
OpenID and the Enterprise:
A Model-based Analysis of Single Sign-On Authentication

Jacob Bellamy-McIntyre, Christof Lutteroth, Gerald Weber
Department of Computer Science

University of Auckland
Auckland, New Zealand

jbel071@aucklanduni.ac.nz, {gerald,christof}@cs.auckland.ac.nz

Abstract—Single sign-on (SSO) protocols allow one person
to use the same login credentials for several organizations.
Enterprises face increasing competitive pressure to position
themselves with regard to SSO, yet the ramifications of a move
to SSO are not fully understood. In this paper we discuss
OpenID, a relatively new SSO protocol that is gaining traction
on the web. We apply enterprise application modelling tech-
niques to OpenID in order to obtain well-founded decision aids
for enterprises: we show how published modelling approaches
can be used to analyse risks in OpenID, and show that these
can identify security problems with common OpenID practice.
Finally, we propose analysis principles that condense important
general insights of authentication modelling.

Keywords-SSO; Authentication; OpenID; Models

I. INTRODUCTION

Security has long been seen as an implementation issue

that is technology specific. However, in the modern Internet

society, where social change influences security relevant

user behavior, it is the duty of the enterprise analyst to

provide high level guidance on security aspects. Single sign-

on (SSO) is a class of protocols or technologies that enable

users to take their web identity to a large number of sites

that they are working with. For enterprises it becomes a

strategic goal to be part of an SSO scheme with other sites

in order to satisfy customer demands. Likewise, universities

are also beginning to implement SSO for reasons of research

facilitation and student satisfaction.

However, IT security is a mission-critical issue for or-

ganizations. Negligence can lead to serious consequences

for users, and bring on legal ramifications that damage

an organization. Hence enterprise decision makers need

precise risk assessments in the language of the enterprise.

If enterprise modelling wants to live up to its potential, we

need a framework that can deliver strong statements on the

level of the enterprise model while still being based on an

understanding of the technology. The latter means again that

we need models, but on a lower, platform-dependent level. A

model-driven approach is needed, where models on different

levels can be balanced and compared. We believe this to be

a more appropriate approach for Enterprise decision makers

than heavy formalisms such as BAN logic [1].

In this paper, we address both the big and the small

picture. We give an exemplary analysis of OpenID [2], a

protocol that was evaluated for deployment at the University

of Auckland, and we derive general lessons from this anal-

ysis. The OpenID case study serves as a proof by example

that model-driven security analysis is possible. It shows

that in the security domain, platform-specific models of a

technology have a strong impact on the validity of higher-

level models of an enterprise because of the existence of

common security threats.

We are framing our findings as principles that help in the

identification of security risks and clarify the relationship be-

tween different modelling layers. Based on these principles

we identify existing vulnerabilities in the OpenID protocol

which have been discussed elsewhere [3]. In a field study we

evaluate how widespread these vulnerabilities are, with the

finding that they are fairly common and pose a credible risk

if OpenID-based systems become a valuable target. We feed

the findings from these fairly technical analyses back into

recommendations for decision-makers in an organization, as

well as for the community process around OpenID. The

result is a balanced advice, as opposed to the excitement of

many OpenID proponents or the outright rejection of many

detractors.

Section II sums up requirements of SSO, and Section III

gives an overview of OpenID. Sections IV and V intro-

duce our modelling approach and discuss formal models

of OpenID. Section VI discusses the applicability of the

modelling approach to other authentication protocols that

are used in enterprises. Section VII discusses how OpenID

should be used today, and Section VIII outlines how enter-

prises could use OpenID in the future.

II. MOTIVATION AND REQUIREMENTS OF SINGLE

SIGN-ON

In a society that has become used to the web, each

typical web user accumulates a large number of accounts

on personalised sites, even if many of these sites are only

used sparingly. This is because many sites use a site-centric

authentication approach (SCA). An issue that has been

observed is password fatigue where users cannot remember

2011 15th IEEE International Enterprise Distributed Object Computing Conference

1541-7719/11 $26.00 © 2011 IEEE

DOI 10.1109/EDOC.2011.26

129

enough distinct passwords to cover every account that they

create on the web. The management of these accounts

becomes a nuisance to users and they may take shortcuts

in the management of this wealth of sensitive information

at least for non-critical sites [4], in particular by reusing

passwords. This in turn may compromise the site’s security

requirements.

SSO is a possible solution for password fatigue. Intranet-

wide SSO is state-of-the-art today and was put forward

as a research goal in the nineties. An early application

that motivated this research was SSO for digital libraries.

Different architectures have been proposed, and for digital

libraries proxy-based solutions were mostly used [5]. These

early successes have inspired research into similar SSO

solutions that work for the entire web.

In the following we reformulate the motivations for SSO

as a set of requirements for an SSO protocol, extending

and generalizing other discussions on authentication require-

ments [6]. These requirements are twofold: on the one

hand, there are the requirements of the users wishing to

authenticate themselves, and on the other hand there are the

requirements of the enterprises wishing to authenticate users.

Users require their privacy to be protected, meaning that

they should only have to reveal information about them-

selves if they wish to do so. It should be easy for users to

recognize whether it is safe to enter their credentials. Users

should not have to state the same information repeatedly,

especially when the site they are trying to connect to does

not need it. Users also require that the way in which they

manage their digital identity is straightforward and simple.

Users require a way to move their identity from site to site.

Finally, users need their identity to be protected properly so

that no one can impersonate them.

Enterprises need a way to deliver their services reliably

to as many users as possible. This needs to be done securely

without inadvertently sharing confidential information with

unauthorised users. Additionally, enterprises need to be able

to receive certain guarantees about their users that are con-

firmed by a trusted party. These are called verifiable claims,

and include, for example, belonging to the organisation they

say they do, and being of the age they say they are. These

also include guarantees that the communcation is with an

actual human person. If enterprises allow their employees to

use OpenIDs, they require that the OpenID is kept secure. If

one of their employees uses a technology such as OpenID

negligently, the organisation itself can be held responsible.

III. THE OPENID PROTOCOL

OpenID is a community standard for Web-wide SSO [7].

It has been in development since 2005, and is currently

overseen by a committee comprising both industry and

community members. During that time, OpenID has gained

support from many enterprises, and a number of very large

organisations such as Google, AOL, Microsoft, Yahoo, and

Verisign are now OpenID providers [8], [9], [10], [11]. As

such it is now feasible for enterprises to rely entirely on

OpenID to authenticate users.

The OpenID protocol is complex and only specified

textually in a community standard document [7]. This makes

it hard to implement and prone to ambiguities, with the

result that many existing implementations are partially non-

compliant and contain security flaws, as our research has

shown. In this paper, we describe a methodology for mod-

elling authentication protocols by applying techniques such

as formcharts and UML sequence diagrams. Looking at

OpenID, we demonstrate that these models are valuable in

several ways: they help to identify and clarify potential risks

and possible extensions, and as such can help enterprises to

mitigate security problems.

OpenID can be described as being a user-centric rather

than a site centric approach to identity management.

OpenID allows authentication to be done through an iden-

tity provider, which offers a service-oriented interface for

authentication. What is unique about OpenID compared to

other SSO standards is that the identity provider does not

require any prior relationship with the web site or web

service for which it is providing authentication. Users choose

their own identity providers (in this case, OpenID providers)

who provide them with a unique URL that represents their

identity. They then supply this URL to a site (called a relying
party) that supports authentication with OpenID. This means

that enterprises which are acting as relying parties can

leverage the authentication mechanism of other organisations

and can reduce the time required for users to register for their

services. We begin the modelling of OpenID with a textual

use case that describes a typical way in which OpenID is

used, before we move on to more formal models.

A user, Bob, decides to use OpenID. Bob must first

register an identity with an OpenID identity provider.

The user, Bob, picks the University of Auckland as

his OpenID provider, due to its strong reputation as

an identity provider. He is then given the identity,

https://openid.auckland.ac.nz/bob, which he can use on re-

lying party websites. Now Bob decides to create his own

online journal and visits livejournal.com. Bob then no-

tices a link saying ’Sign in with OpenID’, and decides to

use his OpenID to authenticate with the site. He enters

https://openid.auckland.ac.nz/bob as his OpenID, and his

browser redirects him to a login screen at the University

of Auckland, his identity provider. He is then told by the

University that the site livejournal.com wishes to authen-

ticate his identity, and is prompted as to whether or not

he wishes to allow the authentication. Additionally, he is

asked for how long he wishes to trust verification requests

from the site. Bob decides to allow the verification, and

also states that he will always trust authentication requests

from livejournal.com. Livejournal then decides to ask Bob

for some basic profile information, called claims, to be

130

used on his journal, such as his name and date of birth.

After submitting this profile information, Bob is signed into

livejournal.com.

Bob then decides he wishes to ask a programming ques-

tion on the site stackoverflow.com, and once again sees the

option to log in with his OpenID. Because Bob is already

signed into his identity provider, this time he is not prompted

to enter his login details to the University of Auckland.

Instead, he goes straight to the University’s confirmation

page. Once again Bob agrees to always accept authentication

requests from stackoverflow.com. This time there are no

claim requests, so Bob has now successfully signed into

stackoverflow.com.

The following day, Bob decides to visit the same two

sites again. He visits livejournal.com first and signs in with

his OpenID. Because he is not yet logged into his OpenID

provider, he is prompted to sign in. Once he has signed

in, his provider forwards Bob to livejournal with a positive

authentication response, and he is successfully signed into

the site. He now visits stackoverflow.com and attempts

to sign in. Since Bob is already signed into his identity

provider and decided to trust all authentication requests from

stackoverflow, all he needs to do is to provide his OpenID.

The process is simple, removes registration pages, and keeps

authentication information far away from new sites that have

not yet earned the user’s trust.

Even in this small example, there is a lot happening

behind the scenes that Bob is unaware of. It takes a consid-

erable effort for an enterprise to understand the protocol and

make decisions about its deployment, and using appropriate

models makes these tasks easier. In the following sections,

we provide two models for the OpenID protocol using

different levels of abstraction.

IV. MODELLING THE SSO PROCESS FROM A USER

PERSPECTIVE

In this section we provide a formal model of the sign-on

dialogue from a user perspective. The model obtained will

be useful for discussing specific security risks.

In the next section we will describe a model that includes

the system communication. The user interface model, since

it sits on a higher abstraction level, is not tied to all of the

detailed mechanisms of OpenID and can therefore be applied

to other SSO protocols. The system communication model,

however, is already highly specific to OpenID.

We use form storyboards [12] for modelling OpenID’s

user interface. Form storyboarding is appropriate for mod-

elling form-based systems, and the OpenID sign-on dialogue

has a form-based interface. Form storyboards specify all

possible paths that the dialogue can use. The use case above

follows several such paths in the form storyboard, but a use

case is not a complete specification of all possible paths.

Form storyboards are based on the observation that if a

user interacts with a web form, this can be described simply

as a form submission followed by a web response. For a

full introduction to form storyboards and how they refer to a

screen model of the dialogue, see [13]. We will only repeat

the formal aspects of form storyboards that are important

for structural matching with the system-oriented models,

particularly sequence diagrams. In a form storyboard the

system is represented as a bipartite state transition machine.

The state of the dialogue alternates between client pages

represented as ovals, and server actions represented as

rectangles. Client pages show content to the user in a web

browser, whereas server actions correspond to information

that is sent to and processed by a web server. Arrows

mark the transition between states, empty squares represent

blank form fields, and full squares represent pre-populated

fields. The form storyboard only describes the behavior

visible to the user. As mentioned above, this means that

it abstracts from a substantial amount of internal system

communication. In particular, the transition marked with a 2

in Figure 1 involves a complex communication between the

relying party and the identity provider, which is important

from an implementation perspective, but not important from

the perspective of the user.

This means that two systems satisfying the user interface

model in Figure 1 can have completely different implementa-

tions. For example, a system could apply some sophisticated

technologies such as privacy preserving functions [14], [15]

to protect a user’s data from the OpenID provider. If such

features do not change the user interface model, it is im-

possible for a user to determine whether an implementation

possesses these features, and hence negligent or malicious

providers go unnoticed. In the following we analyse OpenID

from the user perspective, which is much easier with the

user interface model as compared to the significantly larger

system model in Figure 3.

A. SCA vs. SSO

Figure 1 shows the form storyboard for the sign-on

dialogue with OpenID. For comparison, Figure 2 represents

a traditional, SCA process, including the functionality for

account registration. Both dialogues may vary a little from

site to site for instance some relying parties may also require

the user to agree to an end user licence agreement, or require

the user to confirm their email address before they can

sign in. For OpenID providers we have opted to represent

claims being handled by a form with pre-populated fields.

Some providers may handle this differently, but this example

makes for a closer comparison with the SCA process.

OpenID’s sign-on dialogue differs from SCA dialogues in

that it always involves two sites: the relying party and the

identity provider. The user is redirected between these two

sites during the dialogue. For that reason, we have intro-

duced an additional modelling element in this diagram: the

pages and server actions executed on each of the two sites

are grouped together using large dotted boxes. Transitions

131

Relying�
P t

Relying�
LoginLinkParty�

Home
Party�
Login

LoginForm
�OpenID�URL 1

2

Relying�Party

Identity�
Provider

IPLoginForm
�Username
�P d

1

3

�� �������	�
�����	

�
�� �����������	����	���	���������

���
��������������	���	����������
�����	��
������������

�� �����������	����	���������Provider�
Login

�Password

User�
Cl i

ClaimsForm
Fullname

1
� � �

���
�����������	������	���	�����
������ ��������

OpenID ProviderClaims�
Page

Fullname
Email
Country
Gender
Date�Of�Birth

OpenID Provider

1

Figure 1. OpenID from the user perspective.

LoginLink

Site Site� R i t ti Registration�ConfirmLinkSite�
Home Login

LoginForm
�UserName
�Password

Site

Registration�
Form
�Fullname
�Email
�Country1

g
Confirm

ConfirmLink

Site�
Registration

�Gender
�Date�Of�Birth

1
�� �������	�
�����	

�

1
RegisterLink

Figure 2. Site-centric authentication with account registration.

between the two boxes mean that the user is redirected from

one of the sites to the other.

Usually a user will experience a sudden change to the

look-and-feel of the page when they move from one site to

another. For many enterprises this is not favourable, as it

means that they are unable to include their brand on any

of the pages of the OpenID provider during the registration

process. For example, this is one cited reason why Yahoo

has not become an OpenID relying party [16].

When comparing the form storyboard for normal registra-

tion and for OpenID, we can see that the processes shown

in both Figures 1 and 2 require at least two server actions to

complete authentication. In the case of OpenID, this occurs

when the user has already signed into their OpenID provider

and no claims are required. OpenID requires at most four and

Figure 2 requires at most five actions. On first observation

the difference between these seems minimal. Little seems to

be gained outside of the registration process. When the user

is not already signed into their OpenID provider, logging

into a previously-visited relying party site will take three

server actions, whereas it would only be two if they had

used normal registration.

OpenID’s advantage for sign-on is that the user does

not provide a password to the relying party, thus reducing

the problem of password reuse [17]. The advantage in the

registration process is not that it potentially takes one less

server action to complete, but rather that personal informa-

tion fields during registration can be prepopulated, as shown

132

in the models. Forms can be prepopulated alternatively

through the use of cookies and browser plugins, but then

the prepopulation will only occur when the user is using a

computer where they have the proper cookies and plugins.

Additionally, prepopulation of this type can be a privacy

concern for those using shared computers. As such, OpenID

is a convenient alternative.

One more subtle advantage for users of the OpenID

approach is that by engaging with the provider, relying

parties must make a conscious decision to request user

information. This can be contrasted with many sites based on

content management systems which automatically provide

claim forms as part of site registration. In a number of

scenarios the information requested is needless as it simply

fills profile information, which is often unreliable and hence

not very useful to the relying party. By having to choose con-

sciously which information to request, those using OpenID

are more encouraged to ask for only a minimal amount of

information. A number of authors have noted that to protect

user privacy there should be minimum exposure of private

user information [6], [4], [15], and authentication schemes

such as OpenID facilitate this.

B. Phishing

Principle 1: (Phishing) For an attack that results in an

identical model from a user perspective, the user is unlikely

to be able to distinguish between an attack setup and a

genuine SSO setup.

An important consequence is that all SSO protocols where

the user is redirected from a relying party to an identity

provider are under a phishing threat. The reason is that the

use case follows the anti-pattern of following a link provided

by an untrusted party. From an enterprise policy standpoint,

the fundamental weakness of many SSO schemes can be

captured as follows: the organization must allow its members

to use the corporate credentials through a foreign website.

For OpenID this means that any attack which preserves

the appearance of Figure 1 can elicit the participation

of the user without suspicion, e.g. phishing. A phishing

attack would be complete once the IPLoginForm action is

performed, i.e. once a user’s credentials are transmitted.

If a user opts to register then they supply the phishing

site with a username and password. Because of password

reuse [17] an attack on the user might already be successful

at this point. If they attempt to sign in using OpenID,

the relying party will instead forward them to an identity

login portal that is identical to that of their own provider.

Empirical evidence suggests that even experienced Internet

users find it difficult to discover a phishing attack once they

have arrived at the phishing site [18]. In this scenario, there

is a good chance that the user will attempt to authenticate,

and the attacker will then know the username and password

they use for their identity provider. This means that the

attacker will gain access to every site that the user uses

that OpenID for. Specific methods can be used to reduce

the risk of phishing attacks, e.g. Lee et al. [19] suggest a

system using personalised security tokens.

V. MODELLING THE SINGLE SIGN-ON PROCESS FROM A

SYSTEM PERSPECTIVE

The user model abstracts away from implementation. It is

necessary at this point to introduce another model that gives

a more in-depth description of the mechanisms described in

the OpenID specification. The model we propose to use in

this case is a UML sequence diagram, and the result can be

seen in Figure 3. The different parties to the communication

are modeled as objects along the horizontal axis. We omit

type information because every object has its own type.

Except for the communication between user and browser,

the method call paradigm is HTTP. This means the call is

an HTTP request and the return value is an HTTP response.

Notes have been added to the far right to explain different

points of OpenID’s behaviour.

Principle 2: (Model Compatibility) A system model only

complies to a form storyboard if the communication between

user and browser in the system model matches one or more

paths in the form storyboard.

This means that the system model in Figure 3 describes

one of the paths that the user interaction can take in the

form storyboard. This path is highlighted with fat arrows in

Figure 1.

In the following we describe the parts of Figure 3 that are

labelled on the right:

1) Delegated Identity: The URL given by the user may

only point to their OpenID provider indirectly. The supplied

URL may refer to a webpage, which refers to an OpenID
endpoint, which in turn refers to the OpenID provider.

Consequently, users can use any URL that they control as an

OpenID without having to host their own OpenID provider.

This allows for more personalised OpenIDs, and enables

users to migrate between identity providers without changing

their OpenIDs.

2) OpenID Discovery: The relying party must have some

way of discovering whether the supplied URL is a valid

OpenID. When a relying party looks at an OpenID endpoint,

they will discover a link to an XRDS document and to

the identity provider. The XRDS document describes which

services the OpenID provider provides, such as OpenID

and its extensions. Retrieving and examining this document

confirms to the relying party that this is an OpenID provider,

and then they can enter into communication with them.

3) Association Session: After discovering the location

of the OpenID provider, the relying party contacts them

directly to attempt to establish a shared secret. This is

done so that later in the protocol any messages they have

received indirectly through the user can be verified. The

exact cryptographic procedure here is out of the scope of

this paper.

133

!
�	"#

$��� %��&���

�	������ �$�'

#��
������ �����

�����	�� ���� (

�����$�'

���
����
���

���
�	�
���

(

���!
�	"#�$�'
(
������$�'

!
�	"#��	�
��	�

#�����������!
�	"#
�����$�'

#�����������!
�	"#
)�	�����&����
���������	��*�#(�$�'�

!
�	"#� �������

#������������
��������������
����	��*�#(

���
�	�*�#(����
��	�����������
�������
+!
���	��,����
���������������������������
+!
���	��,�����
��������������������������

������������ �������

����������	�&�����	��
���	�������	����
�����������

+!
���	��,����
����*�#(�$�'
+!
���	��,����
�	�*�#(�$�'

+!
���	��,����
����*�#(����
��	������������	������
+!
���	��,����
�	��*�#(����
��	�

���
�	�������	�
����������������&���

$�����

�����
�����	�����)����	��������	�����
�������

+�
���	��,�����
��������	��������������������������
���
(��&����
�����

������
(

��������	
�������	��������	 (�	����������	��������	����
�������

���
�	���&���������������������	��
����

������������� �&���
�
�����
�	��

� �����
���
����
���
�	��� �
���

���
����������������������	�

-����������	������������	�
� ����
�������
���

���	����	

#��
����
�����

���#���������
"��	����

���!
�	"#�
#��������

�������������	
(�����	

.��"	�������
�
�����
���

/���
#��������

0��"	�������
�
�����
�	��

1��$����
)�	������

Figure 3. The OpenID process

4) Indirect Authentication Request: When the relying

party redirects the user to their OpenID provider, they are

also given a message to pass on. This message states that

the relying party wishes the user to be authenticated with the

exact OpenID the relying party was given. The message also

states who the relying party is, and where the user should be

returned to after they have been authenticated. It will also

include any requests for claims about the user.

5) Relying Party Discovery: Having received this authen-

tication request, the relying party should determine whether

or not the URL listed in the authentication request is really a

relying party. To do this they perform a discovery procedure

by requesting an XRDS document, similarly to OpenID

discovery. The document states that the relying party uses

OpenID, and confirms where users should be returned to

after being authenticated. This procedure is used to mitigate

a very specific kind of phishing attack described later in this

paper.

6) Indirect Authentication Response and Relying Party
Confirmation: Once the user has authenticated with the

OpenID provider, and submitted any claim information

required, the user forwards a message from the identity

134

provider to the relying party which contains an authenti-

cation confirmation and any requested claims. The relying

party needs to make sure that this message has not been

changed by the user. Once again the relying party enters into

direct communication with the OpenID provider, seeking

confirmation about this.

7) Confirmation of User: Once the relying party is satis-

fied that the received message is the one sent by the OpenID

provider, the relying party decides whether or not to accept

the user based on the authentication response. They may

refuse, e.g. if the user does not supply all the requested

claim information. The OpenID authentication process ends

once this decision is made.

A. Identifying Potential Threats

Principle 3: (Potential Threats) Every object in the sys-

tem model is a potential attacker, and every arrow is a

potential attack.

In the following we discuss several example attacks in the

light of this principle.

1) Malicious Provider: As an example of this principle,

let us consider a malicious OpenID provider, who is in the

best position to mount a successful attack. The provider

can easily store the user’s credentials, use them whenever

they wish, and record the sites on which they are used. A

rogue provider of this kind can easily usurp any identities

under their domain without raising any suspicion. Even if

the provider does not go so far as to usurp the identity of

their users, they can still record and disclose private user

information.

Thefts of these kinds from rogue providers are very

difficult to detect. However, a parallel can be made between

the role of an identity provider and the role of an email

provider. Currently, many sites rely on email verification

to verify a user’s ownership of a given identity. A rogue

email provider can usurp the identity of its users by using a

user’s email account to trigger password resets, but usually

not to the same degree as an identity provider. A rogue

email provider could also cause gross privacy breaches by

disclosing private information obtained from user emails.

However, people usually use email providers whom they

trust, such as those of their employers or very widely used

email providers.

2) Exploiting Redirect: In another attack, a malicious

relying party may attempt to phish a user’s credentials by

pretending to be a relying party trustedrp.com that the user

trusts. They can try and gain access to a domain name which

looks similar to the one they are trying to copy, e.g. using the

URL http://trusstedrp.com instead of http://trustedrp.com. At

this point, instead of displaying a fake login page to the user,

they can take advantage of an open URL redirect available

on the relying party site they are impersonating. An open

redirect is a common site vulnerability that allows redirec-

tion to other URLs through a site, by misusing redirection

functionality that can be controlled through a URL. For

example, the malicious relying party can provide a URL

like http://trustedrp.com/redirect?url=http://trusstedrp.com/

as the URL that the OpenId provider is meant to return the

user to.

The provider will see that the domain is one that the

user trusts, and so the user is not warned that this is

a site they have never visited before. The provider may

now automatically send over any claim request information

previously approved by the user, or sign the user in. This

is a bad state to be in: for example, the user may attempt

to use paid services on the phishing site, thinking it is their

trusted site.

This particular case shows why accurate modelling and

strong descriptions are crucial for those implementing

OpenID. The RP discovery step in the system model pre-

vents this attack because the XRDS document will come

from http://trustedrp.com and not the phisher’s site. This

document will describe the correct return URL, which will

not have the attacker’s redirect.

However, the specification merely states that RP discovery

’should’ be implemented, and not why. Because this is

not a necessary part of the protocol and because hosts do

not understand the motivation, many do not implement it.

Consequently, this kind of attack remains a real threat (see

Section V-B).

3) Man-In-the-Middle: A man-in-the-middle attack is a

generic attack possible at all arrows in the system model.

An attacker intercepts messages and possibly modifies them

before passing them onto their destination. This risk can be

mitigated by encrypting the communication using transport

layer security (TLS). Ideally, every part of the OpenID

protocol should be protected by TLS, following the Potential

Threats principle.

While it is clear to most sites that TLS should be used

when accepting user login credentials, it might be less clear

that the rest of the protocol should be similarly protected. In

particular, a relying party may not realise the importance of

RP discovery and fail to use TLS on their XRDS server. This

could result in a man-in-the-middle attack that re-opens the

phishing threat that RP discovery is meant to mitigate. Even

the OpenID URL should be protected by TLS otherwise

a man-in-the-middle attack could cause the relying party to

redirect the user to a malicious identity provider. Enterprises

can use the system model as a checklist for making sure they

have protected every arrow with TLS.

B. Empirical analysis of Vulnerabilities in Current Imple-
mentations

We have systematically examined a number of relying

party sites to determine whether they are protected against

these attacks, i.e. whether they host the XRDS document and

use TLS. In this study we used only analysis techniques that

135

Site rank Sites RP XRDS TLS Login TLS
range tested discoverable protected protected

1-1000 4 3 1 1
1001-10000 2 2 0 0

10001-50000 7 5 3 5
50001-100000 5 2 1 1

100001+ 14 3 3 5

Table I
VULNERABILITY STATISTICS OF 32 OPENID RELYING PARTIES.

are possible by observing the communication without per-

forming unauthorised activities. We examined 32 sites with

varying traffic rankings, listed on myopenid.com’s OpenID

directory, and discovered that even some very popular sites

fail to protect their users properly. We used the Yahoo

OpenID provider to find this information, as it notifies when

a site fails to implement RP discovery, and is accepted

by a number of relying parties that utilise whitelisting. To

discover if the XRDS server was protected by TLS, we

simply had to examine the HTML code of each site. The

data, which is shown in Table I, is organised by Alexa site

rankings and aggregated to protect relying parties.

Even though the sample size is small, only eight of these

sites fulfilled the three requirements. This seems to indicate

a gap between how OpenID should be used and how it is

used in practice. Whether or not an OpenID session is secure

depends strongly on the implementation. As such, security-

conscious modelling as presented in this paper is a useful

resource for enterprises looking to adopt OpenID.

C. Guarantees for Relying Parties

Similar statistics can be generated about the security

practices of OpenID providers, and given these potential

problems one might be sceptical about becoming a relying

party. To address this, the relying party may use the Provider

Authentication Policy Extension (PAPE) [20], which is an

extension of OpenID. The purpose of this extension is to

allow the relying party to make a request to the provider as

to the level of security that should be used. For example,

this can be used to insist that the provider use multi-

factor authentication to authenticate users for this relying

party. When the user returns the authentication response of

the provider, it should also include whether or not it met

the requirements of the relying party’s PAPE request. The

relying party can then use the PAPE response (or lack of it)

whether or not to accept the authentication response.

However, this will only mitigate the problem partially.

A badly-implemented provider may simply claim they have

fulfilled all the PAPE requests so as to have their OpenIDs

accepted by a wider range of relying parties. Alternatively,

they may falsely think they are fulfilling the requests when

actually they are not. For example, when a provider receives

a request for multi-factor authentication, they may ask

the user for some additional private information like their

mother’s maiden name. However, this would still be single

factor authentication and would not fulfil the PAPE request

accurately.

When using OpenID, relying parties usually have to

accept that users will use a variety of different identity

providers, some of which do not use good security practices,

and some of which the relying party will have no knowledge

about. As such, the use of OpenID can be contrary to the

requirement of an enterprise that their services are delivered

securely and that user privacy is preserved. This issue can

be addressed through the use of white lists or black lists. By

using a black list, a relying party can refuse any provider

they know to be untrustworthy. This approach still allows

for a great degree of freedom for users in choosing their

OpenID provider and is recommended whenever a relying

party knows a provider to be untrustworthy.

White listing allows only OpenID providers that the

relying party trusts to authenticate its users. This helps to

fulfill the requirements of security and privacy. But it also

reduces the number of OpenID users who can authenticate

with a site, potentially reducing the number of new users.

It is advised that relying parties using white listing should

explicitly state which providers they trust.

VI. APPLYING SIMILAR MODELLING TO OTHER

TECHNOLOGIES

The kinds of models described above can also be applied

to other SSO authentication technologies, e.g. federation-

based solutions like WS-Federation [21] and Shibbo-

leth [22]. Federated identity is different from OpenID in that

the relying party and identity provider form an agreement

that the identity provider will authenticate users for the

relying party. Enterprises may enter into this agreement as an

identity provider for their employees or customers, looking

to make use of services provided by the relying party.

In a web-based scenario the user models for WS-

Federation and Shibboleth would be almost identical to each

other. The user model we have used for OpenID would only

have to be changed slightly for it to look the same as one

for WS-Federation or Shibboleth. Namely, the user model

would not include an OpenID URL, and the relying party

would forward the user onto the identity provider on the

basis of a pre-existing authentication agreement.

The system models of WS-Federation and Shibboleth

would be somewhat similar, but both would be very different

from OpenID. In contrast to OpenID, the two protocols

use an authentication mechanism based on security tokens.

Despite these differences, the system modelling approach

proposed in this paper still seems to be applicable. So over-

all, enterprises considering whether to use WS-Federation or

Shibboleth would benefit from applying these techniques, as

they make it easier to analyse the implications of using these

protocols.

136

Authorisation protocols like OAuth [23] also lend them-

selves to our modelling approach. OAuth is an authorisation

instead of an authentication protocol, so it addresses a

different set of user requirements. It allows users to share

private data (such as private RSS feeds) they have stored on

one site with another site, without having to share their login

credentials. The flow of the OAuth protocol from the user

perspective is very similar to that of OpenID, so they have

similar user models. The user model of OAuth can be used

in either SCA or SSO scenarios. This means that OAuth can

be modeled as an extension of OpenID or federated identity.

Similar to the federated approaches mentioned above, OAuth

makes use of security tokens. Similar to OpenID, OAuth can

make use of HTTP redirects. Altogether, these features can

be described in a system model similar to the one presented

here for OpenID.

VII. WHEN AND HOW ENTERPRISES SHOULD USE

OPENID

While OpenID is a useful SSO technology for enterprises

to take advantage of, there are situations in which its use

is not advisable. This section will detail when enterprises

should and should not use OpenID.

OpenID in itself, particularly without provider whitelist-

ing, does not fulfil the requirement stated earlier to ensure

that users are who they say they are, and are therefore

traceable. However, effective provider whitelisting is not

mature currently, as will be explained in the next section.

OpenID is useful whenever an enterprise has a web

presence that requires a user to create an account, but where

the user cannot do harm to the site. This might include

accounts for bug reporting systems, message boards, chat

rooms, or job application sites. The risk to the user is low

as the loss of these kinds of accounts is not excessively

harmful, and because these are the accounts attackers are

less interested in. These are also the kinds of accounts which

users more frequently have to register for, and are a large

source of password fatigue problems. The use of OpenID for

these kinds of accounts is beneficial to the user, and if the

practice were widespread would help to dramatically reduce

the problem of password reuse. Consider an enterprise that

offers a standard web-based registration and sign on, e.g. a

webshop. Is it safe for the enterprise to switch to accepting

OpenIDs? If the user only has customer privileges, and if

e.g. the user does not trigger a shipment without payment,

then the answer is yes. OpenID would then offer the prospect

that it would become more convenient for new users to come

to the site.

As the value of the service increases, enterprises should

be more strict in their use of OpenID. Social networking

sites, auction sites, billing sites, and bank sites are all of

much higher value to the user and to attackers. In particular,

any site which involves monetary transactions will become

potential targets for attacks. OpenID can be used securely in

these cases, but it requires both the relying party and identity

provider to use good security practices.

One rule of thumb for an enterprise deciding on whether

to introduce OpenID authentication is to look at how much

trust is placed in the user’s email account. If they currently

allow for users to reset their password using an arbitrary

email account, then the enterprise could also use OpenID.

The trust they place in the OpenID provider is equal to that

of the email provider in these situations. If enterprises do

not allow for email addresses to authenticate in this manner,

then they may not wish for OpenID providers to do so either.

In general, relying parties and OpenID providers should

follow all recommendations in the OpenID specifications,

and not follow the bare minimum required to support the

protocol. In particular, section V above described several

attacks that can occur when TLS is not used on certain arcs

in the system model.

VIII. OPENID AND THE ENTERPRISE IN THE FUTURE

OpenID is evolving and is likely to become even more

important for enterprises in the future. In this section we

point out some of the directions that OpenID is developing

towards, and how this will affect enterprises.

Currently, enterprises may be wary of using OpenID due

to the threat of identity providers using insecure practices.

In the future, there could be high-security identity providers

that support verified claims. Enterprises could use OpenID

specifically because they wish their users to utilise such

high-security identity providers. For example, enterprises

may wish to make use of OpenID providers which sup-

port multi-factor authentication, i.e. authentication based on

additional types of credentials such as biometric security.

This would allow relying parties to utilise high security

authentication without having to invest in developing and

integrating such mechanisms into their own systems. Relying

parties could restrict the OpenIDs they accept to such

providers, either if there exists an independent accreditation

process for providers, or by keeping a whitelist on their own.

A valid concern is that private whitelisting can lead to a

monopoly of identity providers, which can in turn affect

users as well as relying parties. Lastly, OpenID is in strong

need of standardisation.

The OpenID specification uses the word “SHOULD”

forty-eight times in describing how the OpenID protocol

operates. Many of these should be changed to “MUST”.

Each “SHOULD” represents a point in the protocol which

can be ignored in an implementation while still being

compliant to the specification as a whole. This might be

intended to be flexible, but the problem that results is

that those using OpenID must somehow communicate with

each other despite large differences in configuration [24].

One example of this is discovery. The protocol states that

relying parties SHOULD use Yadis discovery, but if they do

not then they can use HTML-based discovery. Those who

137

wish to implement the protocol well will have to support

both, needlessly complicating the implementation. Those

who only pick one will run the risk of discovery failing

as the other party may not support both forms of discovery.

This would not be an issue if the specification outlined a

single compulsory method for discovery.

IX. CONCLUSION

SSO has the potential to make authentication a service,

facilitating a cross-organisational service-oriented architec-

ture. Currently many enterprises are facing the decision to

deploy SSO, but it is hard for them to understand the full

ramifications. Suitable modelling approaches can mitigate

this problem, and help an enterprise to make informed

decisions about SSO technologies. In this paper, we have

presented

• a general modelling approach for SSO, on two levels of

abstraction: a user interface model and a system model;

• more specifically, models of OpenID, which is one of

the most important SSO protocols at the moment;

• model-based analysis principles that can be applied to

assess security risks and model validity, with examples

of how they apply to OpenID;

• and findings about OpenID security problems in many

current implementations, motivating the need for bet-

ter methodologies to help enterprises deal with such

technologies.

SSO technologies such as OpenID will become more and

more important in the future. They need time to evolve

and establish themselves in the enterprise world. Modelling

approaches play an important role in facilitating this process.

REFERENCES

[1] M. Burrows, M. Abadi, and R. M. Needham, “A logic of
authentication,” Proceedings of the Royal Society of London.
A. Mathematical and Physical Sciences, vol. 426, no. 1871,
pp. 233 –271, Dec. 1989.

[2] D. Recordon and D. Reed, “OpenID 2.0: a platform for user-
centric identity management,” in Proceedings of theSsecond
ACM Workshop on Digital Identity management, Alexandria,
Virginia, USA, 2006, pp. 11–16.

[3] B. van Delft and M. Oostdijk, “A security analysis of
OpenID,” in IFIP Advances in Information and Communi-
cation Technology. Oslo, Norway: Springer, Nov. 2010, pp.
73–84.

[4] A. Jøsang, M. A. Zomai, and S. Suriadi, “Usability and
privacy in identity management architectures,” in Proceedings
of the Fifth Australasian Symposium on ACSW Frontiers -
Volume 68. Ballarat, Australia: Australian Computer Society,
Inc., 2007, pp. 143–152.

[5] D. Groenewegen and S. Huggard, “The answer to all our
problems? trialling a library portal,” Library Review, vol. 52,
no. 9, pp. 452–459, 2003.

[6] K. Cameron, “The laws of identity,” May 2005.

[7] B. Ferg et al., “OpenID authentication 2.0 - final,” Dec. 2007.

[8] E. Sachs, “Google moves towards single sign-
on with OpenID,” Oct. 2008. [Online]. Avail-
able: http://googlecode.blogspot.com/2008/10/google-moves-
towards-single-sign-on.html

[9] D. Roy, “Yahoo! announces support for OpenID,” Mar. 2008.

[10] M. Graves, “Versign, microsoft & partners to work together
on OpenID + cardspace,” Feb. 2007. [Online]. Available:
http://blogs.verisign.com/infrablog/2007/02/verisign microsoft-

partners to 1.php

[11] J. Panzer, “AOL and 63 million OpenIDs,” Feb. 2007.
[Online]. Available: http://dev.aol.com/aol-and-63-million-
openids

[12] D. Draheim, D. G. Weber, and G. Weber, Form-oriented anal-
ysis: a new methodology to model form-based applications.
Springer, 2005.

[13] D. Draheim and G. Weber, “Modelling Form-Based Interfaces
with Bipartite State Machines,” Journal Interacting with Com-
puters, vol. 17, no. 2, pp. 207–228, 2005.

[14] T. Nakamura, S. Inenaga, D. Ikeda, K. Baba, and H. Yasuura,
“Anonymous authentication systems based on private infor-
mation retrieval,” in NDT ’09, 2009, pp. 53–58.

[15] G. Elahi, Z. Lieber, and E. Yu, “Trade-off analysis of identity
management systems with an untrusted identity provider,” in
COMPSAC ’08, 2008, pp. 661–666.

[16] A. Tom, “What yahoo wants from OPs,” 2010 OpenID
Technology Summit West, Apr. 2010.

[17] B. Ives, K. R. Walsh, and H. Schneider, “The domino effect
of password reuse,” Communications of the ACM, vol. 47, pp.
75–78, Apr. 2004.

[18] R. Dhamija, J. D. Tygar, and M. Hearst, “Why phishing
works,” in SIGCHI06, ser. CHI ’06. NY, USA: ACM, 2006,
pp. 581–590.

[19] H. Lee, I. Jeun, K. Chun, and J. Song, “A new anti-phishing
method in OpenID,” in SECURWARE ’08., 2008, pp. 243–
247.

[20] D. Recordon, M. Jones, J. Bufu, J. Daugherty, and
N. Sakimura, “OpenID provider authentication policy exten-
sion 1.0,” Dec. 2008.

[21] H. Lockhart et al., “Web services federation language (WS-
Federation),” Dec. 2006.

[22] R. L. Morgan, S. Cantor, S. Carmody, W. Hoehn, and K. Klin-
genstein, “Federated security: The shibboleth approach,” ED-
UCAUSE Quarterly, vol. 27, no. 4, pp. 12–17, 2004.

[23] “OAuth core 1.0 revision a,” Jun. 2009.

[24] B. Ellin, “Challenges faced implementing OpenID in RPX,”
OpenID Technology Summit West, Apr. 2010.

138

