
SSCJ: A Semi-Stream Cache Join using a
Front-Stage Cache Module

1M. Asif Naeem, 2Gerald Weber, 2Gillian Dobbie, and 2Christof Lutteroth

1School of Computing and Mathematical Sciences, Auckland University of Technology
2Department of Computer Science, The University of Auckland

Private Bag 92006, Auckland, New Zealand
1mnaeem@aut.ac.nz 2{gerald,gill,lutteroth}@cs.auckland.ac.nz

Abstract. Semi-stream processing has become an emerging area of re-
search in the field of data stream management. One common operation in
semi-stream processing is joining a stream with disk-based master data
using a join operator. This join operator typically works under limited
main memory and this memory is generally not large enough to hold
the whole disk-based master data. Recently, a number of semi-stream
join algorithms have been proposed in the literature to achieve an op-
timal performance but still there is room to improve the performance.
In this paper we propose a novel Semi-Stream Cache Join (SSCJ) using
a front-stage cache module. The algorithm takes advantage of skewed
distributions, and we present results for Zipfian distributions of the type
that appear in many applications. We analyze the performance of SSCJ
with a well known related join algorithm, HYBRIDJOIN (Hybrid Join).
We also provide the cost model for our approach and validate it with
experiments.

Keywords: Semi-stream processing; Stream-based join; Data warehous-
ing; Performance measurement

1 Introduction

Stream-based joins are important operations in modern system architectures,
where just-in-time delivery of data is expected. We consider a particular class
of stream-based join, a semi-stream join that joins a single stream with a slowly
changing table. Such a join can be applied in real-time data warehousing [6, 4].
In this application, the slowly changing table is typically a master data table.
Incoming real-time sales data may comprise the stream. The stream-based join
can be used for example to enrich the stream data with master data. In this
work we only consider one-to-many equijoins, as they appear between foreign
keys and the referenced primary key in another table.

For executing stream-based operations, the large capacity of current main
memories as well as the availability of powerful cloud computing platforms
means, that considerable computing resources can be utilized. For master data
of the right size for example, main-memory algorithms can be used.

2 M. Asif Naeem et al.

However, there are several scenarios, where stream joins that use a minimum
of resources are needed. One particular scenario is an organization trying to
reduce the carbon footprint of the IT infrastructure. A main memory approach
as well as cloud-computing approaches can be power-hungry. Also in the area of
mobile computing and embedded devices a low-resource consumption approach
can be advantageous. Therefore, approaches that can work with limited main
memory are of interest.

In the past, the algorithm HYBRIDJOIN (Hybrid Join) [7] was proposed
for joining a stream with a slowly changing table with limited main memory
requirements. This algorithm is an interesting candidate for a resource aware
system setup. The key objective of this algorithm is to amortize the fast input
stream with the slow disk access within limited memory budget and to deal with
the bursty nature of the input data stream. Further details about HYBRIDJOIN
are presented in Section 3.

Although the HYBRIDJOIN algorithm amortizes the fast input stream us-
ing an index-based approach to access the disk-based relation and can deal with
bursty streams, the performance can still be improved if some characteristics
of stream data are taken into consideration. We are looking for characteristics
of data that are considered ubiquitous in real world scenarios. A Zipfian dis-
tribution of the foreign keys in the stream data matches distributions that are
observed in a wide range of applications [1]. We therefore created a data gen-
erator that can produce such a Zipfian distribution. A Zipfian distribution is
parameterized by the exponent of the underlying power law. In different scenar-
ios, different exponents are observed, and determine whether the distribution
is considered to have a short tail or a long tail. Distributions with a short tail
would be more favourable for SSCJ from the outset, therefore we decided not to
use a distribution with a short tail in order to not bias our experiment towards
SSCJ. Instead we settled on a natural exponent that is observed in a variety
of areas, including the original Zipf’s Law in linguistics [5] that gave rise to
the popular name of these distributions. The main result of our analysis is that
SSCJ performs better on a skewed dataset that is synthetic, but following a Zip-
fian distribution as is found frequently in practice. For our analysis we do not
consider joins on categorical attributes in master data, e.g. we do not consider
equijoins solely on attributes such as gender.

The rest of the paper is structured as follows. Section 2 presents related
work. In Section 3 we describe our observations about HYBRIDJOIN. Section 4
describes the proposed SSCJ with its execution architecture and cost model.
Section 5 describes an experimental analysis of SSCJ. Finally, Section 6 concludes
the paper.

2 Related Work

In this section, we present an overview of the previous work that has been done
in this area, focusing on those which are closely related to our problem domain.

A Semi-Stream Cache Join 3

A seminal algorithm Mesh Join (MESHJOIN) [9, 10] has been designed espe-
cially for joining a continuous stream with a disk-based relation, like the scenario
in active data warehouses. The MESHJOIN algorithm is a hash join, where the
stream serves as the build input and the disk-based relation serves as the probe
input. A characteristic of MESHJOIN is that it performs a staggered execution
of the hash table build in order to load in stream tuples more steadily. The al-
gorithm makes no assumptions about data distribution and the organization of
the master data. The MESHJOIN authors report that the algorithm performs
worse with skewed data.

R-MESHJOIN (reduced Mesh Join) [8] clarifies the dependencies among
the components of MESHJOIN. As a result the performance has been im-
proved slightly. However, R-MESHJOIN implements the same strategy as in
the MESHJOIN algorithm for accessing the disk-based relation.

One approach to improve MESHJOIN has been a partition-based join algo-
rithm [3], which can also deal with stream intermittence. It uses a two-level hash
table in order to attempt to join stream tuples as soon as they arrive, and uses
a partition-based waiting area for other stream tuples. For the algorithm in [3],
however, the time that a tuple is waiting for execution is not bounded. We are
interested in a join approach where there is a time guarantee for when a stream
tuple will be joined.

Another recent approach, Semi-Streaming Index Join (SSIJ) [2] joins stream
data with disk-based data. SSIJ uses page level cache i.e. stores the entire disk
pages in cache. It is possible that not all the tuples in these pages are frequent
in the stream and as a result the algorithm can perform suboptimally. Also the
authors do not include the mathematical cost model for the algorithm.

3 Problem Definition

To clarify our observations, we present the HYBRIDJOIN algorithm in detail
and at the end of this section we formulate an argument that we focus on in this
paper.

A semi-stream join algorithm, HYBRIDJOIN, was based on two objectives.
The first objective was to amortize the disk I/O cost over the fast input data
stream more effectively by introducing an index-based approach to access the
disk-based relation R. The second objective was to deal with the bursty nature of
a data stream effectively. An abstract level working overview of HYBRIDJOIN
is presented in Figure 1 where we consider m partitions in the queue to store
stream tuples and n pages in disk-based relation R. In order to keep it simple,
currently, we assume that the stream tuples are stored in a queue rather than in
a hash table and the join is directly performed with the queue. The disk buffer
is used to load one disk page into memory.

The key to HYBRIDJOIN is that, for each iteration the algorithm reads
the oldest tuple from the queue and using that tuple as an index it loads the
relevant disk page into the disk buffer. After loading the disk page into memory,
the algorithm matches each tuple on the disk page with the stream tuples in the

4 M. Asif Naeem et al.

Disk buffer

Join operator

Disk-based relation

p1

Queue

t2 t1. . . t3tm

p1

p2

…..
pn

Fig. 1. HYBRIDJOIN working overview
Fig. 2. Current market sales (on log-
log scale)

queue. When a match is found, the algorithm generates a tuple as an output
after deleting it from the queue. In the next iteration, the algorithm again reads
stream input, extracts the oldest element from the queue, loads the relevant disk
page into the disk buffer and repeats the entire procedure.

Although HYBRIDJOIN accesses R using an index reducing the I/O cost
as compared to the other approaches, described in Section 2, if we analyse the
current market sales then we observe that I/O cost can also be minimized further,
ultimately improving the performance. To elaborate, we consider a benchmark
which is based on current market sales based on the 80/20 rule [1]. According
to this rule, 20 percent of products account for 80 percent of revenues and even
in that 20 percent only a small number of products are sold very frequently.
This rule can be implemented using Zipf’s law with an exponent value equal to
1. The graphical representation of the benchmark is shown in Figure 2. From
the figure it can be observed that the frequency of selling a small number of
products is significantly higher compared to the rest of the products. Therefore,
in the stream that propagates toward the warehouse, most of the tuples need
to join with a small number of records on disk again and again. Currently the
HYBRIDJOIN algorithm does not consider this feature and loads the pages from
the disk frequently. Consider the reduction in I/O costs, if these pages can be
held permanently in memory.

4 Semi-Stream Cache Join (SSCJ)

In this paper, we propose a new algorithm, SSCJ, which overcomes the issues
stated above. This section presents a detailed description of SSCJ and its cost
model.

4.1 Execution Architecture

The SSCJ algorithm possesses two complementary hash join phases, somewhat
similar to Symmetric Hash Join. One phase uses R as the probe input; the
largest part of R will be stored in tertiary memory. We call it the disk-probing

A Semi-Stream Cache Join 5

phase. The other join phase uses the stream as the probe input, but will deal
only with a small part of relation R. We call it the stream-probing phase. For
each incoming stream tuple, SSCJ first uses the stream-probing phase to find a
match for frequent requests quickly, and if no match is found, the stream tuple
is forwarded to the disk-probing phase.

The execution architecture for SSCJ is shown in Figure 3. The largest com-
ponents of SSCJ with respect to memory size are two hash tables, one storing
stream tuples denoted by HS and the other storing tuples from the disk-based
relation denoted by HR. The other main components of SSCJ are a disk buffer,
a queue, a frequency recorder, and a stream buffer. Relation R and stream S are
the external input sources. Hash table HR contains the most frequently accessed
tuples of R and is stored permanently in memory. SSCJ alternates between
stream-probing and disk-probing phases. According to the procedure described
above, the hash table HS is used to store only that part of the stream which does
not match tuples in HR. A stream-probing phase ends if HS is completely filled
or if the stream buffer is empty. Then the disk-probing phase becomes active.
The length of the disk-probing phase is determined by the fact that a few disk
partitions (or disk blocks) of R have to be loaded at a time in order to amortize
the costly disk access. In the disk-probing phase of SSCJ, the oldest tuple in the
queue is used to determine the partition of R that is loaded for a single probe
step. In this way, in SSCJ it is guaranteed that every stream tuple loaded in
memory will be processed in a certain time period. This is the step where SSCJ
needs an index on table R in order to find the partition in R that matches the
oldest stream tuple. However, a non-clustered index is sufficient, if we consider
equijoins on a foreign key element that is stored in the stream. After one disk-
probing phase, a number of stream tuples are deleted from HS , so the algorithm
switches back to the stream-probing phase. One phase of stream-probing with a
subsequent phase of disk-probing constitutes one outer iteration of SSCJ.

Output
.

. . .

Disk-based

master data

R

If not matched

Disk buffer

Stream

 buffer

tm t1
Queue

Hash

function

Hash table (HR)

contains frequent

disk tuples

Hash table (HS)

contains stream

If matched

t3 t2

Stream

S

Hash

function

mapping

Stream-probing

phase
Disk-probing

phase

If frequency ≥ threshold value,

switch this tuple to HR.

Frequency

recorder

Fig. 3. Execution architecture of SSCJ

The stream-probing phase is
used to boost the performance of
the algorithm by quickly match-
ing the most frequent master
data. For determining very fre-
quent tuples in R and loading
them into HR, the frequency de-
tection process is required. This
process tests whether the match-
ing frequency of the current tuple
is larger than a pre-set threshold.
If it is, then this tuple is entered
into HR. If there are no empty
slots in HR the algorithm overwrites an existing least frequent tuple in HR.
This least frequent tuple is determined by the component frequency recorder.
The question of where to set the threshold arises, i.e. how frequently must a
stream tuple be used in order to get into this phase, so that the memory sac-

6 M. Asif Naeem et al.

Table 1. Notations used in cost estimation of SSCJ

Parameter name Symbol

Number of stream tuples processed in each iteration through HR wN

Number of stream tuples processed in each iteration through HS wS

Disk tuple size (bytes) vR
Disk buffer size (tuples) d
Size of HR (tuples) hR

Size of HS (tuples) hS
Memory weight for the hash table α
Memory weight for the queue 1 − α
Cost to look-up one tuple in the hash table (nano secs) cH
Cost to generate the output for one tuple (nano secs) cO
Cost to remove one tuple from the hash table and the queue (nano secs) cE
Cost to read one stream tuple into the stream buffer (nano secs) cS
Cost to append one tuple in the hash table and the queue (nano secs) cA
Cost to compare the frequency of one disk tuple with the specified thresh-
old value (nano secs)

cF

Total cost for one loop iteration (secs) cloop

rificed for this phase really delivers a performance advantage. The threshold is
a flexible barrier. Initially, an appropriate value is assigned to it while later on
this value can be varied up and down depending on available size of HR and
the rate of matching the disk tuples in the disk buffer. The disk buffer stores
the swappable part of R and for each iteration it loads a particular partition
of R into memory. The other component queue is used to store the values for
the join attribute. The main purpose of the queue is to keep the record of each
stream tuple in memory with respect to time. The stream buffer is included in
the diagram for completeness, but is in reality always a tiny component and it
will not be considered in the cost model.

4.2 Cost Model

In this section we develop the cost model for our proposed SSCJ. The cost
model presented here follows the style used for HYBRIDJOIN and MESHJOIN.
Equation 1 represents the total memory used by the algorithm (except the stream
buffer), and Equation 2 describes the processing cost for each iteration of the
algorithm. The notations we used in our cost model are given in Table 1.

Memory cost: The major portion of the total memory is assigned to the
hash table HS together with the queue while a comparatively much smaller
portion is assigned to HR, the frequency detector, and the disk buffer. The
memory for each component can be calculated as follows:
Memory for the disk buffer (bytes)= d · vR
Memory for HR (bytes)=hR · vR
Memory for frequency recorder (bytes)=8hR
Memory for HS (bytes)=α(M − d · vR − hR · vR − 8hR)
Memory for the queue (bytes) = (1 − α)(M − d · vR − hR · vR − 8hR)

A Semi-Stream Cache Join 7

By aggregating the above, the total memory M for SSCJ can be calculated as
shown in Equation 1.

M = d·vR+hR·vR+8hR+α(M−d·vR−hR·vR−8hR)+(1−α)(M−d·vR−hR·vR−8hR)
(1)

Currently, the memory for the stream buffer in not included because it is small
(0.05 MB is sufficient in our experiments).

Processing cost: In this section we calculate the processing cost for the
algorithm. To make it simple we first calculate the processing cost for individual
components and then sum these costs to calculate the total processing cost for
one iteration.
Cost to load d tuples from disk to the disk buffer (nanosecs)=cI/O(d)
Cost to look-up wN tuples in HR (nanosecs)=wN · cH
Cost to look-up disk buffer tuples in HS (nanosecs)=d · cH
Cost to compare the frequency of all the tuples in disk buffer with the threshold
value (nanosecs)=d · cF
Cost to generate the output for wN tuples (nanosecs)=wN · cO
Cost to generate the output for wS tuples (nanosecs)=wS · cO
Cost to read the wN tuples from the stream buffer (nanosecs)=wN · cS
Cost to read the wS tuples from the stream buffer (nanosecs)=wS · cS
Cost to append wS tuples into HS and the queue (nanosecs)=wS · cA
Cost to delete wS tuples from HS and the queue (nanosecs)=wS · cE
By aggregating the above costs the total cost of the algorithm for one iteration
can be calculated using Equation 2.

cloop(secs) = 10−9[cI/O(d)+d(cH+cF)+wS(cO+cE+cS+cA)+wN (cH+cO+cS)]
(2)

Since in cloop seconds the algorithm processes wN and wS tuples of the stream
S, the service rate µ can be calculated using Equation 3.

µ =
wN + wS

cloop
(3)

In fact, based on the cost model we tuned SSCJ to a provably optimal dis-
tribution of memory between the two phases, and the components within the
phases1.

5 Performance Experiments

5.1 Experimental Setup

Hardware specification: We performed our experiments on a Pentium-core-
i5 with 8GB main memory and 500GB hard drive as secondary storage. We
implemented our experiments in Java using the Eclipse IDE. The relation R is
stored on disk using a MySQL database.

1 Due to the page limit we are unable to include the tuning of SSCJ in the paper.

8 M. Asif Naeem et al.

Table 2. Data specification

Parameter value

Size of disk-based relation R 100 million tuples (≈11.18GB)

Total allocated memory M 1% of R (≈0.11GB) to 10% of R (≈1.12GB)

Size of each disk tuple 120 bytes (similar to HYBRIDJOIN)

Size of each stream tuple 20 bytes (similar to HYBRIDJOIN)

Size of each node in the queue 12 bytes (similar to HYBRIDJOIN)

Measurement strategy: The performance or service rate of the join is
measured by calculating the number of tuples processed in a unit second. In each
experiment both algorithms first complete their warm-up phase before starting
the actual measurements. These kinds of algorithms normally need a warm-up
phase to tune their components with respect to the available memory resources
so that each component can deliver maximum performance. In our experiments,
for each measurement we calculate the confidence interval by considering 95%
accuracy, but sometimes the variation is very small.

Synthetic data: The stream dataset we used is based on the Zipfian distri-
bution. We test the performance of all the algorithms by varying the skew value
from 0 (fully uniform) to 1 (highly skewed). The detailed specifications of our
synthetic dataset are shown in Table 2.

TPC-H: We also analyze the performance of all the algorithms using the
TPC-H dataset which is a well-known decision support benchmark. We create
the datasets using a scale factor of 100. More precisely, we use table Customer as
our master data table and table Order as our stream data table. In table Order

there is one foreign key attribute custkey which is a primary key in Customer

table. So the two tables are joined using attribute custkey. Our Customer table
contains 20 million tuples while the size of each tuple is 223 bytes. On the other
hand Order table also contains the same number of tuples with each tuple of
138 bytes.

Real-life data: Finally, we also compare the performance of all the algo-
rithms using a real-life dataset2. This dataset basically contains cloud informa-
tion stored in summarized weather reports format. The same dataset was also
used with the original MESHJOIN. The master data table contains 20 million
tuples, while the streaming data table contains 6 million tuples. The size of each
tuple in both the master data table and the streaming data table is 128 bytes.
Both the tables are joined using a common attribute, longitude (LON), and
the domain for the join attribute is the interval [0,36000].

5.2 Performance Evaluation

In this section we present a series of experimental comparisons between SSCJ
and HYBRIDJOIN using synthetic, TPC-H, and real-life data. In order to un-
derstand the difference between the algorithms better, we include two other

2 This dataset is available at: http://cdiac.ornl.gov/ftp/ndp026b/

A Semi-Stream Cache Join 9

algorithms. First we include MESHJOIN, which is a seminal algorithm in the
field that serves as a benchmark for semi-stream joins. Then we include R-
MESHJOIN, which is a slight modification of MESHJOIN. It introduces an
additional degree of freedom for the optimization of MESHJOIN.

In our experiments we perform three different analyses. In the first analysis,
we compare service rate, produced by each algorithm, with respect to the ex-
ternally given parameters. In the second analysis, we present time comparisons,
both processing and waiting time, for all four approaches. Finally, in our last
analysis we validate our cost models for each of the algorithm.

External parameters: We identify three parameters, for which we want
to understand the behavior of the algorithms. The three parameters are: the
total memory available M , the size of the master data table R, and the skew
in the stream data. For the sake of brevity, we restrict the discussion for each
parameter to a one dimensional variation, i.e. we vary one parameter at a time.

Analysis by varying size of memory M: In our first experiment we compare
the service rate produced by all four algorithms by varying the memory size
M from 1% to 10% of R while the size of R is 100 million tuples (≈11.18GB).
We also fix the skew value equal to 1 for all settings of M . The results of our
experiment are presented in Figure 4(a). From the figure it can be noted that
SSCJ performs up to 4.5 times faster than HYBRIDJOIN in the case of a 10%
memory setting. While in the case of a limited memory environment (1% of
R) SSCJ still performs up to 3 times better than HYBRIDJOIN making it
an adaptive solution for memory constraint applications. SSCJ also performs
significantly better than both R-MESHJOIN and MESHJOIN.

Analysis by varying size of R: In this experiment we compare the service
rate of SSCJ with the other three algorithms at different sizes of R under fixed
memory size, ≈1.12GB. We also fix the skew value equal to 1 for all settings of
R. The results of our experiment are shown in Figure 4(b). From the figure it
can be seen that SSCJ performs up to 3 times better than HYBRIDJOIN under
all settings of R. On the other hand if we compare the performance of SSCJ
with MESHJOIN and R-MESHJOIN, it also performs significantly better than
both of the algorithms under all settings of R.

Analysis by varying skew value: In this experiment we compare the service
rate of all the algorithms by varying the skew value in the streaming data. To
vary the skew, we vary the value of the Zipfian exponent. In our experiments we
allow it to range from 0 to 1. At 0 the input stream S is completely uniform while
at 1 the stream has a larger skew. We consider the sizes of two other parame-
ters, memory and R, to be fixed. The size of R is 100 million tuples (≈11.18GB)
while the available memory is set to 10% of R (≈1.12GB). The results presented
in Figure 4(c) show that SSCJ again performs significantly better among all
approaches even for only moderately skewed data. Also this improvement be-
comes more pronounced for increasing skew values in the streaming data. At
skew value equal to 1, SSCJ performs about 3 times better than HYBRIDJOIN.
Contrarily, as MESHJOIN and R-MESHJOIN do not exploit the data skew in
their algorithms, their service rates actually decrease slightly for more skewed

10 M. Asif Naeem et al.

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Allocated memory in %age of R

Se
rv

ic
e

ra
te

 (t
up

le
s/s

ec
)

SSCJ
HYBRIDJOIN
R−MESHJOIN
MESHJOIN

(a) Size of allocated memory varies

20 40 60 80 100
0

2

4

6

8

10

12

x 10
4

Size of R (in million tuples)

Se
rv

ic
e r

at
e (

tu
pl

es
/se

c)

SSCJ
HYBRIDJOIN
R−MESHJOIN
MESHJOIN

(b) Size of relation on disk varies

0 0.25 0.5 0.75 1
0

0.5

1

1.5

2

2.5

3

3.5

x 10
4

Skew

Se
rv

ice
 ra

te
(tu

ple
s/s

ec
)

SSCJ
HYBRIDJOIN
R−MESHJOIN
MESHJOIN

(c) Skew in data stream varies

1 2 3 4 5 6 7 8 9 10
0

2000

4000

6000

8000

10000

12000

Allocated memory in %age of R

Se
rv

ice
 ra

te
(tu

pl
es

/se
c)

SSCJ
HYBRIDJOIN
R−MESHJOIN
MESHJOIN

(d) TPC-H dataset

1 2 3 4 5 6 7 8 9 10
0

2000

4000

6000

8000

10000

12000

14000

Allocated memory in %age of R

Se
rv

ic
e

ra
te

 (t
up

le
s/

se
c)

SSCJ
HYBRIDJOIN
R−MESHJOIN
MESHJOIN

(e) Real-life dataset

Fig. 4. Performance analysis

data, which is consistent to the original algorithms findings. We do not present
data for skew value larger than 1, which would imply short tails. However, we
predict that for such short tails the trend continues. SSCJ performs slightly
worse than MESHJOIN and R-MESHJOIN only in a case when the stream data
is completely uniform. In this particular case the stream-probing phase does not
contribute considerably while on the other hand random access of R influences
the seek time.

TPC-H and real-life datasets: We also compare the service rate of all the
algorithms using TPC-H and real-life datasets. The details of both datasets
have already been described in Section 5.1. In both experiments we measure

A Semi-Stream Cache Join 11

20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

18

20

Size of R (million tuples)

Pr
oc

es
si

ng
 ti

m
e

(m
in

ut
es

)

SSCJ
HYBRIDJOIN
R−MESHJOIN
MESHJOIN

(a) Processing time

125 250 500 1000 2000 4000 8000 16000
10

1

10
2

10
3

10
4

10
5

Stream arrival rate (tuples/sec)

W
ai

tin
g

tim
e

(m
ill

is
ec

on
ds

)

SSCJ
HYBRIDJOIN
R−MESHJOIN
MESHJOIN

(b) Waiting time

Fig. 5. Time analysis

the service rate produced by all four algorithms at different memory settings.
The results of our experiments using TPC-H and real-life datasets are shown in
Figures 4(d) and 4(e) respectively. From both figures it can be noted that the
service rate in case of SSCJ is remarkably better among all three approaches.

Time analysis: A second kind of performance parameter besides service rate
refers to the time an algorithm takes to process a tuple. In this section, we analyze
both waiting time and processing time. Processing time is an average time that
every stream tuple spends in the join window from loading to matching without
including any delay due to a low arrival rate of the stream. Waiting time is the
time that every stream tuple spends in the stream buffer before entering into the
join module. The waiting times were measured at different stream arrival rates.

1 2 3 4 5 6 7 8 9 10
0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

0.07

Allocated memory in %age of R

Pr
oc

es
si

ng
 c

os
t (

se
co

nd
s)

SSCJ calculated
SSCJ measured
HYBRIDJOIN calculated
HYBRIDJOIN measured
R−MESHJOIN calculated
R−MESHJOIN measured
MESHJOIN calculated
MESHJOIN measured

Fig. 6. Cost validation

The experiment, shown in Figure 5(a), presents
the comparisons with respect to the processing
time. From the figure it is clear that the process-
ing time in case of SSCJ is significantly smaller
than the other three algorithms. This difference
becomes even more pronounced as we increase the
size of R. The plausible reason for this is that in
SSCJ a big part of stream data is directly pro-
cessed through the stream-probing phase without
joining it with the whole relation R in memory.

In the experiment shown in Figure 5(b) we compare the waiting time for
each of the algorithms. It is obvious from the figure that the waiting time in the
case of SSCJ is significantly smaller than the other three algorithms. The reason
behind this is that in SSCJ since there is no constraint to match each stream
tuple with the whole of R, each disk invocation is not synchronized with the
stream input.

Cost analysis: The cost models for all the algorithms have been validated
by comparing the calculated cost with the measured cost. Figure 6 presents the
comparisons of both costs for each algorithm. The results presented in the figure
show that for each algorithm the calculated cost closely resembles the measured
cost, which proves the correctness of our cost models.

12 M. Asif Naeem et al.

6 Conclusions

In this paper we propose a new semi-stream-based join called SSCJ and we
compare it with HYBRIDJOIN and other earlier well-known semi-stream join
algorithms. SSCJ is designed to make use of skewed, non-uniformly distributed
data as found in real-world applications. In particular we consider a Zipfian dis-
tribution of foreign keys in the stream data. Contrary to HYBRIDJOIN, SSCJ
stores these most frequently accessed tuples of R permanently in memory saving
a significant disk I/O cost and accelerating the performance of the algorithm.
We have derived a cost model for the new algorithm and validated it with ex-
periments. We have provided an extensive experimental study showing an im-
provement of SSCJ over the earlier HYBRIDJOIN and other related algorithms.

References

1. Chris Anderson. The Long Tail: Why the Future of Business Is Selling Less of
More. Hyperion, 2006.

2. M.A. Bornea, A. Deligiannakis, Y. Kotidis, and V. Vassalos. Semi-streamed index
join for near-real time execution of ETL transformations. In IEEE 27th Interna-
tional Conference on Data Engineering (ICDE’11), pages 159 –170, April 2011.

3. Abhirup Chakraborty and Ajit Singh. A partition-based approach to support
streaming updates over persistent data in an active datawarehouse. In IPDPS ’09:
Proceedings of the 2009 IEEE International Symposium on Parallel & Distributed
Processing, pages 1–11, Washington, DC, USA, 2009. IEEE Computer Society.

4. Alexandros Karakasidis, Panos Vassiliadis, and Evaggelia Pitoura. ETL queues
for active data warehousing. In IQIS ’05: Proceedings of the 2nd International
Workshop on Information Quality in Information Systems, pages 28–39, New York,
NY, USA, 2005. ACM.

5. Donald E. Knuth. The art of computer programming, volume 3: (2nd ed.) sorting
and searching. Addison Wesley Longman Publishing Co., Inc., Redwood City, CA,
USA, 1998.

6. M. Asif Naeem, Gillian Dobbie, and Gerald Weber. An event-based near real-
time data integration architecture. In EDOCW ’08: Proceedings of the 2008 12th
Enterprise Distributed Object Computing Conference Workshops, pages 401–404,
Washington, DC, USA, 2008. IEEE Computer Society.

7. M. Asif Naeem, Gillian Dobbie, and Gerald Weber. HYBRIDJOIN for near-real-
time data warehousing. International Journal of Data Warehousing and Mining
(IJDWM), 7(4):21–42, 2011.

8. M. Asif Naeem, Gillian Dobbie, Gerald Weber, and Shafiq Alam. R-MESHJOIN
for near-real-time data warehousing. In DOLAP’10: Proceedings of the ACM 13th
International Workshop on Data Warehousing and OLAP, Toronto, Canada, 2010.
ACM.

9. N. Polyzotis, S. Skiadopoulos, P. Vassiliadis, A. Simitsis, and N.E. Frantzell. Sup-
porting streaming updates in an active data warehouse. In ICDE 2007: Proceedings
of the 23rd International Conference on Data Engineering, pages 476–485, Istan-
bul, Turkey, 2007.

10. Neoklis Polyzotis, Spiros Skiadopoulos, Panos Vassiliadis, Alkis Simitsis, and Nils
Frantzell. Meshing streaming updates with persistent data in an active data ware-
house. IEEE Trans. on Knowl. and Data Eng., 20(7):976–991, 2008.

