
Optimizing Queue-based Semi-Stream Joins
with Indexed Master Data

1M. Asif Naeem, 2Gerald Weber, 2Christof Lutteroth, and 2Gillian Dobbie

1School of Computer and Mathematical Sciences, Auckland University of Technology
2Department of Computer Science, The University of Auckland

1mnaeem@aut.ac.nz
2{gerald,christof,gill}@cs.auckland.ac.nz

Abstract. In Data Stream Management Systems (DSMS) semi-stream
processing has become a popular area of research due to the high de-
mand of applications for up-to-date information (e.g. in real-time data
warehousing). A common operation in stream processing is joining an in-
coming stream with disk-based master data, also known as semi-stream
join. This join typically works under the constraint of limited main mem-
ory, which is generally not large enough to hold the whole disk-based
master data. Many semi-stream joins use a queue of stream tuples to
amortize the disk access to the master data, and use an index to al-
low directed access to master data, avoiding the loading of unnecessary
master data. In such a situation the question arises which master data
partitions should be accessed, as any stream tuple from the queue could
serve as a lookup element for accessing the master data index. Existing
algorithms use simple safe and correct strategies, but are not optimal
in the sense that they maximize the join service rate. In this paper we
analyze strategies for selecting an appropriate lookup element, particu-
larly for skewed stream data. We show that a good selection strategy
can improve the performance of a semi-stream join significantly, both for
synthetic and real data sets with known skewed distributions.

Keywords: Real-time Data Warehousing, Stream processing; Join; Per-
formance measurement

1 Introduction

Real-time data warehousing plays a prominent role in supporting overall business
strategy. By extending data warehouses from static data repositories to active
data repositories, business organizations can better inform their users and make
effective timely decisions. In real-time data warehousing the changes occurring
at source level are reflected in data warehouses without any delay. Extraction,
Transformation, and Loading (ETL) tools are used to access and manipulate
transactional data and then load them into the data warehouse. An important
phase in the ETL process is a transformation where the source level changes are
mapped into the data warehouse format. Common examples of transformations

2 M. Asif Naeem et al.

are unit conversion, removal of duplicate tuples, information enrichment, filtering
of unnecessary data, sorting of tuples, and translation of source data keys.

A particular type of stream-based joins called semi-stream joins are required
to implement the above transformation examples. In this particular type of
stream-based join, a join is performed between a single stream and a slowly
changing table. In the application of real-time data warehousing [4, 9, 10], the
slowly changing table is typically a master data table while incoming real-time
sales data may form the stream.

Most stream-based join algorithms [9, 10, 7, 3, 2, 6, 5] use the concept of stag-
ing in order to amortize the expensive disk access cost over fast stream data.
The concept of staging means the algorithm loads stream data into memory in
chunks, while these chunks are differentiated by their loading timestamps. To
implement the concept of staging these algorithms normally use a data structure
called a queue. The main role of the queue is to keep track of these stages with
respect to their loading timestamps. Some of these algorithms [3, 2, 6, 5] use ele-
ments of the queue to look up and load relevant disk-based master data through
an index. In this paper we call these queue elements lookup elements.

Most of the above algorithms choose the oldest value of the queue as lookup
element. The process of choosing the oldest tuple in the queue is at first glance
intuitive: this tuple must be joined eventually to avoid starvation, and since it
was not processed before it is now due. Hence choosing the oldest tuple in the
queue ensures correctness. However, as we will show in this paper, this strategy
is not optimal with regard to join service rate. The optimal lookup element is
the element for which the most useful partition of master data is loaded into
memory, i.e. the partition which will join the most stream tuples currently in
the queue.

This paper addresses the challenge of finding near-optimal strategies for se-
lecting the lookup element. We have identified two eviction aims that influence
the choice of the stream tuple for master data lookup: 1) to maximize the ex-
pected number of stream tuples that are matched and hence removed from the
queue, and 2) to limit the cost (or lost opportunity) that a tuple incurs while
sitting in the queue. An important property of stream tuple behavior in our
context is the average frequency of matches to a whole master data partition,
i.e. the average number of tuples that is matched when the partition is loaded
from disk.

2 Related Work

In this section, we present an overview of the previous work that has been done
in the area of semi-stream joins, focusing on those that are closely related to our
problem domain.

A seminal algorithm MESHJOIN [9, 10] has been designed especially for join-
ing a continuous stream with disk-based master data, like in the scenario of active
data warehouses. The MESHJOIN algorithm is a hash join, where the stream
serves as the build input and the disk-based relation serves as the probe input.

Optimizing Queue-based Semi-Stream Joins with Indexed Master Data 3

A characteristic of MESHJOIN is that it performs a staggered execution of the
hash table build in order to load in stream tuples more steadily. To implement
this staggered execution the algorithm uses a queue. The algorithm makes no as-
sumptions about data distribution or the organization of the master data, hence
there is no master data index. The algorithm always removes stream tuples from
the end of the queue, as they have been matched with all master data partitions.

R-MESHJOIN (reduced Mesh Join) [7] clarifies the dependencies among the
components of MESHJOIN. As a result the performance is improved slightly.
However, R-MESHJOIN implements the same strategy as the MESHJOIN al-
gorithm for accessing the disk-based master data, using no index.

Partitioned Join [3] improved MESHJOIN by using a two-level hash table,
attempting to join stream tuples as soon as they arrive, and using a partition-
based wait buffer for other stream tuples. The number of partitions in the wait
buffer is equal to the number of partitions in the disk-based master data. The
algorithm uses these partitions as an index, for looking up the master data. If
a partition in a wait buffer grows larger than a preset threshold, the algorithm
loads the relevant partition from the master data into memory. The algorithm
allows starvation of stream tuples as tuples can stay in a wait buffer indefinitely
if the buffer’s size threshold is not reached.

Semi-Streaming Index Join (SSIJ) [2] was developed recently to join stream
data with disk-based data. In general, the algorithm is divided into three phases:
the pending phase, the online phase and the join phase. In the pending phase, the
stream tuples are collected in an input buffer until either the buffer is larger than
a predefined threshold or the stream ends. In the online phase, stream tuples
from the input buffer are looked up in cached disk blocks. If the required disk
tuple exists in the cache, the join is executed. Otherwise, the algorithm flushes
the stream tuple into a stream buffer. When the stream buffer is full, the join
phase starts where master data partitions are loaded from disk using an index
and joined until the stream buffer is empty. This means that as partitions are
loaded and joined, the join becomes more and more inefficient: partitions that
are joined later can potentially join only with fewer tuples because the stream
buffer is not refilled between partition loads. By keeping the stream buffer full
and selecting lookup elements carefully the performance could be improved.

One of our algorithms, HYBRIDJOIN [5], addresses the issue of accessing
disk-based master data efficiently. Similar to SSIJ, an index based strategy to
access the disk-based master data is used, but every master data partition load
is amortized by joining over a full stream tuple queue. HYBRIDJOIN uses the
last queue element as lookup element, which means that unlike Partitioned Join
it prevents starvation. However, as will be explained in this paper, the choice of
the last queue element as lookup element is suboptimal.

CACHEJOIN [6] is an extension of HYBRIDJOIN, which adds an additional
cache module to cope with Zipfian stream distributions. This is similar to Par-
titioned Join and SSIJ, but a tuple-level cache is used instead of a page-level
cache to use the cache memory more efficiently. CACHEJOIN is able to adapt
its cache to changing stream characteristics, but similar to HYBRIDJOIN, it

4 M. Asif Naeem et al.

uses the last queue element as a lookup element for tuples that were not joined
with the cache.

Recently, we presented an improved version of CACHEJOIN called SSCJ [8],
which optimizes the manipulation of master data tuples in the cache module.
While CACHEJOIN uses a random approach to overwrite tuples in the cache
when it is full, SSCJ overwrites the least frequent tuples. To the best of our
knowledge, the CACHEJOIN/SSCJ class of semi-stream join algorithms is cur-
rently the fastest when considering skewed data. SSCJ and CACHEJOIN use the
same suboptimal strategy to access the queue, and this can be improved with the
approach presented here. Due to space limitations we test this approach using
HYBRIDJOIN and CACHEJOIN only.

3 Problem Definition

This section defines the problem we are addressing, using the existing HYBRID-
JOIN algorithm as an example for clarification. HYBRIDJOIN has a simple
architecture, using a queue to load disk-based master data into memory, and is
therefore particularly suitable for illustration.

Disk buffer

. . .

p3

Input
 stream

Stream queue

Disk-based

 master data

p1

p2

p3

Stream

buffer

t1 t2 t3
tn

Lookup

element

Fig. 1. Overview of HYBRIDJOIN

Fig. 1 presents an overview of
HYBRIDJOIN. The master data
on disk contains three partitions,
p1, . . . , p3. Partitions are loaded
into memory through the disk
buffer, which can hold one par-
tition. In the original algorithm
the stream tuples are stored in a
hash table and the queue stores
pointers to these stream tuples.
To make our discussion clearer,
we will refer to the queue as if
the stream tuples are directly con-
tained therein, as our focus is
to highlight the behavior of the
queue. The queue is implemented as a doubly-linked list, allowing the random
deletion of stream tuples.

In each iteration the algorithm loads a chunk of stream tuples into the queue
and a partition of master data into the disk buffer. To decide which partition will
be loaded into the buffer, HYBRIDJOIN retrieves the oldest (i.e. last) element
of the queue and uses it as a lookup element in the index for the master data
table. Once the relevant partition is loaded into the disk buffer, the algorithm
performs a join between the master data tuples and stream tuples. During the
join operation the algorithm removes the matched stream tuples, which lie at
random positions, from the queue. With parameter skew some tuples occur more
frequently in the stream data. Consequently, there can be many matches of
stream tuples in the queue against one master data tuple.

Optimizing Queue-based Semi-Stream Joins with Indexed Master Data 5

For a master data partition, we define the stream probability as the probability
that a random stream tuple matches a master data record on that partition. If
the stream probability of a partition is at least 1/hS , with hS the size of the
queue in number of tuples, we call this a common partition. Among the common
partitions there are typically some high-probability partitions.

lo
a
d
 p

ro
b
a
b
il

it
y

stream probability

0 1/hS 1

0

(1,1)

0.5/hS

1/hS

1

Fig. 2. The load probability, shown as a func-
tion of the stream probability.

The purpose of queueing stream
tuples is to amortize a master
data partition access by process-
ing several stream tuples with it.
After a master data access, all the
hS stream tuples in the queue are
processed and potentially joined.
We define the load probability of a
master data partition as the prob-
ability that a random stream tu-
ple is used to load that partition,
i.e. that a lookup element matches
the master data partition. The
load probability of a partition is
smaller than its stream probabil-
ity because after a partition ac-
cess all the stream tuples match-
ing it are removed from the queue,
reducing the occurrence of lookup elements that match the partition. Due to the
amortization process over a queue of hS elements, the load probability is in fact
always smaller than 1/hS . After one lookup for a partition p, the earliest stream
tuple that can lead to a lookup of p has to be a fresh stream tuple from the same
page that enters the queue after the last lookup. Since HYBRIDJOIN uses the
oldest tuple of the queue as lookup element, before a partition is loaded again
after a join, new tuples matching that partition need to move all the way from
the beginning to the end of the queue. These stream tuples must therefore be
more than hS stream tuples after the last lookup.

Hence there is a saturation effect: If we look at partitions in order of in-
creasing stream probability, the load probability first is equal to the average
frequency, but can never go beyond 1/hS . We furthermore observe that for all
common partitions the load frequency will be close to, or larger than 1/(2hS),
since after one loookup of a partition, we expect the partition to be again among
the next hS stream tuples entering the queue. Hence we see that, interestingly,
the high-probability partitions are loaded not much more often than the com-
mon partitions. A qualitative illustration of how the load probability depends
on the stream probability is shown in Fig. 2.

It is important to realize that this behavior is not optimal. Although at first
glance it seems to optimally amortize disk accesses, this is not the case. For high-
probability partitions, a large number of matching stream tuples accumulate in
the queue before the partition is loaded again. This takes up space in the queue,

6 M. Asif Naeem et al.

therefore these tuples should be evicted earlier. Hence we have to reduce the
saturation effect for high-probability partitions, i.e. we have to ensure that high-
probability partitions are loaded more frequently.

4 Proposed Solution

We propose an improved strategy that reduces the saturation effect for high-
probability partitions by loading them more often, but not too often (which
would reduce the number of joins). We will now argue that we can ensure this by
adjusting the position of the lookup element, i.e. the position in the queue of the
stream tuple that is used to look up the master data partition to load next. It is
clear, however, that we have to retain the oldest queue tuple as a lookup element
for correctness reasons: we have to ensure that tuples that have come to this
position are eventually evicted. We therefore propose a strategy that alternates
between the last element of the queue for lookup and an earlier element. We now
discuss why for an earlier lookup element position, high-probability pages will
be loaded more often. We assume each stream tuple in the queue is annotated
with the frequency of matching of the master data partition.

Front Rear

Moving average for the matching frequencies

1

2

3

4

5

0 5 10 15 20 25 30 35 40 45 50

M
a

tc
h

in
g
 f

re
q
u

e
n

c
y

Position of join attribute values in the queue

Fig. 3. Queue analysis

In Fig. 3, we illustrate our ex-
pectation for the HYBRIDJOIN
strategy at an arbitrary point in
time; this is purely an illustra-
tion and is not intended to be
quantitatively correct. The cru-
cial point is that for each of the
high-frequency master data parti-
tions, the time of last lookup (ex-
pressed in stream tuples) was on
average half a queue length ago.
Therefore, the tuples of each of
these partitions will only have ad-
vanced a fraction of the queue, on
average half of the queue. This is
a random process, so at the start
of the queue, many frequent pages
will have started to reappear, and their prevalence diminishes towards the end of
the queue. The figure shows a made-up example where the queue contains join
attribute values of 50 stream tuples and the corresponding matching frequencies
lie between 1 and 5. We also have drawn a moving average for the corresponding
matching frequencies. Again, the shape of the moving average is only indicating
the tendency to drop towards the end of the queue; we do not consider its exact
shape here. The figure also illustrates that some of the tuples with corresponding
high matching frequencies will come through to the end of the queue. However,
HYBRIDJOIN accumulates the least frequent stream tuples towards the end of
the queue, where the lookup element is situated. The join attributes towards the

Optimizing Queue-based Semi-Stream Joins with Indexed Master Data 7

front 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% end
3000

4000

5000

6000

7000

8000

Position of index in the queue

S
er

vi
ce

 r
at

e
(t

up
le

s/
se

c)

Fig. 4. Performance analysis of HYBRIDJOIN by accessing the queue at different
positions

front of the queue have higher matching frequencies as compared to the older
stream tuples in the queue. Hence if any algorithm, such as HYBRIDJOIN or
CACHEJOIN, chooses only the oldest stream position at the end of the queue
as a lookup position, it will under-represent the high-probability pages, as we
have predicted in our considerations about the saturation effect.

With the introduction of a second lookup position earlier in the queue we
can therefore expect to hit high-probability pages more frequently. The second
lookup position will lead to a behavior different from the one in Fig. 3. The
front of the queue, i.e. the newest tuples, is not be the best position for the new
lookup element since it would over-represent high-probability pages; there would
be a high probability that the most frequent page gets loaded before new tuples
for that page had an opportunity to accumulate in the queue. As explained
previously, the algorithm will alternate between the two lookup positions, the
new position and the oldest element in the queue, as some tuples will remain in
the queue for a long time otherwise.

We used an empirical approach to find an optimal position for the new lookup
element and present the effect of the new lookup position on the performance
of HYBRIDJOIN. Again, HYBRIDJOIN is chosen because it is the simplest
algorithm this new approach can be applied to. We conducted an experiment
in which we measured the performance of the algorithm while varying the new
lookup position. We started with a lookup position at the front of the queue and
then moved it in 5% steps towards the end of the queue.

The results of our experiment are shown in Fig. 4. From the figure it can
be observed that a lookup element at the front of the queue is not optimal,
as we predicted, and as we move the lookup position away from the front the
performance starts improving. This behavior continues up to a certain fraction
of the queue length (about 30% of the queue size in our experiment, i.e. the

8 M. Asif Naeem et al.

index of the entry in the queue is approx. 0.3hs) and after that the throughput
starts to decrease again. We have validated this fraction of 30% with different
parameters and used it in in all the performance experiments described later on.

Given a certain index c · hs, 0 < c < 1 for the lookup position, one could
assume that a partition is loaded immediately if a corresponding tuple reaches
the new lookup position. Then the partition would be loaded 1/c times more
frequently as compared to a lookup position at the end of the queue. However,
tuples can “sneak through” as the lookup element at the end of the queue is used
alternatingly, effectively decreasing the load probability. The probability that a
tuple sneaks through is independent of the page. The expected distance that the
tuple can then move (this is c′ − c) is proportional to the stream probability.

5 Experiments

5.1 Setup

We performed our experiments on a Pentium-i5 with 8GB main memory and
500GB hard drive as secondary storage running Java. We compared the origi-
nal HYBRIDJOIN [5] and CACHEJOIN [6] algorithms with optimized versions
using the proposed approach, using the cost models presented with the original
algorithms to distribute the memory among their components. The master data
R was stored on disk using a MySQL database with an index.

The two algorithms retrieve master data using a lookup element from a
stream tuple queue. Choosing these two algorithms allows us to compare the
effects of near optimal lookup elements for algorithms with and without a cache
component. HYBRIDJOIN does not have a cache component so all stream tu-
ples are processed through the queue, while CACHEJOIN has an additional
cache module that processes the most frequent stream tuples. For this reason,
CACHEJOIN is considered an efficient algorithm in comparison to other semi-
stream-join algorithms [3, 2, 9, 10, 7]. We analyzed the service rates of all algo-
rithms using synthetic, TPC-H and real-life datasets.

Synthetic datasets: The stream datasets we used is based on a Zipfian
distribution, which can be found in a wide range of applications [1]. We tested
the service rate of the algorithms by varying the skew value from 0 (fully uniform)
to 1 (highly skewed). Details of the synthetic datasets are specified in Table 1.

TPC-H datasets: We also analyzed the service rates using the TPC-H
datasets, which is a well-known decision support benchmark. We created the
datasets using a scale factor of 100. More precisely, we used the table Customer

as master data and the table Order as the stream data. In table Order there
is one foreign key attribute custkey, which is a primary key in the Customer

table, so the two tables can be joined. Our Customer table contained 20 million
tuples, with each tuple having a size of 223 bytes. The Order table contained the
same number of tuples, with each tuple having a size of 138 bytes. The plausible
scenario for such a join is to add customer details corresponding to an order
before loading the order into the warehouse.

Optimizing Queue-based Semi-Stream Joins with Indexed Master Data 9

Table 1. Data specification of the synthetic datasets (similar to those used for the
original HYBRIDJOIN and CACHEJOIN algorithms)

Parameter Value

Total allocated memory M 50MB to 250MB

Size of disk-based relation R 0.5 million to 8 million tuples

Size of each disk tuple 120 bytes

Size of each stream tuple 20 bytes

Size of each node in the queue 12 bytes

Data set Based on Zipf’s law (exponent varies from 0 to 1)

Real-life datasets: We also compared the service rates of the algorithms
using a real-life datasets1. These datasets contains cloud information stored in
a summarized weather report format. The master data table is constructed by
combining meteorological data corresponding to the months April and August,
and the stream data by combining data files from December. The master data
table contains 20 million tuples and the stream data table contains 6 million
tuples. The size of each tuple in both the master data table and the stream data
table is 128 bytes. Both tables are joined using a common attribute, longitude
(LON). The domain of the join attribute is the interval [0,36000].

Measurement strategy: The performance or service rate of a join is mea-
sured by calculating the number of tuples processed in a unit second. In each
experiment, the algorithms first completed a warmup phase before starting the
actual measurements. These kinds of algorithms normally need a warmup phase
to tune their components with respect to the available memory resources, so
that each component can deliver a maximum service rate. The calculation of the
confidence intervals is based on 2000 to 3000 measurements for one setting. Dur-
ing the execution of the algorithm, no other application was running in parallel.
The stream arrival rate throughout a run was constant.

5.2 Performance evaluation

We identified three parameters for which we want to understand the behavior of
the algorithms. The three parameters are: the total memory available M , the size
of the master data table R, and the value of the parameter skew e in the stream
data. For the sake of brevity, we restrict the discussion for each parameter to a
one-dimensional variation, i.e. we vary one parameter at a time.

Performance comparisons for different memory budgets: In our first
experiment we tested the performance of all algorithms using different mem-
ory budgets while keeping the size of R fixed (2 million tuples). We increased
the available memory linearly from 50MB to 250MB. Fig. 5(a) presents the
comparisons of both approaches with and without implementing the optimal
lookup element strategy. From the figure the performance improvement in the
case of the both algorithms is clear. More concretely, in the case of Optimized

1 These datasets are available at: http://cdiac.ornl.gov/ftp/ndp026b/

10 M. Asif Naeem et al.

50 100 150 200 250
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

Allocated memory (MB)

S
er

vi
ce

 ra
te

 (t
up

le
s/

se
c)

Optimized CACHEJOIN
CACHEJOIN
Optimized HYBRIDJOIN
HYBRIDJOIN

(a) Size of allocated memory varies

0.5 1 2 4 8
0

1

2

3

4

5

6
x 10

4

Size of master data (tuples in millions)

S
er

vi
ce

 r
at

e
(t

up
le

s/
se

c)

Optimized CACHEJOIN
CACHEJOIN
Optimized HYBRIDJOIN
HYBRIDJOIN

(b) Size of master data on disk varies

0 0.25 0.5 0.75 1
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

4

Skew in stream data

S
er

vi
ce

 r
at

e
(t

up
le

s/
se

c)

Optimized CACHEJOIN
CACHEJOIN
Optimized HYBRIDJOIN
HJYBRIDJOIN

(c) Skew in stream data varies

1 2 3 4 5 6 7 8 9 10
0

2000

4000

6000

8000

10000

12000

14000

Allocated memory (in %age of R)

S
er

vi
ce

 ra
te

 (t
up

le
s/

se
c)

Optimized CACHEJOIN
CACHEJOIN
Optimized HYBRIDJOIN
HYBRIDJOIN

(d) TPC-H datasets

1 2 3 4 5 6 7 8 9 10
0

2000

4000

6000

8000

10000

12000

14000

Allocated memory (in %age of R)

S
er

vi
ce

 r
at

e
(t

up
le

s/
se

c)

Optimized CACHEJOIN
CACHEJOIN
Optimized HYBRIDJOIN
HYBRIDJOIN

(e) Real datasets

Fig. 5. Performance comparisons

HYBRIDJOIN the algorithm performed 3 times better than the original HY-
BRIDJOIN. Although the improvement is comparatively smaller in the case of
Optimal CACHEJOIN, it is still considerable. The reason the improvement is

Optimizing Queue-based Semi-Stream Joins with Indexed Master Data 11

smaller is the cache component that processes the most frequent part of the
stream data.

Performance comparisons for varying the size of R: In our second
experiment we tested the performance by varying the size of the disk-based
relation R. We chose values for R from a simple geometric progression. The
performance results are shown in Fig. 5(b). From the figure it can be seen that
Optimized HYBRIDJOIN performed more than twice as well as the original
HYBRIDJOIN. Also in the case of Optimized CACHEJOIN the performance
improved considerably.

Performance comparisons for different values of skew: In this ex-
periment we compared the service rates of both algorithms with and without
the optimal lookup element strategy while varying the skew in the stream data.
To vary the skew, we varied the Zipfian exponent from 0 to 1. At 0 the input
stream S has no skew, while at 1 the stream was strongly skewed. The size of
R was fixed at 2 million tuples and the available memory was set to 50MB.
The results presented in Fig. 5(c) show that both optimized algorithms (espe-
cially Optimized HYBRIDJOIN) performed significantly better than the existing
ones, even for only moderately skewed data. This improvement became more pro-
nounced for increasing skew values. At a skew of 1, Optimized HYBRIDJOIN
performs approximately 3 times better than the original HYBRIDJOIN. In the
case of Optimized CACHEJOIN the improvement was comparatively smaller
but is still noticeable. Our strategy does not add any overhead to the processing
cost, therefore in the case of fully uniform data, when the skew is equal to 0,
the performance is not worse than that of the original algorithms. We do not
present data for skew values larger than 1, which models short tails.

TPC-H datasets: In this experiment we measured the service rates pro-
duced by the algorithms at different memory settings. We allocated the size of
primary memory as a percentage of the size of R. The results are shown in
Fig. 5(d). From the figure it can be noted that the optimized versions of the
algorithms performed better than the original algorithms. Especially in the case
of Optimized HYBRIDJOIN this improvement is remarkable.

Real-life datasets: We also tested our approaches using real data. The
details of the datasets were presented in the beginning of this section. In this
experiment we also measured the service rate produced by the algorithms at
different memory settings, similar to the one using the TPC-H datasets. The
results are shown in Fig. 5(e). From the figure, the performance of the optimized
algorithms is again significantly better than that of the original algorithms, sup-
porting our argument.

6 Conclusions

Most semi-stream join algorithms amortize disk accesses to master data over a
queue of stream tuples in memory. Several of those algorithms use an index to
look up master data partitions for particular elements in that queue. We identi-
fied the choice of the lookup element, i.e. the queue stream tuple used as a key in

12 M. Asif Naeem et al.

such an index, as an important and underutilized issue for such algorithms. For
example, HYBIRDJOIN and CACHEJOIN always choose lookup elements from
the end of their queues. Because of that they under-represent high-probability
partitions of disk-based master data and do not fully exploit the characteristics
of skew in stream data, resulting in a suboptimal performance.

As a solution, we have proposed a new approach in this paper for choosing an
element for index-based master data lookup from a stream tuple queue, based
on the position of the lookup element in the queue. The approach alternates
between the last queue element to avoid starvation, and an intermediate queue
element, balancing the rate in which high-probability partitions are loaded. We
provided a theory for the improved behavior and validated it with experiments
using HYBIRDJOIN and CACHEJOIN, showing that the optimized algorithms
perform significantly better than the original ones.

References

1. Chris Anderson. The Long Tail: Why the Future of Business Is Selling Less of
More. Hyperion, 2006.

2. M.A. Bornea, A. Deligiannakis, Y. Kotidis, and V. Vassalos. Semi-streamed index
join for near-real time execution of ETL transformations. In ICDE ’11: IEEE 27th
International Conference on Data Engineering, pages 159 –170. IEEE Computer
Society, 2011.

3. Abhirup Chakraborty and Ajit Singh. A partition-based approach to support
streaming updates over persistent data in an active datawarehouse. In IPDPS ’09:
IEEE International Symposium on Parallel & Distributed Processing, pages 1–11.
IEEE Computer Society, 2009.

4. Alexandros Karakasidis, Panos Vassiliadis, and Evaggelia Pitoura. ETL queues for
active data warehousing. In IQIS ’05: 2nd International Workshop on Information
Quality in Information Systems, pages 28–39. ACM, 2005.

5. M. Asif Naeem, Gillian Dobbie, and Gerald Weber. HYBRIDJOIN for near-real-
time data warehousing. International Journal of Data Warehousing and Mining
(IJDWM), 7(4), 2011.

6. M Asif Naeem, Gillian Dobbie, and Gerald Weber. A lightweight stream-based
join with limited resource consumption. In DaWaK ’12: Data Warehousing and
Knowledge Discovery, pages 431–442. Springer, 2012.

7. M. Asif Naeem, Gillian Dobbie, Gerald Weber, and Shafiq Alam. R-MESHJOIN
for near-real-time data warehousing. In DOLAP ’10: ACM 13th International
Workshop on Data Warehousing and OLAP. ACM, 2010.

8. M. Asif Naeem, Gerald Weber, Gillian Dobbie, and Christof Lutteroth. SSCJ:
A semi-stream cache join using a front-stage cache module. In DaWaK ’13: 15th
International Conference on Data Warehousing and Knowledge Discovery, pages
236–247. Springer, 2013.

9. N. Polyzotis, S. Skiadopoulos, P. Vassiliadis, A. Simitsis, and N.E. Frantzell. Sup-
porting streaming updates in an active data warehouse. In ICDE ’07: 23rd Inter-
national Conference on Data Engineering, pages 476–485, 2007.

10. Neoklis Polyzotis, Spiros Skiadopoulos, Panos Vassiliadis, Alkis Simitsis, and Nils
Frantzell. Meshing streaming updates with persistent data in an active data ware-
house. IEEE Trans. on Knowl. and Data Eng., 20(7):976–991, 2008.

