
More for Less: Fast Image Warping for Improving
the Appearance of Head Tracking on HMDs

Edward Peek
Department of Computer Science

The University of Auckland
Auckland, New Zealand

Email: epee004@aucklanduni.ac.nz

Christof Lutteroth
Department of Computer Science

The University of Auckland
Auckland, New Zealand

Email: lutteroth@cs.auckland.ac.nz

Burkhard Wünsche
Department of Computer Science

The University of Auckland
Auckland, New Zealand

Email: burkhard@cs.auckland.ac.nz

Abstract—In consumer 3D applications such as video games,
users frequently have the option to adjust the trade-off between
graphics quality and frame rate, with a common approach being
to maximise graphics quality while retaining an acceptable (but
not ideal) frame rate. However, consumer head-mounted displays
require ideal frame rates in order to prevent discomfort and mo-
tion sickness. In this paper we present a minimal image warping
method to perceptually increase the frame rate for critical types
of motion (particularly head tracking). We analyse the magnitude
of graphical artefacts introduced by image warping, when used
with the Oculus Rift developer kit 1, and perform a user study
evaluating improvements in viewing experience achieved with
our technique. The results of the study indicate that for head
orientation tracking, even basic image warping is perceptually
the same as rendering at an ideal frame rate.

Keywords—head-mounted display, image warping, virtual reality

I. INTRODUCTION

Despite 3D computer applications rising in popularity, and
the increasing availability of immersive VR displays, most
users still view 3D content on a flat panel monitor that takes
up a small portion of their visual field. More immersive dis-
play technologies are however starting to replace conventional
monitors in certain usage scenarios. Stereoscopy is one such
technology that has appeared in computer monitors, television
sets, handheld gaming consoles and smartphones. It is the only
such technology gaining any traction however, and is doing so
very slowly.

Another class of immersive display technology is head-
mounted displays (HMDs). These produce a significantly more
immersive experience than both conventional monitors and
stereoscopic displays. HMDs achieve this by having a wide
field-of-view, by blocking out vision of the real world, and
by coupling movement of the user’s head to movement of the
virtual viewpoint. While HMDs have previously been targeted
towards specialised application areas such as military and
medical training, industrial and scientific visualisation, and
VR enthusiasts, recent advances have allowed them to become
targeted towards ordinary consumers. One notable example is
the Oculus Rift [1] which has backing from several major
video game developers and industry experts [2].

978-1-4799-0883-7/13/$31.00 c©2013 IEEE

For applications to utilise such novel display devices, they
must be adapted in several key ways. Firstly an application
must be adapted to output images in a format compatible with
the display. The application must also be adapted to reflect
the conceptual model of the HMD, specifically to support
head tracking. Lastly quality factors must be considered, in
particular rendering frame rate and latency. While these two
factors are also important when dealing with conventional
monitors, they are much more important for HMDs as they are
much more likely to cause simulation sickness. This matter is
complicated by the fact that these factors are strongly influ-
enced by the speed of the user’s computer hardware. This leads
to the scenario where a specific combination of application
and computer hardware may provide an acceptable experience
on an conventional monitor, but one that is unacceptable on
an HMD. Such experiences are likely to discourage the use
of HMDs. To counteract this, application developers need
methods for improving these quality factors on HMDs, so that
they are just as accessible as conventional monitors.

In this paper, we explore image warping as a method for
improving the perceived latency and frame rate of one of the
most important aspects of a HMD: head tracking. In particular,
we have developed a test system that uses an implementation
of image warping specifically tailored for use with HMDs on
consumer PCs, and evaluated it to gauge how much it improves
the user’s perception of head tracking quality.

II. RELATED WORK

Almost any form of latency may be reduced through
prediction. In the domain of HMDs, prediction is typically
applied to reduce head tracking latency, as the orientation and
position of the user’s head can be extrapolated reasonably
accurately and this type of latency is a significant factor in
causing simulation sickness. The effect of employing this type
of prediction is discussed by Azuma and Bishop [3] who found
that, for their HMD system, the magnitude of tracking error
(caused by system latency) can be reduced by a factor of 2–
10 depending on the type of prediction used. Prediction is
especially useful in that is simple to implement and can be
used in addition to other forms of latency reduction.

Another method to reduce tracking latency is to sample
the orientation and position as late in the rendering process as
possible. One possible method discussed by Kijima and Ojika
[4] is to effectively use the head orientation at the time of the

display scan-out through the use of a special LCD modulation
circuit. This allows the visible image to be based on very up-to-
date tracking information, but has limited quality as only basic
adjustments may be made so late in the rendering process.

A similar approach is utilised by Olano et al. [5]. The
authors use both scan-line adjustment and a highly parallel
hardware configuration to reduce latency to less than a single
NTSC field time, as well as guarantee an ideal frame rate.
Scan lines are offset individually to compensate for the fact
that the lower the line in the frame, the later it will be refreshed
on the display. The architecture of such a system is however
significantly different to modern consumer PCs, making of
limited use.

An solution more appropriate for modern PCs is proposed
by Mark et al. [6]. This is an entirely software based approach
that employs a 3D image warp in a fast secondary update
loop to compensate for latency introduced by a slow main
render loop. Such an approach can improve frame rate as
display frames can be rendered independently and in parallel
to the main application render loop. While this approach is
not be able to reduce all sources of latency, it can reduce
the largest and most unpredictable one, leaving the rest for
reduction via prediction. Further work by Smit et al. discusses
an implementation targetting fish-tank VR ssytems [7] and the
performance/quality tradeoffs of several 3D warp algorithms
[8]. This approach is quite practical for consumer applications,
as being software based it is easily accessible, and it is
designed for PC systems similar to what most consumers
currently own.

III. OUR APPROACH

Our approach to image warping is similar at a high level
to the single-GPU system developed by Smit et al. [8]. In this
sense both systems perform image warps at a rate equal to the
display’s refresh rate, while rendering the virtual environment
at some lower frequency. The major difference with our system
is that it does not generate or use motion fields: but instead uses
an algorithm that only requires the rendered images’ colour
data. Furthermore, the algorithm we use to perform the image
warp is much more simplistic, and therefore capable of running
quickly on less capable hardware. This makes it more practical,
as it places no demands on how the application should render
the virtual environment, while also taking few computation
resources away from the application. We refer readers to the
publications of Smit et al. [8] for specific architectural details.

The most important design point, other than the overall
system architecture, is the algorithm that performs the warp
itself. Previous research in image warping has established
methods for accurately extrapolating various types of motion,
including that of scene objects and the camera’s viewpoint.
While our algorithm is less capable than these, it is sufficient
for improving the appearance of head tracking on HMDs.

Our algorithm renders warped image frames through the
following process. A quad mesh is aligned to the location of
the far clipping plane of the view frustum from the previously
rendered simulation frame. The image data from this simula-
tion frame is then mapped as a texture to this quad. Warped
frames are produced by rendering just this quad with a new
camera position and orientation, as illustrated in Figure 1.

(a) Simulation render model (b) Simulation frame

(c) Warp render model (d) Warp frame

Fig. 1. Warped frames are produced by drawing a simulation frame from a
new camera position

An unoptimised implementation of this algorithm runs in
∼ 0.2 milliseconds on an NVIDIA GeForce GTX 580 high-
end dedicated GPU, and in ∼ 3 milliseconds on an Intel
HD Graphics 3000 low-end integrated GPU. If the display
refresh rate is 60Hz and the simulation normally renders at
30 FPS, this should cause a decrease to 29.6 FPS and 24.5
FPS respectively due to resource contention. On the high-end
GPU the reduction in base frame rate is negligible. While the
drop on the low-end GPU is noticeable, it shows the algorithm
executes sufficiently fast on just about the entire range of
modern PC GPUs. This also indicates that this algorithm is
suitable for offloading to the integrated GPU in computer
systems that have both dedicated and integrated GPUs.

IV. THEORETICAL EVALUATION

Evaluating an image warping system is a matter of de-
termining whether it correctly smooths the desired type of
motion, and whether the artefacts it introduces are sufficiently
small.

The algorithm described in this paper is specifically de-
signed to only smooth head tracking on HMDs, and no other
types of motion. In this section we analyse the theory of how
well this goal is achieved in typical usage. We also examine
the major type of artefact introduced by this algorithm, what
we call fringe artefacts. Other types of artefacts that may be
present are not discussed, as they largely depend on the lighting
and shading models used for rendering the scene, making them
difficult to generalise for.

A. Tracking Smoothness

Our algorithm intrinsically perfectly smooths pure rotations
around the virtual camera’s position. Unfortunately these types
of rotation are nearly impossible with a HMD, due to the
fact that there are two virtual cameras (one for each eye),
and that rotations of the user’s head happen around their neck
(not their eyeballs). Instead, rotating the user’s head typically
introduces small translations that must also be smoothed. This
is characterised by Figure 2, which illustrates the difference in

Fig. 2. The head model used to transform the virtual cameras in response
to HMD orientation. HMD rotations are applied to the origin at the base of
the neck, which causes both rotation and translation of the cameras

position between the virtual camera and the point they rotate
about.

This is the point where our choice of a simple warping
algorithm begins to introduce issues. While the algorithm
we use can handle viewpoint translations, it can not do so
perfectly. It effectively makes the assumption that all surfaces
in the scene are 2D and lie on the viewing frustum’s far-clip
plane. This means that nearby surfaces will not be shifted by
the correct amount when warping, making their motion jerky
when translating the viewpoint.

The rest of this section derives the magnitude of the error
between the proper shift, and the actual shit produced by
our algorithm. For brevity, we only present the derivation for
considering yaw head rotations (i.e. looking left and right).
Yaw was chosen since it had the greatest magnitude from the
types of rotation recorded in our testing. The second most
prevalent type of motion was pitch (i.e. looking up and down),
which can be trivially adapted from our equations by changing
which of the x, y and z axes are considered.

Image warping must only deal with changes since the
rendering of the last simulation frame. The most critical
variable that results from this is tc, the compensation time.
tc is the difference in time between the time at which head
orientation was sampled for use in rendering the simulation
frame, and the time at which head orientation was sampled
for use in rendering the current warped frame. tc strongly
influences how different the warped frame will be from the
simulation frame, and consequently the size of many types
of errors. tc varies between different warped frames, but for
making assumptions we assume it to be approximately 32
milliseconds, the upper bound of what it could be in our system
when increasing the effective frame rate from 30 FPS to 60
FPS.

All translations are derived from head rotation in our
approach. We must first determine the magnitude of these
translations. Given that ∆yaw = tc ∗ ωyaw (where ωyaw is
the angular velocity of head rotation in radians), we produce
the following equations.

θy0 = arctan
ox
oz

θy1 = θy0 + ∆yaw ry =
√
o2x + o2z

Tx = −ry(sin θy1 − sin θy0) (1)
Ty = 0 (2)
Tz = −ry(cos θy1 − cos θy0) (3)

(a) Yaw (b) Pitch

Fig. 3. Derivation of camera translation due to two types of head rotation

The derivation of these equations is illustrated in Figure 3, as
well as the analogue for pitch.

Using generic values of ox = 0.032m and oz = 0.07m
(which depend on the user, see Figure 2), we can take small
angle approximations of Tx and Tz to give us

Tx ≈ 0.067∆yaw (4)
Ty = 0 (5)
Tz ≈ 0.038∆yaw (6)

indicating that camera translation is approximately propor-
tional to the speed of head rotation.

For surfaces in the centre of the screen, and translations
of the camera directly orthogonal to the viewing direction, the
error in the position of the warped surface (as an angle of the
visual field) is given as e by Equation 7. Here cf is the far
clipping distance, d is the distance to the surface and T is the
magnitude of the camera translation.

e = arctan
cf
T

− arctan
d

T
(7)

From this it can be seen that as the surface moves away from
the camera, the error becomes negligible, as our assumption
that all surfaces lie on the far clipping plane becomes more
accurate.

Because the error is in the location of surfaces, the visible
effect will be that, as the camera translates, the surfaces will
move with a jerky motion, with the jerks occurring at the
frequency as the simulation update rate. This gives a similar
appearance to the jerkiness caused by ordinary low frame rates.
However, because the warping always under-compensates for
translation (but still compensates a little), the size of the jerks
will always be less than if no image warping was used.

B. Fringe Artefacts

Fringe artefacts occur because the images that we use as
a source for warping have a limited field-of-view. When the
image is warped to create a new view direction, holes occur
at the edges of the image as the old and new frustums do not
perfectly overlap. These holes may be filled by stretching the
edges of the simulation frame to fill the new frustum bounds.

When warping, the algorithm used in this study projects
the rendered simulation frame to the distance of the far clip
plane. Because the far clip distance is so large in typical
applications, and the viewpoint translation due to head rotation
so small (Section IV-A), translations of the virtual cameras

(a) Before warp, without artefacts (b) After warp, with fringe artefact

(c) Derivation of fringe size

Fig. 4. Illustration of a fringe caused by camera yaw, and translation (which
is negligible compared to the size of the frustum)

have a negligible impact on the size of fringe errors. Instead,
for yaw and pitch head rotations, the size of the fringe artefact
is exactly equal to the amount of rotation between the current
image frame and the previous simulation frame (i.e. ∆yaw or
∆pitch). This can be seen in Figure 4.

We expect fringe artefacts to be minimally visible in typical
usage. At a head rotation speed of 45 degrees/s and tc ≤ 32
ms, the maximum size of the fringe in the user’s visual field
is only 1.44 degrees. Looking forward, the artefact appears at
the edge of peripheral vision, where visual acuity is worst.
Additionally, these artefacts can not be looked at directly, as
the geometry of the HMD causes them to be occluded by the
edge of the lens when the eye is not pointing directly forward.

V. EMPIRICAL EVALUATION

In addition to the the technical properties of image warping
artefacts, we are also interested in how perceptible they are to
users in typical scenarios. For this purpose, we performed a
user study to answer the following questions.

1) Does image warping improve the perception of head
tracking when the simulation frame rate is less than
the display refresh rate?

2) Can users tell the difference between image warping
and the ideal scenario where the simulation frame rate
equals that of the display refresh rate?

A. Test Conditions

5 test conditions were used in our study, which were each
made up of a combination of a rendering method and a fixed
simulation frame rate. The two rendering methods used were

• Fixed frame rate (FR): no image warping is employed,
and simulation frames are generated at a fixed fraction
of the display’s refresh rate.

• Image warping (IW): image warping is applied to FR
rendering. Image warping is always done at 60 FPS
(the native refresh rate of the Oculus Rift DK1), while
the rendering of simulation frames occurs at a lower
rate.

The frame rates used though the study, and the reason for
choosing them are as follows:

• 30 FPS (1/2 DK1 refresh rate): approximately the
threshold for acceptably smooth motion. This is some-
times used as a target for video games in order to
improve other aspects of image quality. Strategies like
post-process motion blur are often employed to make
such frame rates more acceptable.

• 45 FPS (3/4 DK1 refresh rate): the mid point of the
range of typical frame rates.

• 60 FPS (equal to DK1 refresh rate): the ideal scenario;
any increase in rendering frame rate above this is
clamped to the refresh rate of the display hardware.
60Hz is the maximum refresh rate of most computer
monitors and television sets, although select models
are able to go higher.

The 5 test conditions are made up of the following com-
binations of these components.

1) Fixed frame rate, with 30 FPS simulation (FR30)
2) Image warping, with 30 FPS simulation (IW30)
3) Fixed frame rate, with 45 FPS simulation (FR45)
4) Image warping, with 45 FPS simulation (IW45)
5) Fixed frame rate, with 60 FPS simulation (FR60)

Conditions 1 and 3 mimic the scenario where a computer’s
hardware is not fast enough to render the scene at the perfect
rate. Conditions 2 and 4 represent how conditions 1 and 3 can
be improved using image warping. Condition 5 is the ideal
scenario, where the computing hardware is sufficiently fast.

B. Test Scene

A virtual environment was developed for testing, which can
be seen in Figure 5. The environment allows the user to look
around by turning their head, but no other interaction apart
from controlling the head-up display (HUD) is possible.

The environment was developed to allow enabling and dis-
abling image warping, and to control the rendering frequency
of the simulation. A 40% extension of the rendered image
size was used to compensate for the shrinking of the image
caused by correcting for lens distortion. While this can hide
fringe artefacts (Section IV-B), it is often done in actual HMD
applications, leading us to believe it is appropriate to include.

Fig. 5. Rendering of the virtual environment, with generic lens correction.
The head-up display is drawn a fixed distance in front of the user’s face, and
provides feedback for their selection of ratings.

Our test application used an unconventional implementa-
tion of warping architectures so that there would be more
control over different variables when performing the evalu-
ation. The first difference is that, in our environment, the
simulation rendering is computationally lightweight, and is
therefore capable of updating several times faster than the
display’s refresh rate. How often the simulation thread is
allowed to update is however artificially limited to a fraction
of the display’s refresh rate, in order to mimic an actual
system. In addition to this, with our system the simulation
and warp threads are not run in parallel, but are instead
manually scheduled on a single thread, with all rendering being
performed on a single GPU. We are able to do this since
resource contention is not an issue, as enabled by the previous
point. This allows us to accurately schedule timing of input
sampling, simulation update and rendering, warp rendering and
presentation of the warped frames.

With regard to the appearance of the environment itself,
it is modelled after a simple room, where the user [9] is
sitting at a desk holding several objects [10]. Lighting is
fixed, there are no anisotropic materials, no post-processing
and no moving objects, making the scene highly favourable
for image warping. Such an environment was chosen as it is
reasonably stressful for the specific types of errors produced by
our warping algorithm, while still being reasonably realistic,
and similar to actual virtual environments.

A >> B A > B A = B A < B A << B
Response

0

10

20

30

40

50

60

N
u
m

b
e
r

o
f

re
p
o
n
se

s

FR30 vs. IW30
FR30 vs. FR60
IW30 vs. FR60
FR45 vs. IW30
FR45 vs. FR60
IW45 vs. FR60

Fig. 6. Distribution of the ratings from all participants

C. Procedure

The general study procedure was for participants to per-
form a series of comparisons between pairs of different con-
ditions, and rate which of the two they thought tracked head
motion better. The pairing of conditions was chosen to answer
the research questions outlined above.

• FR30 vs. IW30, and FR45 vs. IW45 pairs were chosen
to answer Question 1.

• IW30 vs. FR60, and IW45 vs. FR60 pairs were chosen
to answer Question 2.

• FR30 vs. FR60, and FR45 vs. FR60 pairs were chosen
to serve as a control.

Every paring was presented to every user user 6 times —
to average out inconsistencies in responses — giving 36 pair
comparisons per participant. The order in which the pairings
were presented was random. For each pair, participants could
switch between the two conditions at will, and were asked
to rate the difference in quality between the conditions of a
5-point scale.

All interaction was performed by using a keyboard with
hands in fixed locations and all interactions displayed on
screen. This was done because the Oculus Rift blocks vision
of the real world, preventing the user from seeing their hands
and keyboard during the tests.

In addition to recording the users ratings for each test, the
angular velocity of head rotation was also recorded. Addition-
ally, users were asked to fill out a questionnaire before and
after they performed the testing.

D. Results and Discussion

12 people participated in the study. Most were computer
science students or staff, with a split of 10 male and 2 female.
7 participants stated they had used 3D computer applications
at least ”sometimes” in the last 3 months, while the rest stated
they had used them either ”rarely” or ”never”.

A visual inspection of the distribution of all responses,
shown in Figure 6, allows the following observations.

• For the majority of participants FR60 is better than
either FR30 or FR45.

• For the majority of participants IW30 and IW45 are
better than FR30 or FR45 respectively.

• Most participants can not tell the difference between
IW30 and FR60, or between IW45 and FR60.

• The skew in IW30 vs. FR60, and IW45 vs. FR60,
indicates that some users may be able to tell the differ-
ence between them, and they consider the difference
”slight”.

• Some participants either did not notice the difference
in frame rate, guessed the rating, or did not move their
head fast enough to notice the difference.

Wilcoxon signed-rank tests were performed to validate the
first 4 of these points. We found there is a significant difference
(p < 0.05) between the ”good” conditions (IW30, IW45 and
FR60), and the ”poor” conditions (FR30 and FR45) in all the
tests that compared them. These results back up our first two
points.

What is less clear is the whether IW30 is significantly
different from FR60, and IW45 from FR60. Wilcoxon tests
result in p-values of p = 0.079 and p = 0.022 respectively.
The fact that the tests are so borderline prevents us from
establishing whether the compared modes are fully equivalent
or not.

In response to this, we reformulate a more conservative
hypothesis [11], that ”most participants can not tell the differ-
ence between the two conditions” (rather than all). Performing
sign tests against this hypothesis yields significant results
(p ≈ 1) for both comparisons. The fact that most participants
can not tell the difference, but not all can not, indicates the
differences are only noticeable in some usage scenarios, and/or
by some people. While it would be interesting to test individual
participants for their ability to tell the difference between these
conditions, with only 6 samples per test we do not believe this
can be done reliably with the data from our study.

We believe the existence of ”incorrect” ratings (i.e. people
rating lower frame rates as better than high ones) are due
to participants either guessing, or incorrectly recording their
rating; not because they genuinely preferred lower frame rates.

Participant remarks also revealed that some found that
low frame rate conditions specifically gave them noticeable
discomfort, mostly described as ”headaches”. Unfortunately,
the testing was not structured in such a way as to pair these
remarks with the actual conditions, limiting the conclusions
that can be drawn from this. It does however give weak
evidence that smoothness of head tracking (as a result from
a high frame rate) does play a part in introducing motion
sickness on HMDs.

While the results from this study are reasonably conclusive
for just head tracking, the virtual environment is unrealistically
static, potentially hiding quality issues that may occur in real-
world applications.

In summary, these results suggest that even simplistic
image warping algorithms are able to dramatically improve
the smoothness of head tracking. The evidence also suggests
that this type of image warping is difficult — and potentially
impossible — to differentiate from ideal frame rates, even
when the scene is internally being rendered at only half the
ideal rate.

VI. CONCLUSIONS

In this paper we present a fast image warping system for
HMDs and show that it is fast enough to be practical even on
a low-end PC integrated GPU.

A theoretical analysis of the chosen warping algorithm
shows how the size of errors due to incorrect assumptions
grows proportionately with the speed of head rotation and the
amount of delay the warp is compensating for.

An empirical evaluation — in the form of a user study —
was also performed to asses the visibility of these errors on
the Oculus Rift DK1. Our analysis of the results leads us to
conclude that even basic image warping algorithms are able to
significantly increase the perceived quality of head tracking,
making their use appropriate for most 3D PC applications
targeting HMDs.

Lastly, our study dealt with image warping for head rotation
only. Further investigation into perception and performance of
other image warping algorithms, which can better compensate
for other types of motion, is needed. The visibility of artefacts
due to anisotropic materials, transparent objects, and post-
processing, should be incorporated into such a study, as they
challenge the assumptions of most image warping algorithms.

REFERENCES

[1] Oculus VR. (2012) Oculus rift - virtual reality headset for 3d gaming.
[Online]. Available: http://www.oculusvr.com/

[2] ——. (2013, Aug.) John carmack joins oculus as cto. [Online].
Available: http://www.oculusvr.com/blog/john-carmack-joins-oculus-as-
cto/

[3] R. Azuma and G. Bishop, “Improving static and dynamic registration in
an optical see-through hmd,” in Proceedings of the 21st annual confer-
ence on Computer graphics and interactive techniques, ser. SIGGRAPH
’94. New York, NY, USA: ACM, 1994, pp. 197–204.

[4] R. Kijima and T. Ojika, “Reflex hmd to compensate lag and correction
of derivative deformation,” in Virtual Reality, 2002. Proceedings. IEEE,
2002, pp. 172–179.

[5] M. Olano, J. Cohen, M. Mine, and G. Bishop, “Combatting rendering
latency,” in Proceedings of the 1995 symposium on Interactive 3D
graphics, ser. I3D ’95. New York, NY, USA: ACM, 1995, pp. 19–ff.

[6] W. R. Mark, L. McMillan, and G. Bishop, “Post-rendering 3d warping,”
in Proceedings of the 1997 symposium on Interactive 3D graphics, ser.
I3D ’97. New York, NY, USA: ACM, 1997, pp. 7–ff.

[7] F. A. Smit, R. van Liere, and B. Fröhlich, “An image-warping vr-
architecture: design, implementation and applications,” in Proceedings
of the 2008 ACM symposium on Virtual reality software and technology,
ser. VRST ’08. New York, NY, USA: ACM, 2008, pp. 115–122.

[8] F. Smit, R. Van Liere, S. Beck, and B. Froehlich, “An image-warping
architecture for vr: Low latency versus image quality,” in Virtual Reality
Conference, 2009. VR 2009. IEEE, 2009, pp. 27–34.

[9] TiZeta, “Lowpoly man,” http://www.blendswap.com/blends/view/66412,
2013.

[10] DeNapes, “desk,” http://www.blendswap.com/blends/view/50183, 2012.
[11] R. H. Randles, “On neutral responses (zeros) in the sign test and ties

in the wilcoxonmannwhitney test,” The American Statistician, vol. 55,
no. 2, pp. 96–101, 2001.

