
End-User GUI Customization

Christof Lutteroth
Department of

Computer Science
The University of Auckland

38 Princes Street
Auckland 1020, NZ

lutteroth@cs.auckland.ac.nz

Gerald Weber
Department of

Computer Science
The University of Auckland

38 Princes Street
Auckland 1020, NZ

g.weber@cs.auckland.ac.nz

ABSTRACT
Constraint-based description of GUI layout is a powerful
technique, but having to define constraints manually is not
user friendly. We propose a GUI editor for the Auckland
Layout Model (ALM) that can handle constraint-based lay-
out in a WYSIWIG manner, making it much easier to create
or modify complex layouts. Furthermore, the GUI editor is
built into the layout manager that is used during the runtime
of a GUI application, making it accessible to the end-user.
Users can switch from the operational mode of a GUI into
the editing mode, and immediately adjust the GUI to their
needs. GUI specifications can be managed in a platform-
independent XML-based description language, leading to
a document-oriented paradigm for GUIs. The implemen-
tation of GUIs currently changes from hard-coded GUIs
to document-based approaches such as XAML and XUL.
Sadly, this shift is currently performed as a mere reengi-
neering of the development process and driving forces are
chiefly productivity and maintainability. Our approach, in
contrast, aims at enhancing user options and also platform-
independence.

Keywords
Layout Manager, GUI, document orientation, end-user de-
velopment, constraint programming, WYSIWYG.

Categories and Subject Descriptors
H5.2 [Information interfaces and presentation (e.g.
HCI): User Interfaces]: GUI.

1. INTRODUCTION
XML-based GUI description languages have been around

for some time and offer the chance to increase user inter-
face robustness. Unfortunately, this transfer is not in itself
adding anything to the functionality available to the user.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Such GUI languages offer merely the same features as con-
ventional GUIs, except for the prospect of the integration
into web applications: web portals can use standard GUI
features instead of only HTML and JavaScript. But also
here, the features go not beyond what has been possible with
Java applets before. The technological change is therefore
rather motivated by new hopes for better software engineer-
ing of applications.

We present here intermediate results of a long-running
research project into the Auckland Layout Model (ALM).
ALM is a formally specified and platform-independent lay-
out specification framework that is more expressive than
common grid-based layout methods such as Java Gridbag
layout [7]. Also it fosters generally a better software archi-
tecture, particularly in GUI layouts at the upper complexity
limit [3]. In particular, this paper presents an editing ap-
proach for constraint-based GUI layout using ALM and an
XML-based description language for GUI layout specifica-
tions, which offer true end-user advantages in an application-
independent and platform-agnostic way. The end-user gains
generic, multilevel customization and personalization op-
tions that are inherently safe and are always available, ex-
cept if explicitly revoked by applications (something that is
supposed to happen rarely). The end-user editing feature of
ALM means that customization options such as adding and
moving toolbars are available in every application without
an effort on the side of the developer. Moreover the edit-
ing feature of ALM is even more generic and flexible than
the handcrafted configuration options of applications pro-
grammed with conventional windows toolkits.

The paper is organized as follows. Section 2 introduces
the basic concepts of ALM. Section 3 introduces the WYSI-
WYG GUI editor embedded into the ALM layout manager.
Section 4 introduces an platform-independent XML format
for ALM specifications. Section 5 discusses the full vision of
document orientation and how this fits into a wider research
approach. Section 6 relates our approach with important
User Interface paradigms.

2. THE AUCKLAND LAYOUT MODEL
ALM offers several different levels of abstraction. On the

lowest level, ALM is based on linear programming [11], i.e.
on linear constraints and the minimization of a linear ob-
jective function. The problem of linear programming is for-
mally well-defined, therefore it constitutes a kind of stable
interface for the implementation of ALM: it can be imple-
mented on any linear programming solver. On top of this

very basic but complete interface, ALM offers higher-order
constructs with features typically used for GUI layout: soft
constraints, i.e. constraints that may be violated if neces-
sary; abstractions for rectangular areas, which contain con-
trols and offer parameters for preferred sizes, alignment and
padding; abstractions for rows and columns, with functional-
ity that enables easy reordering and elision. In the following
we will summarize ALM’s most important features; a more
complete account can be found in [6].

2.1 Linear Constraints
In ALM, the controls of a GUI are aligned at virtual grid-

lines called tabstops, or tabs for short. Tabs are either ver-
tical or horizontal, also known as x- and y-tabs. X-tabs are
represented as variables holding an x-coordinate, and the
latter ones as variables holding a y-coordinate.

If we consider a layout with x-tabstops x0, . . . , xm, m ∈ N,
and y-tabstops y0, . . . , yn, n ∈ N, then a linear constraint for
that layout can take the form

a0x0 + · · ·+ amxm + b0y0 + · · ·+ bnyn OP c

with the coefficients a0, . . . , am, b0, . . . , bn and the right side
c being real numbers, and the operand OP being one of
{≤, =,≥}. A layout can contain an arbitrary number of such
constraints; usually most of the coefficients in a constraint
are zero. It is possible to use different units for different
constraints. A value may be defined in pixels, which makes
the actual size dependent on the graphics hardware, or in
real-world units like cm, which always produces the same
size. In the following sections we will examine different types
of linear constraints, and describe how these can be useful
for GUI layout. We will only consider equalities, but the
concepts can be transferred to inequalities.

2.1.1 Absolute Constraints
We use absolute constraints in order to place x- or y-

tabstops at particular x- or y-positions of the UI, respec-
tively, or set the width or height between tabstops to a fixed
value. If we want, for example, to set x-tabstop x3 at posi-
tion 50, we simply use the constraint

x3 = 50.

In order to set the width of the area between x1 and x2

to 100, we would use the constraint

x2 − x1 = 100.

Such constraints are a very straightforward way to define
the absolute properties of a UI, i.e. the properties that do not
change when, e.g., resizing the window the UI is displayed in.
Note that absolute constraints may be impossible to satisfy
under some circumstances. If, for example, the available
display area is only 10cm wide, the width between two x-
tabstops cannot exceed this value.

2.1.2 Relative Constraints
In contrast to absolute constraints, relative constraints

describe the position of tabstops or proportion of areas rel-
ative to others. This is useful in order to adapt the layout
to changing circumstances, like UI display size or resolu-
tion. The layout manager recalculates the layout when such
a change occurs.

Relative constraints can be used in order to position tab-
stops at positions relative to other tabstops. One might, for

example, want to position an x-tabstop x2 exactly between
two other x-tabstops x1 and x3. Let us assume that x1 ≤ x3,
then the constraint can be expressed as follows:

x2 − x1 = x3 − x2 ⇔ −x1 + 2x2 − x3 = 0.

Similarly, we can center an area that is delimited by x-
tabstops x2 and x3, x2 ≤ x3, horizontally between two other
x-tabstops x1 and x4, x1 ≤ x4:

x2 − x1 = x4 − x3 ⇔ −x1 + x2 + x3 − x4 = 0.

We only need to make sure that the area we want to center
does not exceed the boundaries of x1 and x4 by specifying
that x1 ≤ x2 or x3 ≤ x4.

Another usage for relative constraints is the specification
of an area’s proportions relative to those of another one. If,
for example, we want the width between x-tabstops x1 and
x2 to be twice as much as the the width between x3 and x4,
we would use the following constraint:

x2 − x1 = 2(x4 − x3)⇔ −x1 + x2 + 2x3 − 2x4 = 0.

Since a constraint can contain x-tabstops as well as y-
tabstops, it is also possible to specify the aspect ratio of an
area. We could, for example, specify the aspect ratio for
an area (x1, y1, x2, y2, moviepanel), which might contain a
control for displaying a video. Because we do not want the
video to be shown with an arbitrary, distorted aspect ratio,
we could, for example, set the ratio of width and height of
this area to 16:9. This would be achieved with the following
constraint:

x2 − x1

y2 − y1
=

16

9
⇔ −x1 + x2 +

16

9
y1 −

16

9
y2 = 0.

The aforementioned constraints are hard, i.e. if they are
contained in the specification of a layout, then this layout
will satisfy them strictly. Sometimes, however, we want to
specify constraints that may not be satisfied fully if circum-
stances do not permit so. Such constraints are called soft
constraints; they are natural in applications for user inter-
faces and have been used in the past [1].

Soft constraints are important in order to prevent overcon-
strained specifications which would be infeasible otherwise.
For example, a specification may become overconstrained
when several sets of constraints are merged. Therefore, soft
constraints are relevant when layouts are specified in a mod-
ular manner, i.e. composed using several partial specifica-
tions. ALM supports soft constraints as an abstraction layer
on top of the linear programming solver. Soft constraints can
be handled in exactly the same manner as hard constraints;
they are implemented as a subclass of hard constraints. In
addition, they can be prioritized using penalty parameters
for positive and negative deviations from their exact solu-
tion. Several approaches for prioritizing constraints have
been devised, such as constraint hierarchies [2] that make
sure that important constraints are satisfied first.

On a certain level, it is advisable to use only soft con-
straints, so that a specification will always have a solution.
The different levels of a constraint hierarchy can be related
to access privileges: hard constraints should only be accessi-
ble to trusted developers, since they may render the specifi-
cation infeasible. Similarly, soft constraints with high prior-
ity should be chosen carefully since they may detrimentally
affect all constraints with lower priority.

2.2 Areas
The controls of a GUI are organized in rectangular areas,

which are bound by a pair of x-tabstops and a pair of y-
tabstops each. In general, an area a is defined as follows:

a =def (x1, y1, x2, y2, content)

The x-tabstops x1 and x2 delimit the area on the x-axis,
with x1 being to the left or on the same position as x2;
the y-tabstops y1 and y2 delimit it on the y-axis, with y1

being above or on the same position as y2. content can be a
control of the GUI, but can also be empty. Empty areas are
useful, e.g., for defining margins or padding, or for extending
a layout specification with ordinal information. Like this, a
set of area definitions result in a partial order on the x- and
on the y-tabstops.

One can think of an area as a group of adjacent cells in the
table created by the tabstops that are merged into a rectan-
gle to house one of the graphical elements of the UI. This ap-
proach covers the common colspan and rowspan features of
other concepts for tabular layout: colspan means that adja-
cent table cells lying on a horizontal line can be merged into
a single cell; rowspan means that adjacent table cells lying
on a vertical line can be merged, i.e. the resulting cell spans
over several rows or columns. ALM generalizes colspan and
rowspan by permitting areas that extend between any two
x-tabs and any two y-tabs. In addition to this, ALM permits
overlapping areas – something which cannot be achieved by
merging adjacent cells with colspan and rowspan. This is
because tabs may run through areas, and any tab can be
used to delimit an arbitrary number of areas.

2.2.1 Additional Area Parameters
ALM supports the specification of parameters for areas

that allow the layout manager to find optimal dimensions
for them. One of those properties is the preferred size. This
value expresses the size that an area would need in order to
fulfill its function in an optimal manner. Usually it is based
on the size of the content that is displayed in a control. In
many GUI toolkits, such values are made available by all
controls, and are thus taken directly from them by a layout
manager. That way the layout can be adapted immediately
when preferred sizes change, e.g. when the content shown in
a control changes. Like this, screen real-estate is not unnec-
essarily wasted, and areas can be used in a modular fashion:
each area contains properties describing its demands, while
the system as a whole finds a global solution that respects
the desires of each area as much as possible. Analogously to
soft constraints, the demands of areas can be prioritized, so
that areas that are considered more important can be given
preference over less important areas.

The following list describes some of the area parameters:

Preferred size spref : the preferred width wpref and height
hpref of an area. These optional values can often be
calculated by a GUI toolkit, and can therefore be di-
rectly taken from there.

Minimum size smin: the minimum width wmin and height
hmin of an area. Both values are optional.

Maximum size smax: the maximum width wmax and height
hmax of an area. Both values are optional.

Shrink penalty pshrink: a coefficient for each dimension that
indicates the reluctance on the part of the area to take

on sizes that are smaller than the preferred size. This
value is optional, and sensible default can be chosen
dependent on the type of the control in the area. Con-
trols that contain important information, such as but-
tons with text, should not be shrunk easily and should
therefore have a higher shrink penalty.

Expand penalty pexpand: a coefficient for each dimension
that indicates the reluctance on the part of the area
to take on sizes that are larger than the preferred size.
This value is optional, and again, a sensible default can
be obtained by considering the control type. Controls
such as textboxes where users enter data can benefit
more from additional space than controls with fixed
information content, such as buttons, and therefore
the former should have a smaller expand penalty.

Having useful default values for the different parameters
of the model makes specifications more compact and hides
the complexity of unused model features. A GUI developer
needs, for example, only consider penalty coefficients if they
want to model something that differs significantly from the
default behavior. Like this, developers can learn the features
of the model step by step, and can use the model even with
a limited understanding.

2.3 Rows and Columns
A useful pattern that enhances maintainability of table

definitions is the separate tabstop pattern, which means that
separate tabstops are used to delimit different logical ob-
jects, even if the tabstops end up on the same coordinates.
ALM offers abstractions for columns and rows, which con-
tain two x- or y-tabstops each. Instead of using tabstops
directly, an area can be arranged by placing it into a partic-
ular row and column. The rows and columns offer methods
that make it possible to adjust their size and order dynami-
cally. For example, each row has an optional Previous and
Next property referring to the row directly above and below.
Rows can be removed from and inserted between existing
rows. The order in which the columns appear in the table
is encapsulated in a separate set of constraints, managed
by ALM and independent of the definition of the columns
themselves. Hence, the order of the columns can be changed
very easily without interfering with the rest of the specifica-
tion. In fact, all the parts of a specification, such as areas,
rows and columns, also allow developers to add their own
constraints which are then managed together with the re-
spective part in a modular fashion.

3. END-USER CUSTOMIZATION
The main contribution of this work is a new customization

option that is directly built into the layout manager, and
that is therefore available at any time in every application
using ALM. The customization function presented here is
only the first step in a development programme that will
ultimately support all features of document orientation as it
is presented in Section 5.

How a GUI is switched from the operational mode into
the editing mode can be defined by the developers of the
GUI: the layout manager offers a method Edit that can be
called anytime. After switching to editing mode, the GUI
looks exactly the same, with the exception that certain parts
of the GUI may be highlighted for easier editing, e.g. in the
form of a selection rectangle around one of the areas. The

Figure 1: The properties window in the Area mode.

behavior of the GUI in editing mode is completely differ-
ent: the controls do not offer their normal possibilities of
interaction; instead they behave similarly to purely graphi-
cal objects, as one would expect in an editor, as entities that
can be selected, moved, inserted and deleted.

In editing mode, an additional window appears, which we
call the properties window. The properties window allows
users to switch between several modes of the editor, and
inspect and change properties of the different entities that
make up the specification of the GUI. When the properties
window is closed, the GUI is switched back to the opera-
tional mode. There is an editing mode for areas, a mode
for constraints, and modes for rows and columns. In the
following we will look at the different modes.

3.1 Editing Areas
Figure 1 shows the properties window in the area editing

mode. By clicking on the tabs at the top of the window,
the editing mode can be changed. In this window, all the
parameters of areas can be manipulated, with all changes
becoming immediately visible in the GUI that is edited. For
example, new tabs for an area’s boundaries can be selected
from drop-down lists.

The most important functions for areas are also available
through direct manipulation [12] in the GUI: Fig. 2 shows
how areas can be swapped by dragging and dropping one
area onto another. Both the source area as well as the cur-
rent target area are marked by a selection rectangle, and as
soon as the mouse is released the areas marked by the rect-
angles are swapped. The button in the top-left corner will
be in the center where the grayed out text box is, and vice
versa.

Similarly, also the boundaries of an area can be changed
through direct manipulation by selecting an area and drag-
ging the sides or corners of the selection rectangle. As Fig. 3
illustrates, as soon as the selection rectangle is dragged, all
suitable tabstops in the GUI become visible. A second rect-
angle that highlights possible new boundaries for the se-

Figure 2: Dragging of areas for swap operation.

Figure 3: Dragging of area boundaries.

lected area appears, and it can be snapped to the suitable
tabstops. If the mouse button is released, the boundaries of
the area are changed to the new boundaries.

After a couple of customization steps the GUI could look
as illustrated in Fig. 4. Apart from several swapped areas
and changed boundaries, this layout has an additional area
at the bottom left. This was created by splitting the area
above it horizontally. Both the original and the new area are
marked in the screenshot. Horizontal and vertical splitting
and deletion of areas is supported through the context menu:
the user can right-click on the area to be modified and select
the appropriate operation from the menu.

3.2 Editing Constraints
In the constraints editing mode, the properties window

shows only a selection list of all constraints, a textual repre-
sentation of the selected constraints, and the penalty param-
eters in case the selected constraint is a soft constraint. The
GUI window looks like the one in Fig. 5: the tabstops of the
layout are visible, and the tabstops that occur as variables
in the currently selected constraint are highlighted. Tab-
stops can be added to and removed from a constraint by
right-clicking on them in the GUI can selecting appropriate
operations from the context menu. In the screenshot, the
selected constraint specifies the height of the second row of

Figure 4: Customized layout.

Figure 5: Editing constraints.

buttons at the top left.
Besides textual editing of constraints in the properties

window, absolute constraints – which are the most common
constraints – can be modified through direct manipulation.
The editor recognizes if a constraint specifies an absolute
position or distance, and lets the user drag the respective
tabs in the GUI. If a tab is dropped, the selected constraint
is adjusted appropriately.

3.3 Editing Rows and Columns
The editor also offers modes for editing the rows and

columns in a GUI specification. In the row mode, all the
rows are marked, as illustrated in Fig. 6. The selected row
is highlighted. The order of rows in a GUI can be changed
by dragging the selected row. In the screenshot, the second
row from the top is dragged to a new location between the
third and fourth row, which is indicated by the marker at
this new location. As soon as the mouse button is released,
the dragged row is removed from its original location, the
first row is linked with the third row to close the gap, and the
dragged row is inserted at its new position. By right-clicking
on a row operations for deleting a row and splitting a row
horizontally can be invoked from the context menu. The
mode for editing columns works analogously to the mode
for rows.

Figure 6: Editing constraints.

4. DOCUMENT-ORIENTED
REPRESENTATION OF GUIS

ALM GUIs can be represented in a platform-independent
way as XML documents using the XML ALM Object Nota-
tion (XALMON, pronounced “salmon”). This format differs
from other XML-based user interface description languages
such as XUL and XAML in that it provides a separation of
content and layout, and that it is platform-independent. By
contrast, XAML and XUL are tied to their respective GUI
frameworks.

In a XALMON specification, the controls are only ad-
dressed by a symbolic name, and the format makes no as-
sumptions about the GUI toolkit. This leads to a clean
separation between the GUI content and the ALM layout,
which makes it possible to ignore the differences between the
controls of particular GUI toolkits when using XALMON.
In all the supported GUI toolkits, i.e. Java Swing, .NET
Forms and the Haiku Interface Kit, each GUI control can
be given a textual name that can be accessed during run-
time as a string. The controls in the GUI of an application
are defined programmatically, i.e. in the source code of the
application, but without having to worry about layout. The
XALMON specification, which describes the layout, refers
to controls by their textual name. In the example below,
the control button1 is such as symbolic name, referring to a
button control.

XALMON files can be created by every user interface that
uses ALM, and they can also be loaded by each such user
interface. In the editing mode, functions for loading and
saving a specification are available, and these functions can
also be invoked from within an application through meth-
ods of the layout manager. For a fully document-oriented
GUI specification solution [4], XALMON is still lacking some
features such as a content description language and a de-
composition mechanism. But it already fulfills the vision
of document orientation with respect to single GUI layouts.
The following listing shows a small XALMON example:

1 <almlayout>

2 <xtab> x1 </xtab>

3 <ytab> y1 </ytab>

4 <row>

5 <name> r1 </name>

6 <next> r2 </next>

7 </row>

8 <row> <name> r2 </name> </row>

9 <area>

10 <name> button1 </name>

11 <left> left </left>

12 <right> x1 </right>

13 <row> r1 </row>

14 <leftmargin> 10 </leftmargin>

15 <halignment> center </halignment>

16 <expandpenalty> 1 </expandpenalty>

17 </area>

18 <constraint>

19 <leftside>

20 <summand>

21 <coeff> -1 <coeff> <var> y1 </var>

22 </summand>

23 <summand>

24 <coeff> 1 <coeff> <var> r1.top </var>

25 </summand>

26 </leftside>

27 <op> = </op>

28 <rightside> 0 </rightside>

29 <penaltyneg> 1 </penaltyneg>

30 <penaltypos> 1 </penaltypos>

31 </constraint>

32 </almlayout>

The whole specification is enclosed in an almlayout tag. In
lines 1-2 the tabstops x1 and y1 are defined. Lines 4-8 define
two rows r1 and r2, with r1 being directly above r2. Lines
9-18 define an area containing the control with the symbolic
name button1. Since each control can be contained in at
most one area, this name can also be used as a symbolic
name for the area. The area is contained in row r1, begins
at the left side of the GUI, and is bounded on the right side
by x1. In lines 14-16 various additional area parameters
are specified. Lines 18-31 define the soft constraint −y1 +
r1.top = 0, with r1.top being the top y-tab of row r1.

5. THE DOCUMENT-ORIENTED
APPROACH

The document oriented approach [4] uses the document
metaphor to add natural semantics to user interfaces. User
interfaces are managed as documents that can be edited
directly by the user, with the editing functionality being
part of the UI rendering infrastructure. As such, the work
presented here is a natural milestone within the document-
oriented programme, as it allows users to treat GUIs as doc-
uments with respect to presentation and editing. The full
document-oriented approach extends the customization op-
tion to the GUI content and offers potentials that are sum-
marized in the following.

5.1 Implementation Perspective
The implementation perspective of the document-oriented

approach is shared with current document-based approaches
such as Mozilla XUL and Microsoft XAML.

Separation of concerns All levels of GUI layout are auto-
matically separated from implementation of the func-
tionality.

Small footprint A document-oriented GUI is comparable
to a HTML page. It can be rendered by a generic
viewer and hence no installation is necessary.

New cross platform potentials The document-oriented
description offers the potential to use one format for
all platforms, thus ensuring compatibility and support-
ing other features such as unified look-and-feel. It is
possible to use cross platform GUI libraries, or to give
a cross-platform mapping between fundamental GUI
concepts (such as buttons).

Non-universality Definitions of GUIs through code offer
a Turing-universal language to specify the GUI. This
makes GUI description theoretically unanalyzable and
practically error prone. It is also often unneeded, hence
document-orientation uses here non-universal languages
that are easier to analyze.

5.2 Design Perspective

Unification of GUI editor and GUI framework GUI ed-
itor functionality is available at runtime and thus can
be unified with functions such as resizable separators.

Decomposition mechanism For the document-oriented ap-
proach, reuse of documents is not necessarily restricted
to a single application. For example, if a document
represents a print-dialogue, the same dialogue can be
reused across several applications and thus realizes set-
tings that are shared between applications.

5.3 Analysis Perspective
The analysis perspective is the one most closely related

to the user view. Our view of analysis is here that it is the
model that the user and the developer agree on. Analysis
covers the functional requirements of an application.

Definition A document-oriented GUI is a precise definition
of what is the GUI and what is the rest of the program.
With a code-based GUI definition, no real distinction
can be made.

Simplified controls In a standard GUI, labels and text
input fields are distinct. In our approach, they differ
only in the rights the user has. While a label is read-
only, and maybe has a slightly different visual style,
the text input field can be edited.

Comprehensive customization In document-orientation
it is easy to grant users sweeping customization pow-
ers.

Explicit semantics This is important for example for aux-
iliary dialogues. In [4] we showed that the scope of op-
tions even within the same application varies widely.
Typical scopes are: session, document, application, of-
fice suite, user, platform. The scope is regularly not
presented. In the document-oriented approach, the
scope of changes to options becomes obvious.

5.4 Quality Perspective

Isolation The GUI can be separated from the other pro-
gram, even put into a different process such as the
browser, thus enhancing system stability.

Robustness The chances of incorrect GUIs are reduced.
An example type of error are incompletely rendered

GUI components that miss vital options such as a can-
cel button. An example is shown in Fig. 7. Such er-
rors are more likely in code-based GUIs due to the
inherently higher complexity of their representation.
In document-oriented GUIs such errors can not only
be traced by the user, but also corrected.

Completeness Those GUI features that relate directly to
the fundamental GUI model, such as customization
and editability, can be offered in every application,
thus ensuring the completeness of the options that the
user has.

Conformity to Expectations Through cross platform ca-
pabilities, the look-and-feel can be unified. Look-and-
feel works on the level of reflexes and is an important
quality attribute.

Figure 7: An incompletely rendered popup window
without information and cancel button.

6. RELATED PARADIGMS
XML-based GUI-description languages have been around

for some time, for instance in the form of Mozilla XUL.
Their acceptance was limited, for unknown reasons. With a
major platform now switching to this paradigm in the form
of XAML, it is likely that XML-based GUI descriptions will
become more widespread.

The document-oriented approach is able to increase our
understanding of the connection between several important
high-level models for user interfaces. All of these approaches
can be understood as being based on a representation of the
GUI as a document.

6.1 The Seeheim Model
The Seeheim Model [10] proposes a layered approach for

user interfaces. The interface is separated into three differ-
ent components that we want to refer to here as layers: the
presentation layer, the dialogue control layer, and the ap-
plication interface model layer. The original Seeheim model
also includes a circumvention path for this layering, which
has been, however, of lesser interest. The Seeheim model is
on a very high abstraction level, but the fundamental idea
of a multi-layer architecture remains timely. A document-
oriented description is an excellent way to specify a layer,
since the document format can ensure strict adherence to
the layer abstraction. The ALM document format achieves
a clear layering within the presentation component.

6.2 The Ousterhout Dichotomy
Ousterhout has claimed a trend to a clear split between

scripting languages and system programming languages [9].
His position is first an observation of different languages, but
then it motivates a separate use of these languages. Script-
ing languages are favored for high-level gluing purposes, and
user interfaces are considered an instance of this. Tcl/Tk
is an instance of such a user interface scripting language,
JavaScript would be a different one. XALMON takes the
role of a non-universal scripting language. Single XALMON
specifications lead to continuous constraint evaluations that
give rise to many machine instructions, which is a hallmark
of a scripting language.

6.3 Smalltalk MVC and Model 2
Model-View-Controller is a classical approach to GUI de-

sign, and still valid in its various forms. It is quite different
from the Model 2 for web applications, which is however also
known as Web MVC [5]. In Model 2 architectures the view
is naturally realized using documents.

6.4 Separation of Content and Presentation
The design guideline of separating content and presenta-

tion is an interesting notion here because it is not yet re-
ferring to a particular architecture. It is often understood
to be an instance of the general guideline of separation of
concerns. This view might be helpful, but it can also put
the focus too narrowly on the software engineering issues.
In practice, this guideline gives rise to the use of style sheets
and is therefore somewhat different from the other concepts
discussed here, and in fact orthogonal. The same principle
can be found in HTML cascading style sheets [8], GUI skins,
XML style sheets, and actually, document master templates
in office suites. XALMON offers a precise separation of lay-
out from other concerns.

7. CONCLUSION
The shift to XML has been hailed as a paradigm shift in

computing, but XML-based user interface description lan-
guages have yet to prove that they offer advantages to the
end-user. In this paper we present the end-user customiza-
tion options of the ALM layout manager, which use a platform-
independent XML format. The layout manager offers a GUI
editor for every application. The customization options go
beyond what is offered in other, grid-based layout managers.
This contribution is part of a wider research into the concept
of document orientation, with the goal of making applica-
tion behavior more intuitive and allow the end-user to regain
control of the user interface.

8. ACKNOWLEDGMENTS
We would like to thank Gyurme Dahdul for his initial

work on the GUI editor. This work has been funded by
AARN Innovation Ltd and the Foundation for Research,
Science and Technology of New Zealand under grant number
AARN0501.

9. REFERENCES
[1] G. J. Badros, A. Borning, and P. J. Stuckey. The

cassowary linear arithmetic constraint solving
algorithm. ACM Trans. Comput.-Hum. Interact.,
8(4):267–306, 2001.

[2] A. Borning, B. Freeman-Benson, and M. Wilson.
Constraint hierarchies. Lisp Symb. Comput.,
5(3):223–270, 1992.

[3] G. W. Christof Lutteroth. Modular specification of
GUI layout using constraints. In Proceedings of
ASWEC 2008 – 19th Australian Conference on
Software Engineering. IEEE Press, 2008.

[4] D. Draheim, C. Lutteroth, and G. Weber. Graphical
user interfaces as documents. In Proceedings of CHINZ
2006 – 7th International Conference of the ACM’s
Special Interest Group on Computer-Human
Interaction. ACM Press, 2006.

[5] D. Draheim and G. Weber. Specification and
Generation of Model 2 Web Interfaces. In APCHI 2004
- 6th Asia-Pacific Conference on Computer-Human
Interaction, LNCS 3101. Springer, June 2004.

[6] C. Lutteroth, R. Strandh, and G. Weber. Optimal
GUI layout as a problem of linear programming.
Technical Report UoA-SE-2007-6, Software
Engineering, The University of Auckland, August
2007.

[7] C. Lutteroth, R. Strandh, and G. Weber. Domain
specific high-level constraints for user interface layout.
Constraints, 13(3), 2008.

[8] J. Nielsen. Designing Web Usability: The Practice of
Simplicity. New Riders Publishing, Thousand Oaks,
CA, USA, 1999.

[9] J. K. Ousterhout. Scripting: Higher-level
programming for the 21st century. Computer,
31(3):23–30, 1998.

[10] G. E. Pfaff, editor. User Interface Management
Systems. Springer, Secaucus, NJ, USA, 1985.

[11] A. Schrijver. Theory of linear and integer
programming. John Wiley & Sons, 1986.

[12] B. Shneiderman. Direct manipulation for
comprehensible, predictable and controllable user
interfaces. In IUI ’97: Proceedings of the 2nd
International Conference on Intelligent User
Interfaces, pages 33–39. ACM Press, 1997.

