
Reflection as a Principle for Better Usability

Christof Lutteroth, Gerald Weber
Department of Computer Science

The University of Auckland
38 Princes Street, Auckland 1020, New Zealand

{lutteroth, g.weber}@cs.auckland.ac.nz

Abstract

This paper explores the principle of reflection, which is
well-known from the world of programming languages, and
its relation to HCI. We define reflection in a wider sense
that can be applied to the world of user interfaces, and ar-
gue that the new, generalized notion of reflection can benefit
the usability of a system significantly. The paper discusses
concrete approaches for the design of reflective user inter-
faces, and shows that the reflection principle is in fact al-
ready used in many existing applications.

1 Introduction

In the context of computer science, reflection is known
as a principle from the domain of programming languages.
In its most common form, it enables a program to get infor-
mation about itself and its runtime environment. With this
information a program can, for example, adapt itself to new
data structures or changes in the runtime environment. The
principle of reflection, however, is not just a programming
concept. Although it has been discussed systematically in
the programming domain, this is just one of its applications.
In this paper we show that reflection is applicable to and
relevant for the domain of user interface design and imple-
mentation as well.

Reflection in user interfaces is in fact ubiquitous. It is in-
trinsically related to important functions of a program, like
functionality for help or features for program customiza-
tion, and therefore affects its usability. The reflection prin-
ciple can be used as a lens to gain a better understanding of
user interfaces, and inspire new ways for improving them.

The notion of reflection in user interfaces is described
in Sect. 2. In this section we discuss concepts and termi-
nology that was elaborated in the context of programming
languages, and use them in order to create a taxonomy for
features found in user interfaces. To the best of our knowl-
edge such an analogy has not been described before. In

Sect. 3 we describe different approaches that can be used in
order to create reflective user interfaces. Many of them are
well-known but have never been discussed from this point
of view. Section 4 describes some examples of reflective
features in the user interfaces of relatively common appli-
cation, and shows that – although this has never been dis-
cussed explicitly – there are in fact many reflective features
in existing applications. It also delineates a software model-
ing application prototype which we used in order to exam-
ine the potential of reflective user interfaces. Section 5 dis-
cusses related research. The paper concludes with Sect. 6.

2 Reflection and HCI

As mentioned, reflection is common in many program-
ming languages and can provide a high degree of flexibility
during the runtime of a program. For an overview of reflec-
tion in different programming paradigms, see [5]. Reflec-
tion in a programming language refers to the capabilities of
a program to read and modify information about itself or its
runtime environment. This information is called metadata.
On a HCI level, we refer to reflection as the ability of a user
interface to represent and support the modification of itself
and its application. The metadata is the information about
the user interface or the application that is represented or
modified.

Commonly two different kinds of reflection are distin-
guished: structural and behavioral reflection. Furthermore,
each kind of reflection can be split up into two operations:
introspection and intercession. In the following sections we
want to describe these different aspects, which are summa-
rized in the table of Fig. 1, and what they mean on the level
of HCI.

2.1 Structural Introspection

In the context of programming languages, structural in-
trospection means that a program can read information
about its own structure, i.e. about its data structures and

Proceedings of the 2007 Australian Software Engineering Conference (ASWEC'07)
0-7695-2778-7/07 $20.00 © 2007

Introspection Intercession
Structural Representation Modification

of data structures of data structures
& implementation & implementation

Behavioral Representation Modification
of information of the UI
about the UI

Figure 1. The different aspects of reflection in
a user interface.

its program code. For a user interface it usually means that
it presents not only application data but also information
about the structure that this data has or can have, i.e. meta-
data. This provides insight to a user as to what data can
be processed by an application and how the different ele-
ments of that data relate to each other. A data management
application, for example, could help users find the infor-
mation they need by revealing the data schema of its data-
base. Although less common, structural introspection can
also mean that information about a program’s implementa-
tion is revealed in the user interface. For example, a system
might reveal to the user that its functionality depends on
some other program, which has to be installed first. This
can help a user understand technical problems in case the
application is not working correctly.

2.2 Structural Intercession

Structural intercession in a programming language
means that types and/or program code can be modified by a
program. For a user interface this usually means that it sup-
ports modification of structural information about the ap-
plication’s data; i.e. metadata about data structures can be
changed. This enables users to adapt the structure of the
application data to their needs. For example, templates of
any kind fall into this category: they describe common as-
pects of a group of data instances and thus determine their
structure. If we can use templates in a text processing ap-
plication, it is much easier to make sure that documents are
consistently structured or that a particular visual design is
preserved. Structural intercession can also relate to the im-
plementation of an application. This means that the user
interface supports to some degree modification or config-
uration of the internal functionality. For example, a user
interface might offer functionality for extending the system
with plug-ins, so that the user can extend or reduce the func-
tionality offered by the application.

2.3 Behavioral Introspection

Behavioral introspection in programming languages
means that it is possible to read information about the be-
havior of the runtime environment. E.g. it is possible for
a program to look into the code of the interpreter, i.e. the
abstract machine, that executes it. We want to use this term
if a user interface offer users the possibility to acquire infor-
mation about how the system behaves towards the user. In
other words, it means that the user interface reveals infor-
mation about itself. For example, it might show what hap-
pens when a particular button is pressed, or how a particular
setting of a control affects the system behavior. A system
with behavioral introspection has a user interface that is in a
way self-explanatory because it grants the user a look under
the hood of the system into the underlying mechanisms. Its
semantics are made perceivable for the end-user.

2.4 Behavioral Intercession

In programming languages, behavioral intercession
means that you can change the behavior of the runtime en-
vironment, i.e. the way the runtime environment behaves
towards a program. We want to use this term if a user in-
terface makes it possible to change the way a program be-
haves towards the user. In other words, the user interface
of a program can be configured. This is very important,
for example, for professional users who need to tailor the
user interface to their professional environment in order to
maximize productivity, or for better accessibility of an ap-
plication. An application might allow users to change the
controls available on the user interface, or use alternative
input and output devices.

3 Approaches for Reflection in User Inter-
faces

In this section we want to discuss some approaches for
creating user interfaces with reflection capabilities. Some
approaches are well-known and some are new. None of the
approaches have been discussed in the context of reflection
before.

3.1 Generic User Interfaces

Many applications are able to process different types of
data. Most popular text processing applications, for exam-
ple, allow the user to edit documents of different formats,
such as ASCII text, ODF or HTML. This is possible be-
cause these applications use an underlying data model that
is flexible enough to deal with the particularities of the dif-
ferent data types. Whereas the user interface generally stays

Proceedings of the 2007 Australian Software Engineering Conference (ASWEC'07)
0-7695-2778-7/07 $20.00 © 2007

the same, such an application informs the user about the
characteristics of a data type in some way or other, thus
providing some degree of structural introspection. A text
processing application, for example, will not provide the
same functionality for ASCII text documents as for HTML.
Some applications provide more structural reflection by al-
lowing the user to import and use data of a previously un-
known data type. Some spreadsheet applications, for ex-
ample, are able to import data from structured text files
with different formatting or delimiting characters. An even
higher degree of structural reflection is provided when an
application allows the user to define and use completely new
data types. This is the case, for example, in some desktop
databases. The key element in all these applications is that
they provide a generic user interface for several, potentially
very different, data types. Internally this requires a flexible
data model, and sometimes also involves structural reflec-
tion of data types by the program itself.

Another common way of implementing generic user in-
terfaces is to apply the “don’t ask what kind” principle.
This means that code is able to process data of different
types by making use of dynamic binding. In object-oriented
programming languages this is done with method polymor-
phism, whereas in other languages function hooks are used.
It is commonly used in component technologies like Mi-
crosoft’s Object Linking and Embedding (OLE), which al-
low data of one application to be embedded and edited in
others without them knowing about each other. E.g. it is
possible to embed a spreadsheet into a text document and
change the spreadsheet from within a text processor. This
does not only allow applications to provide a higher degree
of structural introspection into different data types, but also
enables a higher degree of behavioral intercession by pro-
viding new means for the extension and configuration of the
user interface.

3.2 Metadata Integration

In some cases the reflective parts of a user interface, i.e.
those that deal with metadata, can be integrated with those
that support data operations. While the data of an appli-
cation serves as its productive input and output, its meta-
data may describe what data types exist and how they are
structured. Often the metadata describes commonalities of
data instances, which can be important for preserving the
integrity of a system, or just useful for information reuse.
For a text processor, for example, such metadata would typ-
ically include the page size setting, the default font and page
formatting. The user interface could allow a user to set
metadata globally, i.e. for all data instances, or with more
sophisticated mechanisms. Many applications support a no-
tion of templates, which can be used to set metadata for
groups of data instances. In many applications the part of

the user interface responsible for data is separate from the
part allowing metadata access, as pointed out in Fig. 2.

In the world of programming languages metadata and
data are usually treated in the same way. Metadata is just
special kind of data, represented with the same data model
and accessed with the same operations. Sometimes an anal-
ogous approach is possible in a user interface: data and
metadata can be represented in the same user interface and
possibly even modified with the same functions. We want to
call this metadata integration because the user interface for
metadata is integrated with the user interface for data, which
usually means that the internal representations of data and
metadata are integrated as well. This is depicted in Fig. 3.

A common problem with reflection in programming lan-

Figure 2. System with a non-reflective user
interface.

Figure 3. System with a reflective user inter-
face.

guages is known as meta-confusion, which means that the
different data and metadata levels that might exist are easily

Proceedings of the 2007 Australian Software Engineering Conference (ASWEC'07)
0-7695-2778-7/07 $20.00 © 2007

confused. We have to be careful to avoid the same prob-
lem for metadata integration in the user interface: if it is not
immediately clear if a user is modifying data or metadata,
i.e. a simple data element or a metadata element that might
change the way the application behaves, this will lead to
mistakes. Metadata integration may enhance accessibility
and result in a coherent internal design, but metadata and
data should be distinguished clearly in order to prevent a
loss of clarity.

3.3 Plug-in Architectures

A certain degree of reflection can be achieved by using
an architecture that can be extended by plug-ins. Insertion
and removal of plug-ins is often supported in the user in-
terface so that it can be done by the end-user. Sometimes
plug-ins just add internal functionality to a system, which
results in structural intercession, but sometimes they also
extend or modify the user interface, resulting in behavioral
intercession. The ability of a program to let the user see
what plug-ins are installed, and possibly how they are con-
figured, enables a degree of introspection.

3.4 Direct Data Access

A different approach for reflection is possible if the way
data is handled within an application comes very close to
the way end-users should be able to handle the data. In-
stead of creating new layer of functionality for the end-user,
we can provide a front-end for the existing data structures
and operations. This can produce very elegant, flexible and
minimalistic designs and expressive user interfaces. For ex-
ample, such an application can leverage the reflection ca-
pabilities of its runtime environment, thus reusing a great
deal of functionality. A data management application that
should be able to let the user use new, formerly unknown
data types, written in a programming language that supports
reflection, could use existing features for data introspection,
dynamic loading, and introspective access. Reflective capa-
bilities of the user interface could thus be directly delegated
to reflection in the implementation. A direct data access ar-
chitecture is, for example, the naked objects approach [21].

3.5 Document-Oriented User Interfaces

A natural choice for systems like Fig. 3 would be to use
the concept of document orientation [7]. This concept has
much in common with the concept of direct data access,
specifically with regard to metadata. In conventional appli-
cations, metadata is often presented in auxiliary dialogues
like the print dialogue. Such auxiliary dialogues have the
disadvantage that they present data that may have very dif-
ferent lifecycles, or scopes; some data live only for the time

the window is open, other might be permanent immediately
if they are changed in the dialogue, others again are only
permanent after clicking ok. In the latter case there are
even more subtle differentiations between data valid only
for the document, and data valid for the user profile. The
document-oriented approach tries to provide the user with
an intuitive understanding of these lifecycles by using the
document metaphor instead of auxiliary dialogues. The
metainformation is part of a document, typically a certain
part of the whole document. The presentation of the metain-
formation as part of the document is actually no big change
from using an auxiliary dialogue, but it adds the desired
clarification of the semantics. In principle, such document
editors follow to some extent the principle of direct data
access. The presentation as a part of the document, as it is
proposed here, gives the user an immediate idea of the scope
and lifecycle of the change: the change is valid for the docu-
ment, and it becomes permanent in exactly the same fashion
that other changes would become permanent. This intuitive
understanding is a direct consequence of the fact that this
metainformation has become integrated with the ordinary
data; we can infer its lifecycle behavior from its property of
being just data. For the software architecture this means that
there is no need for the software engineer to create a sepa-
rate operational process like opening an auxiliary dialogue.
The different scopes of the metadata can be expressed by
using a decomposition mechanism for documents. Such de-
composition mechanisms are anyway important for many
real-life applications of document editors. Documents of
the size of a book should rather be decomposed into conve-
nient blocks of chapter size. In document orientation, this
same reuse mechanism can be used; for example the profile
specific metainformation is stored as a single file in the pro-
file of the user, and by including always the same file the
desired scope of this information can be achieved. This ap-
proach is very favorable from a software engineering point
of view since it offers a substantial reuse, in this case of the
decomposition mechanism, and it offers a large degree of
initial flexibility, which in turn can be either exposed to the
user, for example by allowing to delete the reference to the
profile-specific data, or it can be encapsulated and released
only in fine doses (for example by making it impossible to
drop the inclusion of the profile-wide metainformation).

3.6 Templates and Master Instances

One choice for reflective user interfaces that follows the
document-oriented approach and also supports the intuitive
use of reflection is the usage of master instances like master
slides in slideshow editors. Master instances are different
from style sheets in that a master instance resembles an or-
dinary part of a document, for example, in the slideshow
editor it looks much like another slide and is therefore an

Proceedings of the 2007 Australian Software Engineering Conference (ASWEC'07)
0-7695-2778-7/07 $20.00 © 2007

Figure 4. Auxiliary dialogue and master slide in a slideshow editor.

instance. The master instance can be formatted like an or-
dinary part of the document, but any formatting operation
on this master instance is automatically applied to all parts
of documents that are based on this master instance. This
approach to present metainformation has now become stan-
dard in slideshow editors. These editors offer a master slide
view as shown in Figure 4. This master slide has many
properties of ordinary slides. However, formatting this mas-
ter slide has immediate effects on all slides that are derived
from this master slide. Contrast this with the auxiliary dia-
log window shown on the left hand side of Figure 4. This
behaviour of the master slide is not simply the concept of
having data and metainformation in the same presentation
format. In this case the additional degree of unification is
that the metainformation, for example the standard setting
of the font size, is shown in the master slide not as a nu-
merical value, but as the font size of a prototypical text. In
this way the master font size can be manipulated with the
same tools as the ad-hoc font size. Hence the change of the
metainformation is exactly the same operation as the change
of the information in the individual instances. The master
instance concept can be implemented to different degrees.
in the case of slide editors, the master instance is often hid-
den in special menu entries. The degree of integration could
go even further, if the master slide is stored as an actual
slide, perhaps in a separate repository, but in clear analogy
to ordinary slides. There is one particular drawback of cur-
rent slide editors, namely that the slide master is always
file-specific, and a consistent change of the master slide
across even a directory of talks is precluded. This prob-
lem would be solved naturally, but reusing the same master
instance by the decomposition means that were mentioned
in Section 3.5. From a software engineering viewpoint, the
master instance concept can deliver several advantages to
the software architecture: ideally, the manipulation of the

master slide does not require additional functionality, but is
done by the same code that does the instance manipulation.
Slight differences in functionality, for example a restriction
in the ability to delete special objects like the title, can be
implemented with dynamic linking. The master instance
concept can be used in many cases, as will be explained in
section 4.3. A closely related concept are server pages, such
as Java Server Pages (JSP) and Active Server Pages (ASP).
For example, consider a JSP for presenting a table. If this is
done the most natural way, then the JSP contains indeed a
proper table, but with only one row [6]. Such templates, al-
though they have actually program-like properties, can then
be edited just like instances, for example the table grid lines
can be formatted, and these edits have the intended effect
on all the pages subsequently generated.

4 Examples

In this section we want to discuss what role reflection
plays in existing technologies. We will see that reflection is
used in several systems, although the underlying principle
has never been discussed explicitly. We will also discuss
cases where reflection is absent but could be applied to im-
prove the usability of a system.

4.1 Unix-Style Operating Systems

Unix-style operating systems are known for a motto
which says that “everything is a file”. This is true for sys-
tem entities like console connections, connected hardware
devices, some configuration settings and, of course, all or-
dinary data. The structure of the system can be introspected
and certain settings can be changed, thus this approach is an
example of structural introspection and intercession. While
most files contain ordinary data, others contain information

Proceedings of the 2007 Australian Software Engineering Conference (ASWEC'07)
0-7695-2778-7/07 $20.00 © 2007

Figure 5. Two different ways to present advanced settings.

about internal system entities, i.e. metadata. The metadata
can be accessed and processed in the same manner as or-
dinary data files, e.g. using the same set of command line
tools. With the file system being the user interface, data and
metadata are handled similarly and thus a degree of meta-
data integration is achieved.

The idea of the file system as the operating system’s main
user interface is taken a step further in the Unix successor,
the Plan 9 operating system from Bell labs [19]: even more
system entities are represented as files, including windows,
processes, and almost anything else available in the oper-
ating system. This is an example of how a homogeneous,
integrated user interface for data and metadata can yield a
very slim and elegant design that facilitates the system’s us-
age. However, like in programming languages, the principle
of reflection is still used on a rather technical level. The file
system approach provides by itself rather an interface for
developers than for end-users. But a consistent interface on
a lower level of a system is much more likely to propagate
into a clean interface on a higher level: a direct data access
user interface layer on top of the file system could use the
same reflective metaphor and thus provide the same advan-
tages.

4.2 MS Windows

In the following we want to examine the user interface
for some typical system configuration tasks in the Windows
operating system.

A practical example for achieving behavioral introspec-
tion is a function for help. This gives users the possibility
to look up parts of the user interface that they do not under-
stand, and hence gain knowledge about system behavior. In
order to enhance usability a help function can be context-
sensitive. And it can offer even very small pieces of infor-

mation, like the tool tip labels that appear when the mouse
button is hovered over certain parts of some UIs.

There are also other ways of representing the underly-
ing mechanisms and concepts of a system, which are less
canonical and may require some creativity and innovation.
In graphical desktop environments like MacOS and MS
Windows, for example, windows can be minimized into
icons in a task bar, and this is visualized by an anima-
tion that shows the window shrinking into its icon on the
screen. While this may be superfluous eye-candy for com-
puter savvy users, it suggests to unexperienced users that the
minimized window is not gone and where it can be found.
A similar effect is applied for window maximization.

The use of a registry based on a directory service is
an example of structural reflection; the metainformation of
many programs is presented in a single interface. This in-
stance of a reflective user interface is a replacement for set-
ting environment variables in a traditional batch file exe-
cuted on startup. The reflective interface has the advantage
of simple semantics: The environment variables for a cer-
tain application can be looked up in one particular place. In
a batch file, perhaps even with conditional execution, it can
soon be intransparent where the actual settings are made.

A closely related example are auxiliary dialogues for
advanced settings, for example printer settings. In princi-
ple they follow the same logical structure, except that they
are often found within applications as opposed to a central
repository. Again, thinking in terms of a reflective interface
makes it obvious that the more uniform presentation is the
tree view that presents the set of settings rather like a doc-
ument. The tabbed panel approach has a stronger emphasis
on presentation, and this can lead to strange imbalances, if
for example the number of settings is very different from
rubric to rubric, leading to some empty and some very large
tabs (Figure 5).

Proceedings of the 2007 Australian Software Engineering Conference (ASWEC'07)
0-7695-2778-7/07 $20.00 © 2007

Figure 6. The same metainformation is presented in several different ways

4.3 Office Applications

In many applications, there are several different ways
how the same metainformation is presented to the user. In
a current version of the popular text processing system MS
Word, font size can be set ad-hoc or for a paragraph type.
For the ad-hoc setting of font size, we can identify at least
two places where it can be set, both differing in presentation
slightly. If the font size of a paragraph type can be seen and
changed with the application, then this is a case of reflection
in our terminology. For the font size of paragraphs, there are
at least three different presentations used (Figure 6). This
means that this example of metainformation is presented in
three different ways. A user that is supposed to work with
these different presentations in a consistent way must have
an abstract model of the concept of font size. By virtue of
this model he is able to recognize the same metainformation
in the different presentations. A better alternative would be
to use only one presentation, and the reflective approach
would foster such a parsimonious solution.

The concept of a master object has become well known
through slide editors, but this concept can be used far be-
yond. This starts to happen in some other graphical tools,
but has not yet happened in the most popular tools. In Word
processing tools for example, there is no concept of a mas-
ter, although it would well be conceivable. Take again the
example dialogues from Figure 6. Although they all are dif-
ferent presentations, they all are interfaces different from
the document. Obviously there is a correspondence be-
tween the leftmost dialogues in Figure 4 and Figure 6. In
the example word processor there is no correspondence to
the master slide approach, although this is possible. A mas-
ter paragraph could be a single paragraph that is formatted
like an ordinary paragraph, but changes to its format are im-

mediately visible in the changed documents.
Many desktop applications allow a user to configure the

tool bars, i.e. the panels with buttons for common functions,
by adding/removing buttons and moving a tool bar to differ-
ent locations. Another example is the possibility to define
shortcut key combinations for functions that a user wants to
be accessible from the keyboard. Other examples for behav-
ioral intercession include the setting of big fonts or buttons
for better accessibility on the screen, changing the order,
size and location of different panels, and configuration of
the dialogues that a system offers.

4.4 Meta-CASE Tools

Meta-CASE tools, e.g. the one described in [23], sup-
port configuration and generation of specialized visual edi-
tors for 2D graph-like diagram types. Because they usually
aim at being as generic as possible, i.e. being able to gener-
ate many different such editing tools, they have to explicitly
deal with metadata that describes the structure of a diagram,
its appearance, and the behavior of the editor. A user has to
define a model for a diagram type, and then specify how
each of the model elements are visualized. Providing both
information about models and functionality for modifying
it means that the user interface of a meta-CASE tool nat-
urally supports structural reflection. Being able to observe
and change the editing functionality that is provided for a
generated diagram editor means that behavioral reflection
is supported as well.

To illustrate the idea of meta-CASE tools, Fig. 7 shows
a simple model for state machine diagrams and its relation
to a visual representation. The model specifies types for
states, transitions and labels on transitions, which are shown
as filled circles. Associations between the types are shown
as connections between the circles: each transition refers

Proceedings of the 2007 Australian Software Engineering Conference (ASWEC'07)
0-7695-2778-7/07 $20.00 © 2007

to one source and one target state, and has one label. The
graphical representation of a state is a circle, and that of
a transition an arrow between the circles of its source and
target states. The label of a transition is placed on its cor-
responding arrow. In the same manner many different di-
agram types can be defined. Tools that can be generated
with such specifications are, for example, editors for data
models, process diagrams and electronic circuits.

Figure 7. Model (top) and graphical represen-
tation (bottom) of a state machine diagram.

4.5 The AP1 System

AP1 is a research prototype we are using to examine old
and new concepts for reflection in user interfaces. It is a
data management and manipulation application for software
models, e.g. models for functional specifications, user inter-
faces and source code. But it is very generic so that it could
be used for other data as well. AP1 consists of a data repos-
itory, which stores all data, and an extensible generic editor,
which can represent data using different views and manip-
ulate them using different operations. The window of the
generic editor can be split up into panels, and each panel
can contain a different view. New views and operations can
be added to the system during runtime.

Figure 8 shows a screenshot of the generic editor. The
left panel uses a generic tree view, which allows a user to
view and edit any data in the repository. The black parts in
the tree view are data instances and the gray parts are roles
which can be used to connect instances to other instances.
An instance is given as an identifier, a colon, and the type of
the instance. Instances to the right of a role are connected to
the parent instance above them by that role. The gray parts
also contain information about multiplicities, i.e. how many
instances can be connected by this role minimally and max-
imally, or information about inheritance relations between
instances. Thus, information about the structure of data can
always be made visible.

Data and metadata are stored in a single internal data
model. All metadata is handled like data, i.e. represented in

the same data model and with the same user interface. Most
operations can be used on data as well as on metadata, e.g.
editing operations or functionality for search, and both data
and metadata use the same mechanisms for version control.
The data shown in the left panel is the metamodel of the data
model used for the repository. We can see two metatypes
that are connected to the “PD metamodel” instance: “Type
Entity type” and “Type Role”. The right panel shows a table
view, which can be used to view and edit the instances of a
particular type. The instances shown here are all instances
of “Type Entity type”, so the table lists all the different types
that are currently present in the repository. Metadata types
can be extended just like data, and modified to a degree that
ensures system integrity. It is also possible to link any data
with any metadata. This can be used, for example, in order
to attach documentation to a data type. AP1 supports sub-
typing as a non-destructive form of specialization: if users
need a special form of a particular type, then they can create
a subtype of it that reuses the structure that has already been
defined, extends it, and can be used in place of the original
type. The original structure remains undisturbed.

Unlike most common applications, the generic editor in-
tegrates the parts of the user interface for invoking func-
tionality with the ones for viewing and entering data. There
are no menu or tool bars that consume valuable screen real
estate, but just the aforementioned views. Functionality
is available in the form of operations, which are basically
methods that can be invoked on the instances of a particu-
lar type. Operations can modify the repository as well as
the user interface of the generic editor. The usual way to in-
voke an operation is to open the context menu of an instance
that is represented in a view. The context menu contains all
operations that are applicable to the type of the particular
instance, and thus no irrelevant operations are shown. In
the screenshot we see the context menu of instance “Type
Entity type” of type “Entity type”, which contains two oper-
ations for data manipulation, “Change link” and “Remove
link”, and two operations for user interface configuration,
“Make root” and “Apply table view”. Operation “Make
root” changes the tree view so that the instance on which
it is invoked is displayed at the root, and operation “Apply
table view” changes the view of the panel to a table of all
instances of type “Entity type”, like the one shown in the
right panel.

AP1 stores all configuration information in the reposi-
tory so that the generic editor can be used to edit it. For
example, all operations available to the user are instances
in the repository, and we can add, delete and modify op-
erations by changing corresponding instances and links be-
tween them. In the screenshot we see how operation “Ap-
ply table view” is associated with type “Entity type”: in-
stance “Operation Apply table view” is connected to in-
stance “Type Entity type” by role “operations”. Program

Proceedings of the 2007 Australian Software Engineering Conference (ASWEC'07)
0-7695-2778-7/07 $20.00 © 2007

Figure 8. The generic editor of the AP1 prototype.

code is part of the repository as well, i.e. the program code
of the operations, the views, and the repository itself. Also
the user interface is stored in the repository and can be mod-
ified with generic views, and we are currently working on
a specialized view that allows direct manipulation of GUI
elements in a document-oriented fashion [7].

5 Related Work

Reflection, in one way or other, has also been described
in other work as an important user interface concept, al-
though not as explicitly as we do in this paper. For exam-
ple, ISO 9241-10 [12] names self-descriptiveness, suitabil-
ity for learning and suitability for individualization as gen-
eral principles for achieving the ergonomic requirements of
user interfaces. Self-descriptiveness is, in fact, a direct re-
sult of behavioral introspection, and related to ease of use
for the casual user and the difficulty of learning. About the
suitability of applications for learning is said that “rules and
underlying concepts which are useful for learning should be
made available to the user” so that “the user is able to ob-
tain information on the model on which the application is
based”. This kind of transparency in a system is achieved
by structural introspection. Suitability for individualization
is directly related to structural and behavioral intercession.

One of the criteria for performance-centered user inter-
faces [15] is to “provide performers easy access to and con-
trol of desktop support components, interface presentation,
and functions”. Access to interface presentation and func-
tions refers to behavioral reflection, while desktop support
components include different kinds of help system. Help
functionality in a program, e.g. as described in [11, 14], is
a typical example of behavioral introspection, since its pur-
pose is to explain to the user how to interact with the system

in order to accomplish certain tasks. Different approaches
for help generation have been described that can provide
behavioral introspection in the user interface by performing
behavioral introspection on an internal model of the system
[22, 4, 18, 16]. [8] indicates that help systems that explain
the functions of a program result in a better learning per-
formance for users than help systems that merely provide a
list of actions to perform. The former approach, i.e. offer-
ing insight about the system to the user, is the very heart of
introspection.

Adaptability and extensibility are important for user in-
terfaces as well. Approaches for adaptability have been dis-
cussed for web-based systems, e.g. [9], and graphical user
interfaces, e.g. [7], and are examples of behavioral interces-
sion. [10] describes an approach for adaptability and exten-
sibility of user interfaces that is based on metadata about UI
components and related to reflection in programming lan-
guages. Those problems have also been addressed in toolk-
its like the ones described in [3, 13] and user interface man-
agement systems, e.g. [20].

The instrumental interaction model [2, 1] reflects con-
cepts and functions of an application as instruments, which
are first-class objects in the user interface. It relies on de-
sign principles that are inspired by programming languages,
with one of them being reification, i.e. the representation
of metainformation as ordinary data. Consequently, this
methodology targets the creation of reflective user inter-
faces. One of three desired properties of user interfaces
that are mentioned is reinterpretability, meaning that “users
can change input/output devices, add or remove interaction
techniques, even program their own functions”, which is
pursued by making interactions first-class objects of an ap-
plication. This does, in fact, describe the principle of be-
havioral intercession.

Proceedings of the 2007 Australian Software Engineering Conference (ASWEC'07)
0-7695-2778-7/07 $20.00 © 2007

Some of the usability heuristics described in [17] are re-
lated to reflection as well: “visibility of system status” can
be achieved by introspection. “Recognition rather than re-
call” is supported when metainformation is visible in the
user interface, and this information can be helpful in or-
der to “help users recognize, diagnose, and recover from er-
rors”. “Flexibility and efficiency of use” is supported with
behavioral intercession, and “help and documentation” is
provided through behavioral introspection.

6 Conclusion

In this paper we described how the principle of reflec-
tion can benefit the domain of user interfaces. The different
aspects of reflection form a taxonomy for many application
features that strongly affect usability. We have discussed
several approaches to reflection in user interfaces and have
examined user interfaces for reflective features. Examples
show that these concepts can be found in and are relevant
for real applications. Our own research prototype exam-
ines new ideas for reflective user interfaces and serves as
a vehicle for future work in this area. To the best of our
knowledge the the reflection principle has never been sys-
tematically applied to the domain of user interfaces before.

References

[1] M. Beaudouin-Lafon. Interactions as First-Class Objects. In
Proceedings of the ACM CHI 2005 Workshop on the Future
of User Interface Design Tools. ACM Press, 2005.

[2] M. Beaudouin-Lafon and W. Mackay. Reification, polymor-
phism and reuse: three principles for designing visual inter-
faces. Proceedings of the working conference on Advanced
visual interfaces, pages 102–109, 2000.

[3] B. B. Bederson, J. Meyer, and L. Good. Jazz: an exten-
sible zoomable user interface graphics toolkit in java. In
UIST ’00: Proceedings of the 13th annual ACM symposium
on User interface software and technology, pages 171–180,
New York, NY, USA, 2000. ACM Press.

[4] D. E. Caldwell and M. White. Cogenthelp: a tool for author-
ing dynamically generated help for java guis. In SIGDOC
’97: Proceedings of the 15th annual international confer-
ence on Computer documentation, pages 17–22, New York,
NY, USA, 1997. ACM Press.

[5] F. Demers and J. Malenfant. Reflection in logic, func-
tional and object-oriented programming: a short compara-
tive study. In Proceedings of the IJCAI’95 Workshop on Re-
flection and Metalevel Architectures and their Aplications in
AI, 1995.

[6] D. Draheim, E. Fehr, and G. Weber. JSPick - a server pages
design recovery. In 7th European Conference on Software
Maintenance and Reengineering, LNCS. IEEE Press, March
2003.

[7] D. Draheim, C. Lutteroth, and G. Weber. Graphical user
interfaces as documents. In Proceedings of CHINZ 2006 -

7th International Conference of the ACM’s Special Interest
Group on Computer-Human Interaction. ACM Press, 2006.

[8] S. Dutke and T. Reimer. Evaluation of two types of online
help for application software. Journal of Computer Assisted
Learning, 16(4):307–315, 2000.

[9] J. Fink, A. Kobsa, and A. Nill. User-oriented Adaptivity
and Adaptability in the AVANTI Project. In Proceedings of
the Conference ’Designing for the Web: Empirical Studies’,
1996.

[10] J. Grundy and J. Hosking. Developing adaptable user inter-
faces for component-based systems. Interacting with Com-
puters, 14(3):175–194, 2002.

[11] K. Halsted and J. Roberts. Eclipse help system: an open
source user assistance offering. Proceedings of the 20th an-
nual international conference on Computer documentation,
pages 49–59, 2002.

[12] International Organization for Standardization. Ergonomic
Requirements for Office Work with Visual Display Terminals
(VDT) – Part 10: Dialogue Prinicples. ISO 9241-10, 1996.

[13] E. Lecolinet. A molecular architecture for creating advanced
GUIs. Proceedings of the 16th annual ACM symposium
on User interface software and technology, pages 135–144,
2003.

[14] J. Masthoff and A. Gupta. Design and evaluation of just-in-
time help in a multi-modal user interface. Proceedings of the
7th international conference on Intelligent user interfaces,
pages 204–205, 2002.

[15] K. L. McGraw. Defining and designing the performance-
centered interface: moving beyond the user-centered inter-
face. interactions, 4(2):19–26, 1997.

[16] B. Myers, D. Weitzman, A. Ko, and D. Chau. Answering
why and why not questions in user interfaces. Proceedings
of the SIGCHI conference on Human Factors in computing
systems, pages 397–406, 2006.

[17] J. Nielsen. Ten Usability Heuristics, 2004.
[18] S. Pangoli and F. Paterno. Automatic generation of task-

oriented help. In UIST ’95: Proceedings of the 8th annual
ACM symposium on User interface and software technology,
pages 181–187, New York, NY, USA, 1995. ACM Press.

[19] R. Pike, D. Presotto, K. Thompson, and H. Trickey. Plan 9
from Bell Labs. Computing Systems, 8(3):221–254, 1995.

[20] J. H. Pittman and C. J. Kitrick. Vuims: a visual user in-
terface management system. In UIST ’90: Proceedings of
the 3rd annual ACM SIGGRAPH symposium on User inter-
face software and technology, pages 36–46, New York, NY,
USA, 1990. ACM Press.

[21] Richard Pawson and Robert Matthews. Naked Objects. Wi-
ley, 2002.

[22] P. N. Sukaviriya, J. Muthukumarasamy, A. Spaans, and
H. J. J. de Graaff. Automatic generation of textual, audio,
and animated help in uide: the user interface design. In AVI
’94: Proceedings of the workshop on Advanced visual inter-
faces, pages 44–52, New York, NY, USA, 1994. ACM Press.

[23] N. Zhu, J. Grundy, and J. Hosking. Pounamu: a meta-
tool for multi-view visual language environment construc-
tion. In Proceedings of VL/HCC’04 IEEE Symposium on
Visual Languages and Human-Centric Computing. IEEE
Press, 2004.

Proceedings of the 2007 Australian Software Engineering Conference (ASWEC'07)
0-7695-2778-7/07 $20.00 © 2007

