
Parameter Optimisation for Texture Completion

Hoang M. Nguyen, Burkhard C. Wünsche, Patrice Delmas, and Christof Lutteroth
Dept of Computer Science, University of Auckland, Auckland, New Zealand

justin.nguyen@auckland.ac.nz {burkhard, p.delmas, lutteroth}@cs.auckland.ac.nz

Abstract—In 3D reconstruction applications frequently large
mesh sections are missing. While the geometry can be created
with mesh completion techniques, reconstructing the texture is
more difficult. An exemplar-based synthesis usually requires that
the missing region contains only one texture pattern. Image
inpainting techniques work for more complex textures, but were
designed primarily to fill narrow missing regions and tend to
produce undesirable results when the missing region is large. We
solve this problem by exploiting the fact that most 3D objects
contain different surface regions with similar textures. We use an
appearance space to identify suitable texture patches fitting with
the boundary of the missing region, and fill the region by using
a patch-based synthesis combined with Poisson interpolation. We
evaluate the effect of different parameters and demonstrate its
improved performance over existing inpainting techniques.

I. INTRODUCTION

Over the past couple of years 3D reconstruction technolo-
gies have improved tremendously and are now available in the
consumer-level domain. Examples include structured lighting
(Kinect), laser scanners, and image-based modeling. In many
applications the resulting mesh contains large missing regions,
e.g. because the surface was invisible to the utilised sensor.
Surface reconstruction techniques, such as Poisson Surface
Reconstruction, and mesh completion techniques can create
a watertight surface, but are unable to reconstruct texture
information.

Missing textures can be obtained with texture synthesis
methods, but these usually employ a single exemplar and
assume a consistent texture over the missing region. Image
inpainting techniques work for more complex textures, but
were designed primarily to fill narrow missing regions and
tend to produce undesirable results when the missing region
is large.

3D objects in the real-world usually contain repeating ge-
ometries and textures, e.g. the sides of an animal, components
of a plant (stem, branch, blossom), or man-made objects which
are usually designed using symmetries and self-similarities
(e.g. walls and windows of a house).

In this paper we perform texture completion by exploiting
the fact that most 3D objects contain different surface regions
with similar textures. We use an appearance space to identify
suitable texture patches fitting with the boundary of the missing
regions, and fill the region by using a patch-based synthesis
combined with Poisson interpolation.

The remainder of this paper is organised as follows: After
a brief discussion of existing image inpainting techniques in

978-1-4799-0883-7/13/C$31.00 c©2013 IEEE

section II, we describe our inpainting algorithm in section III.
Section IV presents results and section V concludes this paper.

II. RELATED WORK

Image in-painting techniques can be divided into two
classes. Pixel-based methods fill the missing region pixel-by-
pixel starting from the boundary, whereas patch-based meth-
ods usually add entire patches and minimise discontinuities
between texture regions.

The arguably best known and most successful algorithm
amongst pixel-based inpainting methods was proposed by
Bertalmio et al. [1]. The authors attempt to replicate manual
inpainting by propagating the known color values into a
missing region along so called isophotes, representing the
smallest spatial change of color values and structures.

Drori et al. [2] use adaptive circular fragments to operate
on different scales to capture both global and local structures
and approximate the missing region.

Telea et al. [3] present an inpainting technique based on a
fast marching method for level set applications. The method is
simple and considerably more efficient than other pixel-based
methods.

Pixel-based methods often fail to properly reconstruct
larger structures with semantic meaning, e.g. leaves. Criminisi
et al. [4] iteratively select a “best-fit” rectangular patch and
copy it over to the target region. The order in which boundary
pixels of the missing region are processed is based on the
amount of information available for that pixel and whether it
has any prominent features.

Cheng et al. [5] update the priority equation of [4] and
made it adjustable to the structural and textural information
specific to an image. Ignacio et al. [6] extend the concept of
Criminisi’s method and apply it in the wavelet domain.

III. ALGORITHM

We employ a similar patch search and insertion concept
as Criminisi et al., but use appearance space attributes and
principal component analysis to improve region matching
quality and speed. In addition, our method smoothly fuses
patches together to remove all visible seams.

A. Candidate Patch Identification

The algorithm’s performance is significantly effected by
the ability to identify the patch in the image that retains the
highest resemblance to the processed patch. This is achieved by
iteratively traversing through each pixel of the image outside
the missing region and computing the similarity of the patch

centered around that pixel and the original patch. Instead of us-
ing the standard Sum of Squared Differences (SSD) to measure
the similarity of two given patches, we employ appearance
space attributes, which provide much more information and
thus improve the search result.

When searching for a matching patch, we consider for each
pixel an 11 × 11 pixel neighbourhood. For each pixel of this
neighborhood we consider RGB colours, the gradient vector, as
well as the signed Euclidean distance to the closest dominant
feature in the original texture.

Gradient Vector: We estimate the gradient of an in-
tensity image I, (∂I

∂x ,
∂I
∂y) by using the convolution kernels of

a standard Sobel operator. The two kernels for the x and y
directions are:

Sx = (1 2 1)T · (1 0 − 1) (1)

Sy = (1 0 − 1)T · (1 2 1) (2)

The attribute gradient image is then defined as:

G(p) = ((Sx ∗ I)(p), (Sy ∗ I)(p)) (3)

where p denotes an image pixel.

Signed Feature Distance: The signed feature distance
of a pixel p is defined as the distance of p to the closest pixel
q ∈ M for which M(p) 6= M(q) where M is a binary image
created by applying the canny edge detection method [7] on
the input image.

The distance between two pixels is defined using the
following equations (adapted from [8]):

F(p) = s · (max
r ∈ M

λ(r)− λ(p)) (4)

λ(x) =
1

|qx − x|
(5)

s =

{
1 if M(p) = 1

−1 if M(p) = 0
(6)

The vector (qx−x) points from x to the closest pixel q in
M.

The entire attribute information is encapsulated into a
11× 11× (3 + 2 + 1) = 726-dimensional vector. Determining
the similarity of two given patches by comparing two 726-
dimensional vectors is not efficient. In order to make the
appearance space more practicable, the 726 dimensional vec-
tors are projected into low-dimensional vectors using principal
component analysis (PCA) ([8], [9]). In our method, the
dimensionality is reduced to 12, which in our experiments with
different image types produced the best results.

The clear advantage of the attribute space over the con-
ventional SSD is that the attribute space approach permits any
meaningful information about the pixels and their surrounding
to be embedded for matching purposes. By reducing the
dimensionality, the computation time can be kept manageable.

B. Patch Fusion

The final step is to replicate the content of the candidate
patch and smoothly blend it with the target region. We employ
a Poisson-guided interpolation approach proposed by [10] for
this task.

The goal is to adjust the colour information of patch ΨB ,
while preserving the relative information (image gradient) as
much as possible, so that the transition between the newly
modified patch ΨC and the rest of the image is gracefully
blended.

IV. EVALUATION

In this section, we investigate the effect of different algo-
rithm parameters and evaluate its performance over popular
existing algorithms.

A. Effect of Parameters

Fig. 1. The original image is on the left, while the damaged image is on the
right

Effect of appearance space attributes: Figure 2
shows an example in which the previous damaged “lizard” im-
age (Figure 1) is inpainted using various different appearance
space attributes. The following combinations of appearance
space attributes are used for this testing purpose.

• Case 1: RGB color, HSB color, signed feature dis-
tance, horizontal and vertical gradient vectors.

• Case 2: RGB color, signed feature distance, horizontal
and vertical gradient vectors.

• Case 3: RGB color and signed feature distance.

• Case 4: RGB color, horizontal and vertical gradient
vectors.

As can be observed from figure 2, there is little or no visual
difference between the first and second case. This indicates that
adding the HSB color attribute does not result in finding better
patches.

There is an obvious difference in the result quality when
the gradient vectors are removed. Some parts of the texture of
the head become fuzzy and appear incorrect. A small part of
the line on the body of the lizard is missing.

The result quality further deteriorates when removing
signed feature distance attribute instead of the gradient vectors.
The textures become much more blurry and more missing
features are noted. This is probably due to the fact that
inccorect patches have been identified and blended in this case.

Fig. 2. Appearance Space Attribute Parameters. a) Color, HSB color, signed
feature distance, horizontal and vertical gradient vectors. b) Color, signed
feature distance, horizontal and vertical gradient vectors. c) Color and signed
feature distance. d) Color, horizontal and vertical gradient vectors.

The results indicate that the optimal combination of ap-
pearance space attributes is RGB color, signed feature dis-
tance, horizontal and vertical gradient vectors. Adding more
attributes often contributes little or no improvement and yet
increases the computational cost.

Effect of attribute vectors’ dimensionality: In order
to improve the efficiency, appearance attribute vectors are
projected to a low-dimensional vectors before being compared
to others. In this section, we evaluate the effects of the
dimensionality of reduced appearance attribute vectors on the
the result quality.

Fig. 3. Appearance Space Attribute Dimensions: a) 8−dimensional vectors.
b) 7−dimensional vectors. c) 6−dimensional vectors. d) 5−dimensional
vectors.

Figure 3 shows an example in which appearance attribute
vectors were reduced to different dimensions (8, 7, 6, 5) before
comparison.

In the first case, reducing the original 726−dimensional
attribute vectors to a 8−dimensional vector yields good results.
Missing textures are reconstructed well and seamlessly fused
with the existing textures. We found that using more than 8
dimensions does not result in a visible improvement of the
texture completion result.

Reducing the dimension further to 6 or 7 increases blurri-
ness. This is probably due to the fact that the reduced vectors
did not contain enough information for correct patches to be

found.

In the case where only 5 dimensions are retained, defor-
mations have started to appear due to the lack of information
required for correct patch detections.

Effect of Patch Size: Figure 4 demonstrates the dif-
ference in the result quality when varying the patch sizes.
We found that in most cases the ideal patch size is the
range of 7 and 11. Inpainted images in these cases are often
well-reconstructed. As the size of the patches increases, the
painted regions tend to become more blurry. This is probably
because the larger the patch size is, the more unrelated features
from surrounding regions are involuntarily taken into account
leading to less accurate patch to be selected. Patch sizes
smaller than 7 increase the computational cost while contribute
little improvement in term of the quality.

Fig. 4. Effect of patch sizes on the result quality.

B. Evaluation against Other Inpainting Methods

In this section, we evaluate the performance of our method
against some of the best known image inpainting methods
described in the literature (Figure 5).

Bertalmio’s method [1] was not very successful in this test.
It was able to reconstruct small parts of the missing regions

(near the boundary), but failed to interpolate textures further
for the middle regions resulting in patches with colours not
consistent with the regions neighborhood.

Telea’s method [3] outperformed Bertalmio’s method both
in term of the reconstruction quality and efficiency. However,
the inpainted regions appear very blurry and unrealistic. This
is expected as pixel-based methods were designed to tackle
only narrow missing regions.

Standard exemplar-based inpainting method (Criminisi [4])
performed reasonably well except for some anti-facts. These
anti-facts are caused by incorrect patches that were selected
as a result of employing the conventional Sum of Squared
Differences (SSD).

Our algorithm performed well in this test case. Although
the inpainted region still exhibits slight blurriness, the overall
structure of different scene components has been correctly
recovered.

V. CONCLUSION AND FUTURE WORK

We have presented a novel image inpainting algorithm for
synthesize large missing texture regions from digital images.
The results of this inpainting process is a new image in which
the deterioration has been “inpainted” and reverted in such a
way that few visible traces of it remain. The basic idea of
our approach is to replicate missing textures by looking for
“best-fit” texture patches in the source regions and smoothly
insert these patches into the missing region to produce the final
result.

Our solution offers two major improvements compared
to existing techniques. Patches for filling in missing regions
are found using an appearance space vector, which not only
encodes colour differences between regions, but also colour
gradients, feature distances and other measures for image
similarity. The second major improvement is the technique
used combine patches filling in a missing region. We use a
Poisson-guided interpolation to blend patche to avoid visible
seams.

We have evaluated our method’s performance against some
of the best known inpainting methods described in the litera-
ture and found that our results are superior.

REFERENCES

[1] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester, “Image inpaint-
ing,” In Proceeding SIGGRAPH ’00 Proceedings of the 27th annual
conference on Computer graphics and interactive techniques, pp. 417–
424, 2000.

[2] I. Drori, D. Cohen-Or, and H. Yeshurun, “Fragment-based image
completion,” ACM Transactions on Graphics, pp. 303–312, 2003.

[3] A. Telea, “An image inpainting technique based on the fast marching
method,” Journal of Graphics Tool, vol. 9, pp. 23–34, 2004.

[4] A. Criminisi, P. Perez, and K. Toyama, “Object removal by exemplar-
based inpainting,” ACM Transactions on Graphics, pp. 721–728, 2003.

[5] W.-H. Cheng, C.-W. Hsieh, S.-K. Lin, C.-W. Wang, and J.-L. Wu, “Ro-
bust algorithm for exemplar-based image inpainting,” In Proceedings of
CGIV, pp. 64–69, 2005.

[6] U. Ignecio and C. R. Jung, “Block-based image inpainting in the wavelet
domain,” Visual Computing, pp. 733–741, 2007.

[7] C. J, “A computational approach to edge detection,” in IEEE Trans.
Pattern Analysis and Machine Intelligence 1986, vol. 8, no. 6, 1986,
pp. 679–698.

[8] F. Manke and B. Wunsche, “Analysis of appearance space attributes
for texture synthesis and morphing,” Image and Vision Computing New
Zealand 2009, pp. 85–90, 2009.

[9] S. Lefebvre and H. Hoppe, “Appearance-space texture synthesis,” in
ACM SIGGRAPH 2006 Papers, 2006, pp. 541–548.

[10] P. Perez, M. Gangnet, and A. Blake, “Poisson image editing,” in ACM
Transactions on Graphics, vol. 22, no. 3, 2003, pp. 313–318.

Fig. 5. a) The input image. Image inpainting results obtained using the
algorithms from: (b) (Bertalmio et al. 2000), (c) (Telea et al. 2004), (d)
(Criminisi et al. 2003) and (e) our method.

