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Abstract

The Auckland Layout Model (ALM) is a novel technique
for specifying layout. It generalizes grid-based layouts as
they are widely used for print layout as well as for GUI lay-
out. Qualitatively, in ALM the focus switches from the cells
of the grid to the tabstops between cells. Quantitatively,
the model permits the specification of constraints based on
linear algebra, and an optimal layout is calculated using
linear programming. ALM provides several advantages for
developers: first, it supports several different levels of ab-
straction through higher-level layout constructs that are au-
tomatically translated into the lower-level primitives of lin-
ear programming. The formalism of linear programming
defines a clean separation of ALM’s interface and its imple-
mentation. Second, the compositional nature of ALM allows
developers to group parts of a specification that belong nat-
urally together, resulting in a modular GUI specification.
Our experience has shown that it is much harder to achieve
a similar separation of concerns when using common GUI
layout techniques.

1 Introduction

In today’s software engineering, there exist many differ-
ent technologies for the implementation of GUIs. A lot of
effort has been spent in order to improve GUIs, but creating
a GUI is often still a difficult task. GUIs are commonly cre-
ated with the help of GUI toolkits, i.e. libraries which define
the various controls and functions that are needed in many
GUIs. Often developers have to set the location and size of
GUI controls manually, and write code that manages these
values during the runtime of an application. For example,
if the size of a window changes, an application would typ-
ically reposition and resize the controls on that window. In
order to make GUI layout easier modern GUI toolkits also
include layout engines. Instead of having to take care of
the location and size of every control, developers can feed a

layout engine with more abstract information, and the lay-
out engine will then position and size the controls whenever
this is necessary.

A modern toolkit usually contains several different lay-
out engines, some only supporting very simplistic layouts
and others more sophisticated ones. For example, a row
layout would take a list of controls and arrange them onto
a panel row-wise, starting a new row when the current one
has insufficient space. More complex layout engines would
typically arrange all controls in a table-like manner, and
possibly offer additional constraints. For example, a de-
veloper may be able to specify upper and lower limits for
the size of each control, or set a preferred size. The layout
engine would then try to stretch or squeeze the controls so
that they fit into their allocated space without violating the
constraints. In this article we present the Auckland Layout
Model (ALM), which is a layout engine that can be used for
sophisticated layouts.

In this paper we demonstrate that ALM enables GUI lay-
out specifications that are modular, defined on an appropri-
ate level of abstraction, and reusable. Common GUI layout
techniques usually fall short of these requirements, which is
why GUI layout usually cannot be reused but has to be spec-
ified over and over again. From a developer’s point of view,
ALM offers several advantages: the compositional nature of
constraints makes it possible to separate different concerns
in a GUI into modules, manage them separately and recom-
bine them later. If some information is not relevant for a
layout, it needs not be specified, giving the layout engine
more flexibility. For example, the order of the elements in a
GUI may be left partially undefined. ALM fills in sensible
default values where necessary, so that developers do not
need to bother about details that are deemed insignificant.
Developers can use arbitrary linear constraints to specify a
layout, but can also use higher levels of abstraction, such as
higher-order constructs for tables with rows and columns.

The ALM based on linear constraints stands for a whole
class of tabstop-based layouts. In principle, we are not
restricted to using linear constraints. Any layout model
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that extends the Auckland Layout Model by allowing for
additional (e.g. nonlinear, or integer programming) con-
straint types is called an extended Auckland Layout Model.
Also, all layout model that use basically the same qualitative
layout model, especially the tabstop approach, are called
Auckland-style layout models.

Section 2 sums up the basic concepts of ALM, and
Sect. 3 illustrates these concepts by explaining some con-
crete examples. Section 4 discusses aspects of GUI imple-
mentation, showing that ALM’s flat containment hierarchy
allows developers to handle many complex layouts better
than the deep hierarchies used by many existing approaches.
Section 5 discusses ALM’s capability of layout decompo-
sition. Section 6 sums up performance results. Section 8
discusses related work. The article concludes with Sect. 9.

2 The Auckland Layout Model

As mentioned, ALM offers several different levels of ab-
straction. On the lowest level, ALM is based on linear pro-
gramming [20], i.e. on linear constraints and the minimiza-
tion of a linear objective function. The problem of linear
programming is formally well-defined, therefore it consti-
tutes a kind of stable interface for the implementation of
ALM: it can be implemented on any linear programming
solver. On top of this very basic but complete interface,
ALM offers higher-order constructs with features typically
used for GUI layout: soft constraints, i.e. constraints that
may be violated if necessary; abstractions for rectangular
areas, which contain controls and offer parameters for pre-
ferred sizes, alignment and padding; abstractions for rows
and columns, with functionality that enables easy reorder-
ing and elision. In the following we will summarize ALM’s
most important features; a more complete account can be
found in [14].

2.1 Linear Constraints

In ALM, the controls of a GUI are aligned at virtual grid-
lines called tabstops, or tabs for short. Tabs are either ver-
tical or horizontal, also known as x- and y-tabs. X-tabs are
represented as variables holding an x-coordinate, and the
latter ones as variables holding a y-coordinate.

If we consider a layout with x-tabstops x0, . . . , xm, m ∈
N, and y-tabstops y0, . . . , yn, n ∈ N, then a linear constraint
for that layout can take the form

a0x0 + . . . + amxm + b0y0 + . . . + bnyn OP c

with the coefficients a0, . . . , am, b0, . . . , bn and the right
side c being real numbers, and the operand OP being one
of {≤, =,≥}. A layout can contain an arbitrary number of

such constraints; usually most of the coefficients in a con-
straint are zero. It is possible to use different units for dif-
ferent constraints. A value may be defined in pixels, which
makes the actual size dependent on the graphics hardware,
or in real-world units like cm, which always produces the
same size. In the following sections we will examine differ-
ent types of linear constraints, and describe how these can
be useful for GUI layout. We will only consider equalities,
but the concepts can be transferred to inequalities.

2.1.1 Absolute Constraints

We use absolute constraints in order to place x- or y-
tabstops at particular x- or x-positions of the UI, respec-
tively, or set the width or height between tabstops to a fixed
value. If we want, for example, to set x-tabstop x3 at posi-
tion 50, we simply use the constraint

x3 = 50.

In order to set the width of the area between x1 and x2

to 100, we would use the constraint

x2 − x1 = 100.

Such constraints are a very straightforward way to define
the absolute properties of a UI, i.e. the properties that do not
change when, e.g., resizing the window the UI is displayed
in. Note that absolute constraints may be impossible to sat-
isfy under some circumstances. If, for example, the avail-
able display area is only 10cm wide, the width between two
x-tabstops cannot exceed this value.

2.1.2 Relative Constraints

In contrast to absolute constraints, relative constraints de-
scribe the position of tabstops or proportion of areas rela-
tive to others. This is useful in order to adapt the layout
to changing circumstances, like UI display size or resolu-
tion. The layout engine recalculates the layout when such a
change occurs.

Relative constraints can be used in order to position tab-
stops at positions relative to other tabstops. One might, for
example, want to position an x-tabstop x2 exactly between
two other x-tabstops x1 and x3. Let us assume that x1 ≤ x3,
then the constraint can be expressed as follows:

x2 − x1 = x3 − x2 ⇔ −x1 + 2x2 − x3 = 0.

Similarly, we can center an area that is delimited by x-
tabstops x2 and x3, x2 ≤ x3, horizontally between two
other x-tabstops x1 and x4, x1 ≤ x4:

x2 − x1 = x4 − x3 ⇔ −x1 + x2 + x3 − x4 = 0.
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We only need to make sure that the area we want to center
does not exceed the boundaries of x1 and x4 by specifying
that x1 ≤ x2 or x3 ≤ x4.

Another usage for relative constraints is the specification
of an area’s proportions relative to those of another one. If,
for example, we want the width between x-tabstops x1 and
x2 to be twice as much as the the width between x3 and x4,
we would use the following constraint:

x2 − x1 = 2(x4 − x3) ⇔ −x1 + x2 + 2x3 − 2x4 = 0.

Since a constraint can contain x-tabstops as well as y-
tabstops, it is also possible to specify the aspect ratio of an
area. We could, for example, specify the aspect ratio for
an area (x1, y1, x2, y2, moviepanel), which might contain
a control for displaying a video. Because we do not want the
video to be shown with an arbitrary, distorted aspect ratio,
we could, for example, set the ratio of width and height of
this area to 16:9. This would be achieved with the following
constraint:

x2 − x1

y2 − y1
=

16
9

⇔ −x1 + x2 +
16
9

y1 − 16
9

y2 = 0.

The aforementioned constraints are hard, i.e. if they are
contained in the specification of a layout, then this layout
will satisfy them strictly. Sometimes, however, we want to
specify constraints that may not be satisfied fully if circum-
stances do not permit so. Such constraints are called soft
constraints; they are natural in applications for user inter-
faces and have been used in the past [1].

Soft constraints are important in order to prevent over-
constrained specifications which would be infeasible oth-
erwise. For example, a specification may become overcon-
strained when several sets of constraints are merged. There-
fore, soft constraints are relevant when layouts are spec-
ified in a modular manner, i.e. composed using several
partial specifications. ALM supports soft constraints as an
abstraction layer on top of the linear programming solver.
Soft constraints can be handled in exactly the same man-
ner as hard constraints; they are implemented as a subclass
of hard constraints. In addition, they can be prioritized us-
ing penalty parameters for positive and negative deviations
from their exact solution. Several approaches for prioritiz-
ing constraints have been devised, such as constraint hierar-
chies [5] that make sure that important constraints are satis-
fied first.

On a certain level, it is advisable to use only soft con-
straints, so that a specification will always have a solution.
The different levels of a constraint hierarchy can be related
to access privileges: hard constraints should only be acces-
sible to trusted developers, since they may render the speci-
fication infeasible. Similarly, soft constraints with high pri-
ority should be chosen carefully since they may detrimen-
tally affect all constraints with lower priority.

2.2 Areas

The controls of a GUI are organized in rectangular areas,
which are bound by a pair of x-tabstops and a pair of y-
tabstops each. In general, an area a is defined as follows:

a =def (x1, y1, x2, y2, content)

The x-tabstops x1 and x2 delimit the area on the x-axis,
with x1 being to the left or on the same position as x2; the
y-tabstops y1 and y2 delimit it on the y-axis, with y1 being
above or on the same position as y2. content can be a con-
trol of the GUI, but can also be empty. Empty areas are
useful, e.g., for defining margins or padding, or for extend-
ing a layout specification with ordinal information. Like
this, a set of area definitions result in a partial order on the
x- and on the y-tabstops.

One can think of an area as a group of adjacent cells in
the table created by the tabstops that are merged into a rect-
angle to house one of the graphical elements of the UI. This
approach covers the common colspan and rowspan features
of other concepts for tabular layout: colspan means that ad-
jacent table cells lying on a horizontal line can be merged
into a single cell; rowspan means that adjacent table cells
lying on a vertical line can be merged, i.e. the resulting
cell spans over several rows or columns. ALM general-
izes colspan and rowspan by permitting areas that extend
between any two x-tabs and any two y-tabs. In addition
to this, ALM permits overlapping areas – something which
cannot be achieved by merging adjacent cells with colspan
and rowspan. This is because tabs may run through areas,
and any tab can be used to delimit an arbitrary number of
areas.

2.2.1 Additional Area Parameters

ALM supports the specification of parameters for areas that
allow the layout engine to find optimal dimensions for them.
One of those properties is the preferred size. This value ex-
presses the size that an area would need in order to fulfill
its function in an optimal manner. Usually it is based on the
size of the content that is displayed in a control. In many
GUI toolkits, such values are made available by all con-
trols, and are thus taken directly from them by a layout en-
gine. That way the layout can be adapted immediately when
preferred sizes change, e.g. when the content shown in a
control changes. Like this, screen real-estate is not unnec-
essarily wasted, and areas can be used in a modular fashion:
each area contains properties describing its demands, while
the system as a whole finds a global solution that respects
the desires of each area as much as possible. Analogously to
soft constraints, the demands of areas can be prioritized, so
that areas that are considered more important can be given
preference over less important areas.
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The following list describes some of the area parameters:

Preferred size spref : the preferred width wpref and height
hpref of an area. These optional values can often be
calculated by a GUI toolkit, and can therefore be di-
rectly taken from there.

Minimum size smin: the minimum width wmin and height
hmin of an area. Both values are optional.

Maximum size smax: the maximum width wmax and
height hmax of an area. Both values are optional.

Shrink penalty pshrink: a coefficient for each dimension
that indicates the reluctance on the part of the area to
take on sizes that are smaller than the preferred size.
This value is optional, and sensible default can be cho-
sen dependent on the type of the control in the area.
Controls that contain important information, such as
buttons with text, should not be shrunk easily and
should therefore have a higher shrink penalty.

Expand penalty pexpand: a coefficient for each dimension
that indicates the reluctance on the part of the area to
take on sizes that are larger than the preferred size.
This value is optional, and again, a sensible default can
be obtained by considering the control type. Controls
such as textboxes where users enter data can benefit
more from additional space than controls with fixed
information content, such as buttons, and therefore the
former should have a smaller expand penalty.

Having useful default values for the different parameters
of the model makes specifications more compact and hides
the complexity of unused model features. A GUI devel-
oper needs, for example, only consider penalty coefficients
if they want to model something that differs significantly
from the default behavior. Like this, developers can learn
the features of the model step by step, and can use the model
even with a limited understanding.

2.3 Rows and Columns

A useful pattern that enhances maintainability of table
definitions is the separate tabstop pattern, which means that
separate tabstops are used to delimit different logical ob-
jects, even if the tabstops end up on the same coordinates.
ALM offers abstractions for columns and rows, which con-
tain two x- or y-tabstops each. Instead of using tabstops
directly, an area can be arranged by placing it into a partic-
ular row and column. The rows and columns offer methods
that make it possible to adjust their size and order dynam-
ically. For example, each row has an optional Previous
and Next property referring to the row directly above and
below. Rows can be removed from and inserted between

existing rows. The order in which the columns appear in
the table is encapsulated in a separate set of constraints,
managed by ALM and independent of the definition of the
columns themselves. Hence, the order of the columns can
be changed very easily without interfering with the rest of
the specification. In fact, all the parts of a specification,
such as areas, rows and columns, also allow developers to
add their own constraints which are then managed together
with the respective part in a modular fashion.

3 Examples

In order to use ALM in C#, only a few lines of source
code have to be added to the definition of the parent control
of the GUI:

1 ALM.ALMEngine le =
2 new ALM.ALMEngine();
3
4 public override
5 LayoutEngine LayoutEngine
6 { get { return le; } }

Lines 1-2 add a field containing an ALM layout en-
gine instance to the control. Lines 4-6 override the
LayoutEngine property of the control so that the ALM
layout engine instance is used. The runtime system auto-
matically calls the Layout method of the layout engine
whenever the GUI changes.

Figure 1. Layout with three areas and two ad-
ditional constraints.

The layout shown in Fig. 1 is specified in the following
manner:

1 LayoutSpec ls = new LayoutSpec();
2 XTab x1 = ls.AddXTab();
3 YTab y1 = ls.AddYTab();
4
5 ls.AddArea(ls.Left, ls.Top, x1, y1,
6 button1);
7 ls.AddArea(x1, ls.Top, ls.Right, y1,
8 button2);
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9 ls.AddArea(ls.Left, y1, ls.Right,
10 ls.Bottom, button3);
11
12 ls.AddConstraint(
13 new double[] { 2, -1 },
14 new Variable[] { x1, ls.Right },
15 OperatorType.EQ, 0);
16 ls.AddConstraint(
17 new double[] { 2, -1 },
18 new Variable[] { y1, ls.Bottom },
19 OperatorType.EQ, 0);

In line 1, a new specification instance is created. In
the following, all layout elements are added to this spec-
ification. First, two tabs are added, then the three areas
containing the button controls button1, button2 and
button3. The fields Left, Right, Top and Bottom
of a linear specification contain tabs for the borders of the
GUI. The two linear constraints that are added in lines 12-19
define that x-tab x1 should be halfway between the left and
right borders of the GUI, and y-tab y1 halfway between the
top and bottom borders. No matter how we resize the win-
dow, the two columns in the GUI will always have the same
width, and the two rows will always have the same height.

Figure 2. Buttons aligned in three rows.

The next example demonstrates the abstractions for rows
and columns, specifying the layout shown in Fig. 2:

1 Column c1 = ls.AddColumn();
2 Row r1 = ls.AddRow();
3 Row r3 = ls.AddRow();
4 Row r2 = ls.AddRow();
5 r1.Next = r3;
6 r2.InsertAfter(r1);
7
8 Area a1 = ls.AddArea(r1, c1, b1);
9 a1.HAlignment = HAlignment.LEFT;

10 a1.VAlignment = VAlignment.TOP;
11 Area a2 = ls.AddArea(r2, c1, b2);
12 a2.HAlignment = HAlignment.CENTER;
13 a2.VAlignment = VAlignment.CENTER;
14 Area a3 = ls.AddArea(r3, c1, b3);
15 a3.HAlignment = HAlignment.RIGHT;
16 a3.VAlignment = VAlignment.BOTTOM;

17
18 r2.HasSameHeightAs(r1);
19 r3.HasSameHeightAs(r1);

In lines 1-4 a column c1 and three rows r1, r2 and r3
are created. The following lines demonstrate how the rela-
tion between rows (or columns) can be specified, or dynam-
ically changed if necessary: line 5 causes r3 to be directly
below r1, and line 6 inserts r2 between r1 and r2. Lines
8-16 demonstrate alignment of controls in areas. The last
two lines use convenience methods for setting same-height
and same-width constraints for rows and columns.

4 Hierarchical vs. Flat Layout Implementa-
tion

When programming a GUI, we want the parts of the GUI
to be modular, just as we would want with any software
component. There should be as little dependencies as pos-
sible between individual controls, and each control should
implement a clearly defined functionality. If there are de-
pendencies that have to be considered by the programmer,
they can drastically reduce the maintainability of the appli-
cation. This section describes how ALM helps to deal with
the controls of a GUI in a modular way.

Modularity on different levels of granularity in a GUI is
usually achieved with a recursive, hierarchical grouping of
the controls, i.e. the containment hierarchy. This means
that most controls have a parent control and are placed in
the screen space belonging to that parent control. It also
means that many controls can have child controls that are
contained in the screen space allotted to them. It is often
a parent’s responsibility to manage the position and size,
i.e. the layout, of their children, so that the parent together
with its children can function as a self-contained entity, i.e.
a module. Dependencies between children are undesirable,
especially if they do not have the same parent. Like this,
most nodes of the containment hierarchy can be treated in a
modular way.

Some controls naturally have no parent, such as win-
dows. Others cannot have children, e.g. textboxes. Another
category of controls is explicitly made to contain other con-
trols, and hardly offers any way of interacting with a user
themselves. But such controls, typically panels, often offer
functionality for laying out their children according to some
scheme. Typical examples are panels that arrange their chil-
dren in a row, a column, or a table.

Panels are typically used for grouping related controls
and maintaining the layout dependencies between them.
For this to work the controls between which layout de-
pendencies exist have to be in the same panel. Unfortu-
nately there are cases where the natural containment hier-
archy does not group all these controls together. Figure 3
shows such an example.
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Figure 3. Screenshots of a tree view imple-
mented with nested ordinary tables (top) and
implemented with ALM (bottom).

The top part of Figure 3 shows a screenshot of a hand-
tailored tree view that was implemented and laid out in the
typical manner with nested panels. The screenshot is taken
from an editor for structured data, and the specialty of the
tree view is that there are two types of nodes: the elements
set in black text are data elements with names and types, and
the elements set in gray text are roles between data types
that describe the relations with which the data elements are
connected. The screenshot shows the metamodel of the ap-
plication, i.e. a representation of the types that describe a
data model.

As we can see in the screenshot, the data nodes and role
nodes have different layouts. Each node has its own panel
that contains the GUI representation of the node itself and
also all its child nodes. A data node lays out all its role
nodes under its own representation, in rows and with an in-
dentation on the right side. A role node lays out its data
elements in rows to the right side of its own representation.

The whole tree view is structured recursively, since the
panel of a node contains all its subnodes as well. This
reflects the structure of the underlying data and makes it
possible to treat subtrees of the data in a modular manner.
If a data element changes, its node can redraw itself and
its subnodes without interfering with the rest of the GUI.
But unfortunately, alignment of controls between different
nodes, as we see it in the bottom part of Figure 3, is not
possible.

The screenshot in the bottom part shows a version of the
tree view that was implemented with ALM. The data nodes
that are on the same level in the tree are all left-aligned, even
though they would be grouped in completely different pan-
els in a nested implementation. The same is the case for the

role nodes. If we wanted to achieve this effect with nested
panels, we would first have to find the maximal width of all
the nodes on each level by going through the tree. Then we
would have to set the width of all the nodes on each level
to the respective maximum. And each time a node changed,
we would have to make sure that the alignment is kept. Im-
plementing this would create very ugly dependencies and
make the code of the tree view much harder to maintain.

Layouts specified in ALM may be visually hierarchical,
but such hierarchies need not be reflected in the containment
hierarchy. Partial specifications can be added incrementally
to a single layout specification, which is used to lay out
all controls on a single panel. Layout constraints are not
expressed in the containment hierarchy because this would
preclude other layout constraints, as the example illustrated.
Instead, such constraints can be flexibly added or removed
from the set of constraints which makes up the specifica-
tion, and organized freely by the developer. For example,
constraints can be grouped so that every control or group of
controls encapsulates their constraints in a modular manner.

We call this flat layout implementation, in contrast to the
deep containment hierarchy that is typically used to imple-
ment a layout. Of course, there still is a containment hier-
archy: it is used to construct hierarchical relationships that
are natural for some controls, for example, to put controls
into a window, or a picture onto a button. However, it is
not used to express constraints of the layout, as would be
the case with nested panels. Those constraints are cleanly
represented in a separate layout specification instead.

5 Model Decomposition

We call the inequality system S for a concrete layout the
layout system of this layout. Such a layout system has a
variable set V (S) of those variables used in its constraints.
If we create two different layout systems S, T , then natu-
rally we will keep their variable sets disjoint. Let’s assume
S describes a complex interface, and we want to use an al-
ready prepared layout system T just within a cell of S. Let
xl, xr, yl, yr be the tabstops describing the cell in S, and
let xmin, xmax, ymin, ymax be the outer boundaries of T .
Then the natural way to compose the layout such that T is
contained in S is to join the constraints of both layout sys-
tems and add the following equations:

xmin = xl, xmax = xr, ymin = yl, ymax = yr.

There is a different way how this could have been achieved,
and this is by modifying T , namely by operationally substi-
tuting the variables in T with those from S:

xmin → xl, xmax → xr, ymin → yl, ymax → yr.

Adding equations is preferable over substituting vari-
ables from a software engineering perspective. We see that
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inequality systems can be used as components, and all vari-
ables of each component are possible ports of these com-
ponents to begin with. The set of variables defines an im-
plicit interface of each inequality system. We have a pre-
cise notion of glue between such modules: equations be-
tween variables of different inequality systems. As we see,
our layout provides an elegant example of a component-
oriented, domain-specific, non-universal language. The
glue language is small, one is tempted to say minimalistic,
and less expressive than the component definition language.
The composition approach using equations as glue is there-
fore suitable for a classical file-based software component
model. The inequality systems can be defined in separate
files and reused without textual modification.

From a software-engineering point of view, visibility
modifiers are desirable, so that not all variables of the in-
equality system are necessarily exposed to the public. There
are many operational ways to achieve this. Classical scop-
ing approaches come to mind: variables are annotated as
public or private within an inequality system, but this is not
the focus of this paper. In the example above we see clearly,
how the approach of ALM flattens the interface definition,
as it was explained in Section 4.

A natural application of the composition approach to the
C# implementation of ALM is the following: inequality
systems are made reusable by defining them as a class that
defines variables. The constraints are added in the construc-
tor of the class. The layout system for Figure 1 would look
as follows:

1 class ExampleLayout{
2 public XTab Left, Right, x1;
3 public YTab Top, Bottom, y1;
4
5 public ExampleSystem(LayoutSpec ls) {
6 x1 = ls.AddXTab();
7 y1 = ls.AddYTab();
8
9 ls.AddArea(Left, Top, x1, y1,

10 new Button());
11 ls.AddArea(x1, Top, Right, y1,
12 new Button());
13 ls.AddArea(Left, y1, Right,
14 Bottom, new Button());
15 ls.AddConstraint(
16 new double[] { 2, -1 },
17 new Variable[] { x1, Right },
18 OperatorType.EQ, 0);
19 ls.AddConstraint(
20 new double[] { 2, -1 },
21 new Variable[] { y1, Bottom },
22 OperatorType.EQ, 0);
23 } }

Note that in contrast to the earlier version, the fields
Left, Right, etc. are not members of the LayoutSpec
object. Otherwise the definitions remain the same. As we

see, we in effect practice metaprogramming here. The lay-
out system specified this way is reusable, it can be reused
even several times in the same LayoutSpec. The approach
above can be extended to layout system definitions that are
parameterised and produce a variable number of variables.
In this case, the variables would be returned in an array.
The following listing shows an application of this definition.
We use the same layout system twice as a subsystem. We
assume we define a convenience method ls.addEq(v1,
v2) that adds an equality v1 = v2 to a layout ls.

1 LayoutSpec ls = new LayoutSpec();
2 XTab x1 = ls.AddXTab();
3 ls.AddConstraint(
4 new double[] { 3, -2 },
5 new Variable[] { x1, ls.Right },
6 OperatorType.EQ, 0);
7 lsub = new ExampleLayout(ls);
8 ls.addEq(ls.Left, lsub.Left);
9 ls.addEq(ls.Top, lsub.Top);

10 ls.addEq(x1, lsub.Right);
11 ls.addEq(ls.Bottom, lsub.Bottom);
12 rsub = new ExampleLayout(ls);
13 ls.addEq(x1, rsub.Left);
14 ls.addEq(ls.Top, rsub.Top);
15 ls.addEq(ls.Right, rsub.Right);
16 ls.addEq(ls.Bottom, lrsub.Bottom);

6 Performance

The performance of the linear programming solver is
very important since this computation has to be made, e.g.
whenever the end user resizes the top window of an ap-
plication. The asymptotic complexity of linear program-
ming and the popular algorithms is well discussed in lit-
erature. The problem itself is polynomially solvable, as
shown by L. Khachiyan and later practically demonstrated
by Karmarkar [11]. In practice, variants of the simplex al-
gorithm [8] are popular despite its known exponential worst
case behavior.

Although current production-grade linear programming
solvers have become fairly efficient, their use in user in-
terface technology can pose new challenges. Operations
such as window resizing require the continuous recalcula-
tion of the layout with every movement event of the mouse.
If we want to perform this recalculation using linear pro-
gramming, then a very good performance is needed in order
to make the movement smooth for the human eye.

In the past this triggered the development of dedicated
solvers that use the incremental nature of this problem effi-
ciently, e.g. the Cassowary solver [1]. Nowadays, however,
the general purpose linear constraint solvers are very fast if
used for incremental problem solution, thus eliminating the
need for special purpose solvers. Accordingly, many such
solvers are not supported any longer.
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Once an initial solution is available, linear programming
solvers can efficiently solve a slightly changed linear pro-
gramming specification in an incremental manner. The ini-
tial solution is usually the most expensive step, with the in-
cremental calculations being several times faster. An initial
solution can be calculated a priori, thus not impacting the
performance of the user interface.

Our implementation of ALM uses the open-source
lp solve linear programming solver [2], employing a sim-
plex algorithm. We have tested the solver on different hard-
ware, and found that even on old hardware layout calcula-
tion is fast, resulting in a smooth interactive behavior. The
simplistic layouts shown in Figs. 1 and 2 are calculated in
about 0.3 milliseconds on a Pentium M with 1.6 Ghz, and in
about 0.7 milliseconds on a Pentium 3 with 788 Mhz. The
more sophisticated layout in Fig. 4 takes about 0.7 millisec-
onds on a Pentium M with 1.6Ghz, and about 1.4 millisec-
onds on a Pentium 3 with 788 Mhz.

The layout illustrated in Fig. 5 contains 100 areas. It was
generated randomly, and not all areas are visible due to the
lack of screen space. The rigidity parameters are set so that
some areas with small rigidity are swallowed up by others.
On a Pentium M with 1.6Ghz the layout calculation takes
about 6 milliseconds, and on a Pentium 3 with 788 Mhz it
takes about 15 milliseconds.

Figure 4. Layout with 14 areas.

7 Grid-Based Approaches to Layout

For the layout of GUIs as well as documents, grid-based
approaches have become a widespread solution [12]. In
grid-based layouts, the drawing plane is divided into grid
cells; we call them simple cells. In the more advanced types

Figure 5. Randomly generated layout with
100 areas.

of this concept, single components can occupy several sim-
ple cells. We call all such advanced grid-based layouts grid-
bag layouts, after the respective layout manager in Java, but
as an example we will mostly look at HTML tables [18].

In HTML, each cell element has modifiers colspan and
rowspan that creates non-simple cells through the union of
adjacent rows or columns. These integer attributes specify
the number of joined simple cells in each direction. This ap-
proach requires to fix the total order of gridlines (in our ter-
minology: tabstops) in each dimension. This has character-
istic disadvantages. We focus here on two problems closely
related to each other. The first is a classical software engi-
neering problem and shows that gridbag layouts can lead to
bad design through unnecesary coupling. The second prob-
lem is that a gridbag layout is less powerful than ALM when
it comes to adaptive resizing behavior of the layout.

m cells

n cells

up to m+n tabstops

Figure 6. Two rows with different internal lay-
out.

We discuss the problems for the x-dimension; for the y
dimension, the same applies. A colspan attribute is used if
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the interval in x-direction used by a cell in one row will be
subdivided in some other row. Take the second cell in the
first row in Fig. 6. In the row below, there is a boundary be-
tween two cells that is not extending to the first row. Hence
said cell in the first row will need a colspan value of at least
2. The first problem with that is that the colspan definition
for one cell is influenced by some unrelated activity. Creat-
ing a new row with a peculiar layout makes it necessary to
touch potentially all other rows. This is illustrated in Fig. 6
with two rows. In the worst case, all cells in the upper row
are influenced by the positionig of cells in the lower row.
This is, in software engineering terms, a case of coupling.

The second problem regards the resizing behavior. The
total order of tabstops introduces an undesired limitation
because unrelated borders of cells in different rows can-
not slide past each other. To state the problem in terms of
colspan: if one border in one row would slide past one in
the next row, then certain colspan attributes would have to
change. Since these attributes are not changed during resiz-
ing, this sliding behavior is not possible during simpe resiz-
ing. This restriction can have a negative impact on the space
efficiency and visual appearance of a GUI. It may result in
unnecessary gaps because a tabstop may be forced to be to
the left or to the right of another tabstop even if this does
not reflect the structure of the content in the GUI.

The same problem as we encounter in HTML is also
found in the Java gridbag layout. The situation here is even
worse: all non-simple cells can be placed with reference to
the absolute row and column number. This aggravates the
problem of interdependency of different parts of the GUI
because the parameters for every cell depend on the content
between this cell and the origin, in both dimensions.

ALM specifications of areas do not contain such depen-
dencies. In contrast to colspan and rowspan, the concept of
areas in ALM typically results only in a partial order of tab-
stops. This removes the two aforementioned problems of
the grid-based approaches: firstly, it leaves more flexibility
for the layout engine. Secondly, ALM area specifications
are easier to maintain, as they have lower coupling.

8 Related Work

Modularity is recognized as a crucial factor for manag-
ing the complexity of software development, and has thus
been discussed a lot in the literature, an early seminal work
being [17]. One of the questions is that about how to decom-
pose a system into modules, as this is not always obvious
from the start. Tools and techniques that facilitate decom-
position of artifacts can make a big difference, making man-
agement of dependencies and separation of concerns much
easier. ALM facilitates such decomposition by using con-
straints.

Several research projects have used various constraint

solving techniques for layout, e.g. [6, 4, 10, 19], with lin-
ear programming being one of the most popular techniques,
e.g. [16, 1, 7, 9, 3]. These approaches can in principle
be applied to GUI layout, athough such approaches often
rather targeted constraint-based interactive graphics as they
are used in the visulalization of mathematical theorems.
ALM is however the first constraint-based layout manager
that is comparable with other GUI layout approaches and
that directly extends the widespread grid-based layout ap-
proaches. ALM differs considerably from these earlier
constraint-based approaches in the way it structures layouts
with areas and other higher-level constraints. This paper in
particular illuminates the modularity issues of GUI layout
and how they can be managed using constraints, which is
something that has not been discussed before.

ALM is a further development of our earlier tabstop-
based layout manager [15], which is in our terminology
a first Auckland-style layout manager. In this first layout
manager, ordinal and linear constraints were represented
separately, and a hybrid algorithm combining topological
graph sorting and Gauss-Seidel linear constraint solving
was used for layout calculation. For example, the layout
manager did not support linear inequalities.

Most GUIs are hard-coded, i.e. represented as source
code, and the most popular GUI development tools such as
Visual Editor for Eclipse and Visual Studio Designer use a
source code representation. It is possible to reverse engineer
hard-coded GUIs so that a higher-level ALM specification
is recovered [13]. This makes it possible to use ALM with
existing GUIs and to leverage existing tools for GUI design.
Recovered ALM specifications can be beautified automati-
cally and refined by the developer.

9 Conclusion

This paper introduces the Auckland Layout Model
(ALM), which is a cross-platform layout manager based on
precise constraint specification. Besides other advantages
over common approaches for GUI layout, such as more
flexibility when specifying the order of graphical elements,
ALM has properties that make it particularly suitable for
efficient modular specification and reuse:

• ALM is based on constraints which makes it inher-
ently compositional, enabling separation of concerns
into different modules that can be managed separately
and flexibly recombined later.

• Developers need only specify what is necessary, i.e.
even if a specification is incomplete the solver will
come up with a layout, unused features can be ignored,
and sensible default values are filled in automatically
where necessary.
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• Higher-order constructs for areas, rows and columns
make it possible to specify GUI layouts on the right
level of abstraction, and manage parts of a specifica-
tion in modular units.

• ALM is based on linear programming and thus allows
for the use of standard solver packages. This fosters
comparable and reliable performance across platforms.

• ALM offers concrete software engineering advantages
over gridbag layouts. It reduces coupling between in-
dependent parts of the GUI.

We are using ALM for our own projects, and found
it more convenient to use than common layout man-
agers. In particular, it was more efficient and easier to
use for complex layouts that would otherwise have re-
quired a strongly recursive and deep containment hierar-
chy. ALM is freely available and can be downloaded at
http://www.cs.auckland.ac.nz/˜lutteroth
/projects/alm/.
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