
warp

Synchronous
blocking warp

Frame-rate

Figure 1: Spectrum of the performance trade-offs of
different image warping methods. Having both low
latency and high frame rate is desirable.

poor frame rate and latency. While poor frame rate and
latency are merely visually unappealing and frustrating on
computer monitors, on head-mounted displays (HMD) they
cause physical discomfort and, in some circumstances, sim-
ulator sickness. This is a problem as — if such issues are
common in consumer applications — it will likely inhibit
the adoption of HMDs as an alternative display mode for
consumer 3D applications.

To counteract this, any number of methods may be employed
to improve frame rate and/or latency. Some examples in-
clude: reducing rendering quality, CPU-GPU synchronisa-
tion to reduce command buffering, predicting tracked mo-
tion, and supplementing rendered frames with ones synthe-
sised via image warping. All of these methods involve some
sort of trade-off between image quality, frame rate and la-
tency. The trade-offs associated with different forms of im-
age warping are visualised in Figure 1.

Of these methods, image warping has one of the highest po-
tentials to improve perceived frame rate and latency while
only negligibly impacting image quality. Unfortunately, cor-
rectly scheduling image warping on a single GPU system
is made difficult due to the minimal level of software par-
allelism offered by most operating systems’ (OS) graphics
APIs. This is because render command buffering and the
inability to pre-empt executing render commands precludes
the accurate timing needed for image warping. Partial im-
plementations that improve either (but not both) frame rate
or latency are still possible with a single GPU, but multi-
ple GPUs are needed to circumvent these limitations and
provide the full benefits of image warping.

Consumer graphics applications are largely designed to ig-
nore anything other that the primary GPU of the system
they run on. One reason for this is that because any par-
ticular system may not have multiple GPUs, applications
must be designed to cater to the lowest common denomina-
tor of only a single GPU being present. Secondly, systems
that do have multiple GPUs often have them virtualised to
appear as a single (more powerful) GPU to applications.
And thirdly, in most systems where multiple GPUs can’t be
virtualised, the vast difference in GPU performance means

utilising the weaker GPU is not worth the additional syn-
chronisation overhead.

In this paper we describe an image warping system targeted
towards the third category of consumer computer systems,
which is able to improve both frame rate and latency. This is
a novel application of weak secondary GPUs, which benefits
from their hardware parallelism and avoids being limited by
their poor performance due to the low computational com-
plexity of image warping. The ubiquity of integrated graph-
ics processors (IGP, or iGPU when in contrast to dedicated
GPUs) on computer systems that also posses a dedicated
GPU (dGPU) makes our image warping approach practical
for a significant proportion of consumer VR users.

2. RELATED WORK

Temporal coherence between image frames in real-time
graphics applications makes methods that recycle previously
rendered image data attractive for reducing the computation
required to produce new frames. One such method is im-
age warping, which is able to derive new image frames from
only the data contained within previously rendered frames
[3]. These methods may be used to provide a higher frame
rate and lower latency for a given level of image quality.

Recent research in image warping demonstrates that it is
a practical solution for improving frame rate for consumer-
level 3D computer applications including video games [1].
Because warp performance is critical for it to be benefi-
cial over conventional rendering methods, it is important to
demonstrate that various warping algorithms have accept-
able performance on current hardware platforms [2].

In addition to frame rate, image warping systems have also
been designed that improve the interaction latency of the
application. Such systems are employed by some HMD
rendering frameworks, including that of the Oculus Rift, a
consumer-grade HMD [4].

Asynchronous image warping systems require warping and
rendering to run in parallel, which may be achieved virtu-
ally or through hardware parallelism. Smit et al. [7] discuss
the trade-offs between the two approaches for their mod-
ern image warping architecture. In general, hardware par-
allelism incurs an overhead due to the need to copy data
between the different GPUs performing warping and ren-
dering. Their virtual parallelism method does not have this
overhead, but instead rendering commands must be manu-
ally split into small chunks to allow the GPU scheduler to
switch to warping at the correct time.

Our own research into image warping has investigated
the practicality of using asynchronous image warping on
consumer-level HMDs [5]. We have also demonstrated that
asynchronous image warping is perceptually difficult for
users to distinguish from conventional rendering in the con-
text of head tracking [6].

This paper develops upon prior work by demonstrating that
dual-GPU asynchronous image warping architectures are
practical on computers with asymmetrical GPUs; i.e. where
one GPU is an IGP and therefore significantly slower than
the other. This is in contrast to prior work which either use

a high-performance dedicated GPUs for warping, or perform
image warping synchronously on the same GPU as applica-
tion rendering.

3. DESIGN

There are many possible approaches to architecting an image
warping system, with different architectures having different
performance characteristics. Our system is designed with
the following performance objectives.

1. Decouple warped frame rate from application frame
rate

2. Minimise warped frame latency
3. Minimise dedicated GPU stalls

4. Minimise application frame latency

Warped frame latency is given a high priority as it strongly
influences the perceived application performance for HMDs
[6]. Another notable point is that our system is designed to
not limit, yet still be agnostic of application performance: a
difference from synchronous image warping approaches.

While these priorities are what were used for the exact per-
formance measurements, our system is flexible in that it sup-
ports several synchronisation methods with each giving a
slightly different balance.

3.1 Platform Considerations

The major novelty of our research is that our system per-
forms image warping on the computer’s integrated GPU,
and application rendering on the dedicated GPU. This
comes with several important factors that must be consid-
ered.

Firstly, the main reason iGPUs are rarely used for co-
processing is that they are vastly slower than even mid-range
dedicated GPUs. This is both in terms of execution speed
and memory bandwidth which can be as much as an order of
magnitude less than dGPUs. This means that the additional
software complexity and synchronisation overheads usually
negates any benefit that offloading to the iGPU provides.

An additional consideration is that not all target systems
have an iGPU available. While nearly all modern CPU
ranges by Intel and AMD feature iGPUs, some specific mod-
els do not, meaning some systems may have only a dedicated
GPU. On the other hand, because of the ubiquity of iGPUs
and their steadily growing performance, for many users the
low performance of an iGPU is sufficient for their workloads.
A result of this is that many computer systems do not have
a dedicated GPU, saving cost, energy and space. Further-
more, even on systems that contain both an iGPU and a
dGPU, the iGPU may not be usable for various reasons.
One reason this might be is that the system chipset does
not support the use of iGPUs, or does not allow an iGPU
to be active at the same time as a dGPU; an example of
this is the Intel P67 chipset. A final reason the iGPU may
not be available for warping is that it may already be used
to accelerate graphics rendering. An example of this is the
Hybrid CrossFire technology supported by some AMD CPU
and GPUs. While it is possible to disable such technologies,

doing so negates the benefits of image warping due to a re-
duction in base rendering performance.

Our system address these issues in the following ways.
Firstly, the low complexity of image warping means that
it can execute quickly even on slow hardware. Secondly,
it is the hardware parallelism of the iGPU that is the key
resource exploited by our system, which is not something
limited by iGPU performance. Lastly, we expect the preva-
lence of compatibility issues to be low for the intended target
audience. This is in part due to a key demographic of HMD
VR being PC gamers, a large portion of which (around 80%)
have dedicated GPUs [9]. Taking into account the rarity of
other incompatibilities, we expect our technique to be ap-
plicable to a significant proportion of HMD users.

3.2 System Architecture

Our image warping system is designed as a pluggable library
for use in applications employing the Microsoft DirectX API
(specifically D3D11). DirectX was chosen over OpenGL as
it has been historically more commonly used for PC video
games, one of the major applications of consumer HMD vir-
tual reality. Our system is accessed through an alternative
implementation of the IDXGISwapChain interface, allowing
it to be utilised with minimal changes to application code.
This replacement class acts as a programmable display layer
(PDL), similar to that described by Smit et al. [8], allowing
for the presentation of application frames to be controlled
dynamically by the application.

3.2.1 Application Rendering

Because our system provides an interface that is API-
compatible with DirectX, very few changes need to be made
to the application’s rendering logic. The only significant
runtime requirements imposed by our API is that the ap-
plication must pass any frame metadata needed for warping
through to the PDL. The format of the required frame meta-
data depends on the warping algorithm bound to the PDL.
For the simple reprojection-based warp used in our eval-
uation, this data consists of just the view and projection
matrices used for rendering.

API calls that interact with the application’s back-buffer are
modified by our replacement swap-chain object. The effect
of these modifications is that the application renders to a
PDL-managed framebuffer, replacing the default behaviour
of rendering to a framebuffer that is able to be scanned-out
directly to the display. Attempts by the application to cycle
the swap-chain will instead notify the PDL that a new frame
is available for processing.

This aspect of our system design allows the application to
render in a manner mostly agnostic to whether warping is
taking place, simplifying development.

3.2.2 Warping Algorithm

The PDL allows the programmer specify a custom program
for frame presentation, conceptually similar to how pro-
grammable shaders allow for custom vertex and pixel pro-
cessing. In this evaluation we bind our asynchronous warp-
ing algorithm — referred to as the warper — to the PDL.
The evaluated warper configuration operates as follows.

PDL data flow

Conventional data flow

Render

Application *

Discrete GPU
frame-buffer

frame-buffer

Integrated GPU
frame-buffer

Figure 2: Data flow diagram of rendered image data through frame-buffers, comparing our PDL to a con-
ventional double-buffered swap-chain. Buffers involved in application-specific rendering not displayed.

On notification by the PDL that an application frame has
been submitted, the warper blocks the application thread
until the GPU has completed rendering, after which it im-
mediately copies the frame from dGPU memory and maps
its contents allowing it to be read by the CPU.

Simultaneously, in another thread, the warper repeatedly
renders warped frames according to the following sequence.
Firstly it checks to see if a new application frame has been
mapped by the process described in the above paragraph. If
a new frame exists, it is copied by the CPU to a framebuffer
accessible by the iGPU, then converted into the required tile
format. The warper then samples the HMD sensors to get
up-to-date parameters for the warp. Using these parameters,
the actual warp itself is then rendered on the iGPU, using
the reprojection warp described in our previous work [6]. It
lastly blocks until the iGPU is idle to prevent future warp
frames from being delayed by command buffering.

4. PERFORMANCE EVALUATION

In addition to being simple to integrate, our system is also
intended to be fast enough to be beneficial on mid-range con-
sumer hardware configurations. Our performance evaluation
demonstrates that this is the case, through addressing the
following performance concerns. Firstly, by ensuring that
the overhead of warping architecture does not introduce an
excessive amount of resource contention with the applica-
tion’s rendering. Secondly, to ensuring that the poor per-
formance and smaller memory bandwidth of iGPUs is still
sufficient to perform image warping at reasonable speed.

The key performance metrics of interest are frame rate and
latency, both of which our system aims to improve over con-
ventional warp-less rendering. However with image warp-

ing, there are two different ways to measure frame rate and
latency. Because only particular types of motion are com-
pensated when producing warped frames, the compensated
and uncompensated motion will each appear to have their
own distinct frame rate and latency. The specifics of this
effect are described in the subsequent sections .

In our evaluation we only consider the software-introduced
components of frame rate and latency, ignoring contribu-
tions that are impossible to eliminate via software. For ex-
ample, in practice the usable frame rate is constrained by
the display’s refresh rate, while additional latencies are in-
troduced by frame scan-out and pixel response.

Quantitative performance values were measured on a desk-
top computer including an Intel i7-2600* CPU, an Intel HD
Graphics 2000 iGPU, 8GiB of 1333MHz dual-channel DDR3
RAM and an NVIDIA GTX 580° dGPU connected over a
16-lane PCI Express (PCle) v2 bus, with all components
at stock speed. While the CPU and dGPU may be high-
performance components, the following sections explain how
we believe them to have little impact on warping perfor-
mance.

Tests were conducted by embedding our image warping sys-
tem into a test application and measuring the performance
during runtime. The chosen application was the Deinter-
leaved Texturing sample from NVIDIA’s GameWorks D3D
Samples®. It was chosen because the source code was simple
to integrate with, while still being demanding on the dGPU.

"http://ark.intel.com/products/52213

*http:/ /www.geforce.com/hardware/desktop-gpus/geforce-
gtx-580
3https://github.com/NVIDIAGameWorks/D3DSamples

Except where otherwise specified, the load was adjusted to
give an application frame rate of around 30 frames per sec-
ond (FPS). The type of warping algorithm used is the sim-
ple frame reprojection described in our previous work [5, 6]
which is able to compensate for camera rotation and — to a
small degree — translation. All rendering and warping was
done at 1920 by 1080 resolution.

4.1 Latency

In 3D applications with a conventional rendering pipeline,
the component of latency introduced by software is the dif-
ference in time from when the application logic samples and
processes a user’s input, to when the first frame that incor-
porates that input begins to be scanned-out to the display.
We refer to this as application latency, and it exists under
the same definition within our warping system.

As a result of warping, a second method of measuring la-
tency is introduced which we call warp latency. Warp la-
tency is the difference in time between the warping subsys-
tem sampling a user’s input and when the corresponding
warped frame begins scanning-out. It is important to note
that any warping system will only sample a subset of the
input types that the application does.

The effect of this split is that the delay a user sees when
interacting with the application depends on the particular
type of interaction. For example, the perceived latency of
changing view direction might be 10 ms, while that of mov-
ing the player character might be 100 ms.

4.1.1 Warp Latency

In our test set-up warp latency follows a bimodal distribu-
tion with modes at 4.2ms and 6.8 ms. These latencies are
consistent and predictable, making motion prediction accu-
rate and reliable.

The existence of two modes is due to a fraction of warp
frames being slowed due their rendering including an extra
GPU tile format conversion. The fraction of frames includ-
ing this conversion is equal to the application frame rate
divided by the warp frame rate. The delay caused by this
conversion may be avoided by extra iGPU synchronisation:
at small cost to warp frame rate; or by doing the conver-
sion asynchronously on the CPU using direct resource access
(DRA): which is only supported on some iGPUs and at cost
to CPU utilisation.

Warp latency is dominated by the time it takes to render
the warp on the integrated GPU, which consistently made
up 3.4ms of the latency in all frames. Warp render time is
influenced by the warping algorithm used, the iGPU hard-
ware performance and the resolution at which warping is
being performed.

4.1.2 Application Latency

Application latency is, as expected, slightly degraded over
rendering without warping. With our configuration, applica-
tion latency was between 45.2ms to 49.5ms, in contrast to
34.9ms for warpless, synchronised conventional rendering.
The increase in latency due to warping is therefore between
10.3ms to 14.6 ms depending on the phasing of rendering
and warping.

The increase to application latency is due to the various
overheads introduced by warping. In conventional render-
ing, rendered frames may be scanned-out as soon as they
finish rendering, while in our warping system they must ad-
ditionally:

1. Be copied from the dGPU into CPU-addressable mem-
ory in linear memory order.

2. Be copied between the buffers owned by the different
D3D devices.

3. Be copied into tiled memory order in iGPU-
addressable memory.

4. Wait for the correct time to warp.

5. Wait for the warped frame to render.

The separation of items 1-3 is necessary as the D3D11 API
does not allow direct copies between different different phys-
ical GPUs. Figure 2 helps to illustrate the copies involved
in this process.

4.2 Frame Rate

In conventional real-time 3D applications, frame rate is the
sustainable frequency at which the application is able to
render complete image frames. Image warping complicates
things, as some image frames are produced by application
rendering, while others are produced through warping. Our
evaluation considers each frame type independently: result-
ing in both an application frame rate and a warp frame rate.

4.2.1 Application Frame Rate

As with application latency, application frame rate is also
slightly degraded due to the overhead associated with warp-
ing.

In contrast to latency however, the only applicable sources
of overhead are the time taken to copy finished frames out
of dGPU memory, and the optional anti-buffering synchro-
nisation. For our test system, the copy accounted for 1.5 ms
of overhead while synchronisation accounted for 1.9 ms.

The copy consists of reading a frame out of the tiled format
on the dGPU, copying it over the PCle bus, and writing it
sequentially into shared system memory. The duration of
copy may then be expected to scale with how much data
needs to be copied (i.e. the frame size) and with the transfer
speed (i.e. whichever bandwidth is smallest).

The 1.9ms of synchronisation overhead is due to our
system’s greedy approach to copying finished application
frames. This value is determined by the time between the
application’s last render issue for a frame, and the first
render issue for the next frame. As such, it is the most
implementation-dependent performance metric in our sys-
tem. Our system may also be configured with a lazy syn-
chronisation approach which eliminates this overhead at the
expense of increasing application latency (by the time it
takes to render one application frame).

4.2.2 Warp Frame Rate
Due to the lightweight nature of warping, the warp frame
rate is able to be significantly higher than what can be

achieved through conventional rendering methods, even on
modest hardware.

With our system, warp frame rate is essentially bound by
the rate at which the iGPU can perform the warp process.
The significant factors in this process are the upload of ap-
plication frames to the iGPU and the time it takes for the
iGPU to render the warp itself. Because frame uploads only
occur once for each rendered application frame, the warp
frame rate is therefore inversely proportional to the applica-
tion frame rate. Our system prevents the application frame
rate from exceeding the warp frame rate, forming a lower
bound when they are equal. This occurs at 116 FPS for our
test configuration which is already towards the upper end of
common display refresh rates (60Hz to 120 Hz). The limit
of our testing showed warp frame rate increasing to 224 FPS
when the application frame rate is reduced to 28 FPS

The frame upload penalty may be avoided by asyn-
chronously uploading the application frames using the CPU
using DRA. In this case, warp frame rate is no longer depen-
dent on application frame rate, and is instead maintained at
what would otherwise be its upper bound.

5. CONCLUSIONS

We have demonstrated that our dual-GPU asynchronous im-
age warping architecture successfully circumvents the paral-
lelism limitations imposed by the DirectX graphics API on
computers running Microsoft Windows. Because of this, it
is able to perceptually improve both frame rate and latency,
in contrast to synchronous image warping systems which are
only able to improve one or the other.

Our system does however provide less individual benefit to
frame rate and latency compared to synchronous approaches
due to the overhead associated with copying between GPUs.
This takes effect as a smaller improvement to warp frame
rate and latency, and as a larger degradation to application
frame rate and latency.

Performance tests with a mid-range hardware configuration
and synthetic load application resulted in worst-case warp
frame rate of 116 FPS and warp latency of 6.8 ms: indicating
the system is still highly beneficial despite its overheads.

The major hardware bottlenecks that influence warping per-
formance are iGPU rendering speed, system RAM band-
width and PCle bandwidth. A simplification is that: iGPU
rendering speed and system RAM bandwidth influence warp
latency and frame rate, while PCle bandwidth influences the
amount of application frame rate degradation.

The system’s CPU to GPU synchronisation may be config-
ured to prioritise either application frame rate or latency.
Alternatively, the application developer may perform the
synchronisation themselves in order to achieve maximum
hardware utilisation and efficiency.

Several performance bottlenecks may be eliminated through
direct CPU access to iGPU memory buffers, a non-standard
feature that is starting to become available. This allows one
buffer copy to be avoided and also allows another copy to
be performed in parallel with warped frame rendering.

6. FUTURE WORK

A significant limitation in trying to perform timing-sensitive
computation entirely in software is that the reliability of
the timing is influenced by several non-deterministic factors.
These include the usage of system resources by other pro-
cesses, and the scheduling of tasks by the operating system.
While we observed satisfactory consistency in our evalua-
tions, the variability of background conditions may disrupt
our system in more heavily loaded systems. These issues
may not be completely avoided through software, but the
degree to which they cause problems should be identified to
fully determine the suitability of software-based warping.

Another point for future research is regarding resource con-
tention with the warping. The major resources contended
by both warping and other systems are memory bandwidth
and CPU cache occupancy. Early results from our testing
confirms that iGPU warp performance can be affected by
other CPU tasks, but we have yet to establish the degree to
which this affects performance.

References

[1] D. Andreev. Real-time frame rate up-conversion for
video games: Or how to get from 30 to 60 fps for "free”.
In ACM SIGGRAPH 2010 Talks, SIGGRAPH ’10, pages
16:1-16:1, New York, NY, USA, 2010. ACM. ISBN 978-
1-4503-0394-1. doi: 10.1145/1837026.1837047.

[2] H. Bowles, K. Mitchell, R. W. Sumner, J. Moore, and
M. Gross. Iterative image warping. Computer Graphics
Forum, 31(2pt1):237-246, 2012. ISSN 1467-8659. doi:
10.1111/5.1467-8659.2012.03002.x.

[3] W. R. Mark. Post-rendering 3 D image warping: visi-
bility, reconstruction, and performance for depth-image
warping. PhD thesis, Citeseer, 1999.

4

Oculus VR. Oculus rift - virtual reality headset for 3d
gaming, 2012. URL http://www.oculusvr.com/.

[5

E. Peek, B. Wiinsche, and C. Lutteroth. Image warping
for enhancing consumer applications of head-mounted
displays. In Australasian User Interface Conference
(AUIC 2014), volume 150 of CRPIT, pages 47-56, Auck-
land, New Zealand, 2014. ACS.

[6] E. M. Peek, B. C. Wiinsche, and C. Lutteroth. More for
less: Fast image warping for improving the appearance
of head tracking on hmds. In Image and Vision Comput-
ing New Zealand, 2013. IVCONZ ’13. 28th International
Conference, 2013.

[7] F. Smit, R. Van Liere, S. Beck, and B. Froehlich. An
image-warping architecture for vr: Low latency versus
image quality. In Virtual Reality Conference, 2009. VR
2009. IEEE, pages 27-34, 2009.

[8] F. A. Smit, R. van Liere, and B. Frohlich. An image-
warping vr-architecture: design, implementation and ap-
plications. In Proceedings of the 2008 ACM symposium
on Virtual reality software and technology, VRST 08,
pages 115-122, New York, NY, USA, 2008. ACM. ISBN
978-1-59593-951-7.

[9] Valve Corporation. Steam hardware & soft-
ware Ssurvey: July 2013, July 2013. URL
http://store.steampowered. com/hwsurvey.

