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Abstract

We present the Auckland Layout Model (ALM), a constraint-based
technique for specifying 2D layout as it is used for arranging the controls
in a GUI. Most GUI frameworks offer layout managers that are basically
adjustable tables; often adjacent table cells can be merged. In the ALM,
the focus switches from the table cells to vertical and horizontal tabu-
lators between the cells. On the lowest level of abstraction, the model
applies linear constraints, and an optimal layout is calculated using linear
programming. However, bare linear programming makes layout specifi-
cation cumbersome and unintuitive, especially for GUI domain experts
who are often not used to such mathematical formalisms. In order to
improve the usability of the model, ALM offers several other layers of ab-
straction that make it possible to define common GUI layout more easily.
In the domain of user interfaces it is important that specifications are
not over-constrained, therefore ALM introduces soft constraints, which
are automatically translated to appropriate hard linear constraints and
terms in the objective function. GUIs are usually composed of rectan-
gular areas containing controls, therefore ALM offers an abstraction for
such areas. Dynamic resizing behavior is very important for GUIs, hence
areas have domain-specific parameters specifying their minimum, maxi-
mum and preferred sizes. From such definitions, hard and soft constraints
are automatically derived. A third level of abstraction allows designers
to arrange GUIs in a tabular fashion, using abstractions for columns and
rows, which offer additional parameters for ordering and alignment. Row
and column definitions are used to automatically generate definitions from
lower levels of abstraction, such as hard and soft constraints and areas.
Specifications from all levels of abstraction can be consistently combined,
offering GUI developers a rich set of tools that is much closer to their
needs than pure linear constraints. Incremental computation of solutions
makes constraint solving fast enough for near real-time use.
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1 Introduction

Today many computer programs have graphical user interfaces (GUIs). The
developers of such programs have to make sure that the locations and sizes of
graphical controls exploit the available screen space efficiently, and contribute
to a good usability – a problem known as user interface layout. There are many
development tools that support the creation of static GUI layouts, i.e. GUIs
in which the locations and sizes of controls remain the same during runtime.
However, good GUIs are dynamic, i.e. they can adapt themselves to changes
such as resizing of the windows in which the GUI is kept, or different space
requirements within the GUI, e.g. due to changing information content. In order
to describe dynamic GUI layout appropriately, a developer has to specify its
invariants, i.e. the constraints that remain valid during runtime while the actual
locations and sizes may change.

Unfortunately, there is no standard way of describing GUI layout constraints.
Since there are many different computer architectures, operating systems, pro-
gramming languages and development frameworks, numerous different GUI
technologies have evolved. Each of these technologies has their own quirks
and requires a specific know-how, particularly when it comes to GUI layout.
As a result, it is important for research in that area to abstract from indi-
vidual technologies and consider GUI layout from a more formal perspective,
i.e. as a constraint solving problem. Several research projects have used vari-
ous constraint solving techniques for GUI layout, e.g. [7, 6, 17, 27], with linear
programming being one of the most popular techniques, e.g. [24, 2, 9, 15, 5].

At the same time one has to keep in mind that developers and GUI design-
ers need tools that are easy to comprehend, i.e.which can be used efficiently
without too much formal background. A problem with formal constraint solv-
ing techniques is that they are cumbersome to use when applied to domains
such as GUI layout. Their concepts are usually very generic and thus on a
very low level. This leads us to the necessity of higher-level constraints for GUI
layout, i.e. abstractions that are tailored to the needs of this domain and easily
understood by its practitioners.

In this paper we present the Auckland Layout Model (ALM), which is a
higher level constraint language that captures natural abstractions for the do-
main of GUI layout. The focus is on 2D layout and the concepts are very general,
so that they can be applied to print layout of documents as well as to the design
of resizable, window-based GUIs. The language is an important part of a larger
project, the Auckland Layout Manager, which is a platform independent library
for GUI layout with concepts that overcome some of the problems of common
GUI layout frameworks. The Auckland Layout Manager implements the con-
straint language presented here in the shape of an API, and was successfully
applied in larger software packages such as a software engineering tool suite.
ALM greatly simplified the GUI development of these projects.

General information about ALM and its implementation is given in Sect. 2.
Section 3 explains the significance and use of linear constraints for GUI layout.
ALM offers different types of abstractions that can be grouped into layers. Hav-
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ing several levels of abstractions can fulfill different purposes; it can be used to
simplify the constraints solving process [14] or it can make the creation of models
easier. We focus here on the second purpose. The concept of rectangular areas
is very important for layouts, therefore ALM offers abstractions to support this
concept, which are described in Sect. 5. Areas have certain classic parameters
specifying their minimum, maximum and preferred sizes. Rectangular areas are
often grouped into rows and columns, therefore there are other abstractions that
make these concepts first class for certain kinds of constraints. Abstractions for
rows and columns are described in Sect. 6. We will discuss how higher levels of
abstraction are translated to lower levels of abstraction, and how a specification
is eventually used to generate an instance of the linear programming problem.
Section 7 presents some small layout examples. ALM’s abstractions can be used
to conveniently specify typical layout patterns, and in fact, a pattern approach
is very much applicable and important for this domain. This is discussed in
Sect. 8. Section 9 discusses related work, and Sect. 10 evaluates the good and
bad points of ALM, particularly pointing out its shortcomings and limitations.
Section 11 concludes the paper.

2 The Auckland Layout Model

GUIs are commonly created with the help of GUI toolkits, i.e. libraries which
define the various controls and functions that are needed in many GUIs. Often
developers have to set the location and size of every control manually, and also
write code that manages these values during the runtime of an application.
For example, if the size of a window changes, an application would typically
reposition and resize the controls in that window. Many modern GUI toolkits
include layout engines, which support developers in that task. Instead of having
to take care of the location and size of every control, developers can feed a layout
engine with more abstract information, and the layout engine can then position
and size the controls according to some mechanism.

A modern toolkit usually contains several different layout engines, some only
supporting very simplistic layouts and others more sophisticated ones. A row
layout would, for example, simply take a list of controls and arrange them onto
a panel row-wise, starting a new row when the current one has insufficient space.
More complex layout engines would typically arrange all controls in a table-like
manner, and possibly offer additional constraints. Often a developer can, for
example, specify upper and lower limits for the size of each control, and also
set a preferred size. The layout engine would then try to stretch or squeeze
the controls so that they fit into their allocated space without violating the
constraints.

The ALM presented in this paper was implemented in the Auckland Layout
Manager, which is a layout engine that allows it to specify GUI layout formally
using the ALM. Like most good layout engines, the Auckland Layout Manager
arranges the elements of a GUI in a tabular fashion. However, it allows for
more flexibility of the layout by allowing GUI designers to leave the order of the
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elements in the GUI partially undefined. It allows a GUI designer to specify
the dynamic behavior of a layout, i.e. the behavior under changing environment
conditions such as a reduced window size. Such specifications help a layout
engine to optimize the distribution of available screen space. In contrast to
many popular layout engines, the Auckland Layout Manager has a solid math-
ematical foundation. GUI developers can specify a layout on different layers of
abstraction, with the more abstract layers being based on the ones below. On
the lowest level of abstraction, layouts are specified by linear constraints and a
linear objective function. Optimal layouts are calculated using linear program-
ming. This means that all layouts are eventually specified in terms of linear
algebra.

The ALM based on linear constraints is a representative for a whole class
of tabstop-based layouts. In principle, we are not restricted to using linear
constraints. Any layout model that extends the Auckland Layout Model by
allowing for additional (e.g. nonlinear, or integer programming) constraint types
is called an extended Auckland Layout Model. Also, all layout models that use
basically the same qualitative layout model, especially the tabstop approach and
the option to specify only a partial order on tabstops, are called Auckland-style

layout models.

2.1 General Considerations

User interfaces, just as practically any form of well-structured document, orga-
nize their content in rectangular areas, or areas that can be suitably described
with a rectangular bounding box. Also the area on which the GUI or document
is laid out is usually rectangular itself. By painting the rectangular areas in a
particular order, i.e. each on a particular layer, we can reproduce the complete
document or GUI. Another important property one can observe is that there ex-
ist relationships between the edges of the elements’ rectangular areas. Usually,
there are particularly important virtual lines spanning across the overall area
to which groups of other areas are aligned. The alignment to common edges
serves to structure the represented content, e.g. as seen in lines and paragraphs
of text, and adds to a clear overall appearance.

When we extend every edge of every rectangular area in the GUI to be
either a vertical or horizontal unbounded line, we end up with a grid in which
all parts of the GUI are placed. This grid can be described as a generalization of
an ordinary table, which is a widely used and intuitively understood graphical
artifact. This common and versatile structure can serve as a basis for structured
graphical content, and that is why our methodology is based on a tabular layout.

The ALM can be understood as a generalization of the table construct as it
is present in many document markup languages. To the practitioner, tables are
known as a very general layout tool; in HTML, for example, tables are often
used as the main means to create desired page layouts (although they are being
more and more replaced by Cascading Style Sheets). In those approaches, tables
are directly defined as rows and columns. In the ALM, the focus switches to the
borders between the table elements, which are conceived as vertical and hori-
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Figure 1: The different levels of abstraction offered by the ALM.

zontal tabulators and called x-tabstops and y-tabstops, respectively. Together
they are simply called tabstops, or tabs for short. Tabstops are symbolic enti-
ties with a name, and correspond to the variables of the specification. Solving
the specification means assigning each x-tab an x-coordinate and each y-tab a
y-coordinate in the coordinate system of the GUI.

2.2 Levels of Abstraction

As pointed out, ALM offers different levels of abstraction, which are illustrated
in Fig. 1. On the lowest level, a layout specification is a linear programming
problem. Linear programming is an optimization technique that minimizes (or
maximizes) an objective function subject to a set of constraints. In linear pro-
gramming, the objective function is a linear combination of the variables :

c1x1 + c2x2 + . . . + cnxn

where each xi is a variable and each ci is a constant coefficient. The constraints
are linear equalities and inequalities. In other words, linear programming is
about finding values for all variables x1, . . . , xn so that all constraints are sat-
isfied and the objective function value is either as large or as small as possible.
Several software packages (commercial and open-source) exist for solving linear
programming problems of this type. Most of them use the well-known simplex

method [11] which, although its worst-case asymptotic complexity is exponen-
tial, is known to be very fast in practice. The Auckland Layout Manager uses
the lp solve package [4], which is a freely available, open-source linear optimizer.

Over-constrained specifications are a common problem when specifying GUI
layout with constraints. In order to keep the specification feasible, soft con-
straints can be used, which only add a penalty to the objective function if
violated. The layer on top of the linear programming solver manages soft con-
straints for the developer, which are transparently translated into hard con-
straints and terms in the objective function. ALM supports soft constraints
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with complex penalty functions that allow GUI developers to specify variables
with affinities of varying strengths for several particular values.

The next layer of abstraction provides functionality for managing rectangu-
lar areas of the GUI, which may contain controls or other graphical elements.
This layer allows developers to specify the topology of the elements in the GUI
using ordinal constraints, and offers domain-specific parameters such as size con-
straints for an area. The layer for areas builds on the layer for soft constraints.

The top layer offers abstractions for rows and columns in which areas can be
aligned, similar to common spreadsheet applications. This layer employs ordinal
constraints to define the order of the rows and columns, and offers domain-
specific parameters for the alignment of areas in table cells. All underlying layers
are used in order to translate rows and columns into low-level specifications.

2.3 Performance

The Auckland Layout Manager has been subjected to several performance tests,
and has also been used in real applications with rich and complex GUIs. Our
experience has shown that large feasible layout specifications can be efficiently
solved on modern hardware within milliseconds, and that the performance is
good enough for near real-time use such as immediate response to dynamic re-
sizing of a GUI with the mouse. Infeasible specifications could take significantly
longer to process than feasible specifications, but once a specification was proven
feasible, processing time had a reasonable bound.

Like other linear programming based systems used for GUI layout such
as [24, 2, 15], the Auckland Layout Manager uses an incremental approach.
Layout specifications are constructed and modified incrementally: if a specifi-
cation is changed by a GUI developer, corresponding changes of the internal
representation are kept to a minimum. Similarly, solutions are calculated in-
crementally by using a previous solution as initial value. Layout specifications
frequently contain redundant information, which is automatically removed be-
fore starting the optimization process. All this reduces constraint solving time
drastically.

We have tested our implementation of ALM on different hardware, and found
that even on old hardware layout calculation is fast, resulting in a smooth
interactive behavior. The simplistic layouts shown in Figs. 2 are calculated
in about 0.3 milliseconds on a Pentium M with 1.6 GHz, and in about 0.7
milliseconds on a Pentium 3 with 788 MHz. The left layout uses three areas,
as described in Sect. 5, and two linear constraints, as described in Sect. 3. The
right layout uses the abstractions for rows presented in Sect. 6, with different
alignment settings for each of the three rows. The more sophisticated layout
in Fig. 3 contains 14 areas, using different settings for alignment and margins.
It takes about 0.7 milliseconds on a Pentium M with 1.6 GHz, and about 1.4
milliseconds on a Pentium 3 with 788 MHz.

The layout illustrated in Fig. 4 contains 100 areas. It was generated ran-
domly, and not all areas are visible due to the lack of screen space. The rigidity
parameters are set so that some areas with small rigidity are swallowed up by
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Figure 2: Left: Layout with three areas and two additional constraints. Right:
Buttons aligned in three equally high rows, i.e. top-left aligned, centered, and
bottom-right aligned.

Figure 3: Layout with 14 areas.

others. On a Pentium M with 1.6 GHz the layout calculation takes about 6
milliseconds, and on a Pentium 3 with 788 MHz it takes about 15 milliseconds.

3 Specifying GUI Layout with Linear Constraints

Like in many other approaches, layout specification of ALM is based on linear
programming, which makes use of linear constraints. Tabstops are used as the
constraint variables and are interpreted as x- and y-coordinates in the layout.
So if we consider a layout with x-tabstops x0, . . . , xm, m ∈ N, and y-tabstops
y0, . . . , yn, n ∈ N, then the set of possible constraints on them looks as follows:

{ a0x0 + . . . + amxm + b0y0 + . . . + bnyn OP c

| a0, . . . , am, b0, . . . , bn, c ∈ R ∧ OP ∈ {≤, =,≥}}
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Figure 4: Randomly generated layout with 100 areas.

Note that it is possible to use different units for different constraints. A
value may be defined in pixels, which makes the actual size dependent on the
graphics hardware, or in real-world units such as cm, which always produces
the same size. For this to work, all values are transparently converted to pixels,
using the properties of the active display. In the following sections we will
examine different types of linear constraints, and describe how these can be
useful for GUI layout. We will only consider equalities, but the concepts can be
transferred to inequalities quite easily.

3.1 Absolute Constraints

We use absolute constraints in order to place x- or y-tabstops at particular x-
or x-positions of the GUI, or set the width or height between tabstops to a fixed
value. For example, if we want to set x-tabstop x3 at position 50, we simply use
the constraint

x3 = 50.

In order to set the width of the area between x1 and x2 to 100, we would
use the constraint

x2 − x1 = 100.

Such constraints are a very straightforward way to define the absolute prop-
erties of a GUI, i.e. the properties that do not change when, e.g., resizing the
window the GUI is displayed in. Note that absolute constraints may be impos-
sible to satisfy under some circumstances. For example, if the available display
area is only 10cm wide, the width between two x-tabstops cannot exceed this
value.
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3.2 Relative Constraints

In contrast to absolute constraints, relative constraints describe the position
of tabstops or proportion of areas relative to others. This is useful in order
to adapt the layout to changing circumstances, such as GUI display size or
resolution changes. The layout manager recalculates the layout when such a
change occurs.

Relative constraints can be used in order to position tabstops at positions
relative to other tabstops. For example, one might want to position an x-tabstop
x2 exactly between two other x-tabstops x1 and x3. Let us assume that x1 ≤ x3,
then the constraint can be expressed as follows:

x2 − x1 = x3 − x2 ⇔ −x1 + 2x2 − x3 = 0.

Similarly, we can center an area that is delimited by x-tabstops x2 and x3,
x2 ≤ x3, horizontally between two other x-tabstops x1 and x4, x1 ≤ x4:

x2 − x1 = x4 − x3 ⇔ −x1 + x2 + x3 − x4 = 0.

We only need to make sure that the area we want to center does not exceed the
boundaries of x1 and x4 by specifying that x1 ≤ x2 or x3 ≤ x4.

Another usage for relative constraints is the specification of an area’s pro-
portions relative to those of another one. For example, if we want the width
between x-tabstops x1 and x2 to be twice as much as the width between x3 and
x4, we would use the following constraint:

x2 − x1 = 2(x4 − x3) ⇔ −x1 + x2 + 2x3 − 2x4 = 0.

Since a constraint can contain x-tabstops as well as y-tabstops, it is also
possible to specify the aspect ratio of an area. For example, we could specify
the aspect ratio for an area (x1, y1, x2, y2, moviepanel), which might contain a
control for displaying a video. Because we do not want the video to be shown
with an arbitrary, distorted aspect ratio, we could set the ratio of width and
height of this area to a standardized ratio such as 16:9. This would be achieved
with the following constraint:

x2 − x1

y2 − y1

=
16

9
⇔ −x1 + x2 +

16

9
y1 −

16

9
y2 = 0.

4 Soft Constraints

The linear constraints discussed in the last section are hard, i.e. if they are
contained in the specification of a layout, then this layout will satisfy them
strictly. However, sometimes we want to specify constraints that may not be
satisfied fully if circumstances do not permit so. Such constraints are called
soft constraints, and are a common technique for dealing with over-constrained
problems [25, 16]. They are natural in applications for user interfaces and have
been used in the past [2].
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Let us consider an example. We have four x-tabstops, x1 ≤ x2 ≤ x3 ≤ x4,
and the following hard constraints:

C = {x2 − x1 = 2(x4 − x3), x4 − x3 ≥ 50}.

According to the constraints the width between x1 and x2 has to be twice
as large as the width between x3 and x4, which in turn must not be smaller
than 50. If we have a total space available on the horizontal of less than 150,
then these constraints cannot be satisfied. However, we might want to be able
to render a layout for total widths less than 150, and we might decide that
the first constraint is not vital under such circumstances. While we want the
constraint to be satisfied whenever possible, we might permit a little deviation
as much as necessary. The solution is to transform the constraint into a soft
one.

Soft constraints are basically ordinary linear constraints together with one
or two penalty coefficients. Soft linear equalities have two penalty coefficients,
ppos and pneg, which describe how much deviations from an exact solution of
the constraints in a positive or negative direction are penalized. If one does
not need to distinguish positive and negative deviations, but wants to penalize
deviation in all directions in the same manner, the penalties are set so that
ppos = pneg. Soft linear inequalities need only a single penalty coefficient p

because inequalities using the ≤ operator can only have positive deviations, and
inequalities using the ≥ operator can only have negative deviations. The higher
the penalty coefficients the more will the layout engine favor the soft constraint
over others, trying to minimize the overall penalty, i.e. soft constraints can be
prioritized. More about this will be described later on.

Soft constraints are important because in contrast to hard constraints they
guarantee that there is always a solution. If we add hard constraints to a layout
specification the space of layout solutions can easily turn out to be empty under
certain circumstances, or even empty altogether. Hence several approaches for
prioritizing constraints have been devised, including constraint hierarchies [8]. It
is a well known phenomenon that natural specification approaches for user inter-
faces can lead to over-constrained problem definitions, if the constraints would
all be considered as non-negotiable. This can happen accidentally, e.g.when
different GUI developers add their own constraints without being aware of the
possibility of making the layout infeasible.

Therefore, it might even be advisable to use only soft constraints on a certain
level, in order to avoid corrupt specifications that do not have a solution under
all possible circumstances. The idea is similar to that of superuser and user
modes in operating systems: in the superuser mode, program code is capable
of crashing the system and therefore has to be developed carefully. In user
mode, crashing the system should not be possible, therefore the capabilities are
restricted. Analogously, it might be advisable to allow only soft constraints for
regular GUI development. By giving them high enough penalty coefficients,
soft constraints can be made to behave like hard ones, while guaranteeing that
they can be violated if there would be no solution otherwise. The choice of the
penalty coefficients will be discussed later in Section 4.7.
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With soft constraints it is possible to simulate a spring-like behavior between
tabstops while avoiding conflicts with other constraints. Springs basically cause
the sizes of a layout to grow and shrink proportionally to spring constants,
which are properties assigned to individual widths and heights. This basically
results in linear constraints with the proportions taken up by individual areas
determined by the coefficients, as discussed in Sect. 3.2.

4.1 Representing Soft Constraints

Since linear constraints are an intrinsic part of the linear programming problem,
all hard linear constraints can directly be handed over to the optimizer just as
they are. Soft constraints require a bit of extra work and are reduced to several
hard linear constraints and a summand of the objective function, i.e. using a
weighted cost model. We chose to implement soft constraints on top of normal
linear programming since many good solvers do not support soft constraints
explicitly. There are solvers such as Cassowary [2] that support soft constraints
but do not offer the numerical representation of penalties chosen for ALM. Such
a representation arises naturally from the way soft constraints are represented,
as described in the following. As mentioned before, a linear inequality that is
treated as a soft constraint has a single penalty coefficient p. Linear equations
that are soft constraints can be treated as two linear inequalities with operators
≤ and ≥, respectively. The penalty coefficient ppos of the soft linear equal-
ity corresponds to the penalty coefficient of the ≤ inequality, and the penalty
coefficient pneg corresponds to the penalty coefficient of the ≥ inequality. Con-
sequently, it is enough to know how to represent soft inequalities.

For each soft constraint of the form

a0x0 + . . . + amxm + b0y0 + . . . + bnyn ≤soft c (1)

and a penalty coefficient p, we hand a hard constraint of the following form to
the optimizer:

a0x0 + . . . + amxm + b0y0 + . . . + bnyn − δ ≤ c (2)

with δ being a new variable in our system. The variable δ indicates how much
the soft constraint is violated and is called the deviation variable of this soft
inequality. If the inequality (1) is to be read as a hard constraint, we call this
the hard constraint corresponding to the soft constraint. For the soft constraint,
we use a subscript soft at the operator for clarification. We call the hard con-
straint (2) handed down to the optimizer the hard constraint underlying the soft
constraint.

We pose that δ ≥ 0, and want δ > 0 only if the left side of the soft constraint
needs indeed to be greater than the constant on the right side, i.e. if a violation
occurs. With just the linear constraints this is not guaranteed: an arbitrarily
large constant can be added to δ without changing the solution of the aforemen-
tioned constraints. In order to solve this problem we have to add a summand to
the objective function that has the form pδ with p > 0. Because the optimizer
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Figure 5: Examples for functions of area width over penalty. Left: example
penalty function as defined by the penalty parameters of an area. Right: exam-
ple of an arbitrary convex penalty function.

will minimize the objective function, δ will be chosen no greater than necessary.
Soft inequalities with operator ≥ are handled analogously.

For linear equations, according to the aforementioned translation into two
inequalities, two variables δneg ≥ 0 and δpos ≥ 0 are introduced. Because the
optimizer will minimize the objective function, both δneg and δpos will be chosen
no greater than necessary, which means that at least one of the new variables will
be zero. The optimal solution of the system will tend to allow more deviation
for soft constraints with small penalty coefficients, as they contribute less to the
overall penalty, and allow less deviation for soft constraints with high penalty
coefficients, as they contribute more. This is exactly the behavior that we want.

4.2 Arbitrary Convex Penalty Functions

With the penalty coefficients described in the last section, positive resp. negative
deviations from a preferred value are penalized with a single penalty coefficient.
For example, if we look at how the penalty p changes with the width w of an
area for which a preferred width wpref has been set in a soft constraint, we
see that it generally looks like the left side of Fig. 5. We call this a penalty

function. The penalty is zero for w = wpref and behaves linearly for w < wpref

and w > wpref . Usually the penalty coefficients are greater than zero, so that
we have a dropping line ending at (wpref , 0) to the left of wpref , and a rising
line stretching out from it on the right.

In some rare cases one might desire a more sophisticated penalty function,
such as the one depicted on the right side of Fig. 5 for the width of an area. Such
a penalty function can be arbitrarily composed of linear segments, i.e. it can be
a piecewise linear function, with the restriction that the resulting function is
convex. With such penalty functions deviations from a preferred value can be
penalized in a nonlinear fashion, i.e. larger deviations can be penalized over-
proportionally stronger than smaller deviations. Like this, nonlinear penalty
functions such as quadratic functions can be approximated.
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Arbitrary convex penalty functions can be defined with the following param-
eters:

• a set of sample points (w1, p1), . . . , (wn, pn), through which the function
runs,

• a penalty for w = 0,

• a coefficient describing the gradient of the function for w > wn.

Without loss of generality, this definition refers to a function between width and
penalty. Other penalty functions can be defined in the same manner.

The concept of arbitrary convex penalty functions in ALM is a higher-order
construct that can, like all ALM features, ultimately be reduced to the problem
of linear programming. How this reduction takes place will be discussed in the
next section.

4.3 Representing Arbitrary Convex Penalty Functions

In this section we want to describe how arbitrary convex penalty functions can be
approximated on a finite interval in the form of additional linear constraints and
an additional summand of the objective function. Without loss of generality, let
w be the variable that we want to define the penalty function on. As described
in Sect. 4.2, arbitrary convex penalty functions can be linearly approximated
in as much detail as necessary with a set (0, p0), (w1, p1), . . . , (wn, pn) of n + 1
sample points, with 0 < w1 < . . . < wn, and a coefficient c > 0 describing the
gradient of the function for w > wn. A penalty function could theoretically be
defined on R, but we limit this discussion to R

+
0 without loss of generality.

For each wi, i ∈ {1, . . . , n}, we define a soft constraint w = wi with penalty
coefficients pnegi

and pposi
. This means that we add hard constraints to the

system of the form

w + δnegi
− δposi

= wi, δnegi
≥ 0, δposi

≥ 0

and add summands to the objective function that have the form

pnegi
δnegi

+ pposi
δposi

.

Now we can choose the penalty coefficients pnegi
and pposi

in a way that those
summands added to the objective function behave, as a whole, like the penalty
function we want to represent.

At this point it is important to understand why only convex penalty func-
tions can be specified. The reason for this is that each soft constraint must have
penalty coefficients pnegi

and pposi
so that

pnegi
+ pposi

≥ 0.

This constraint is important in order to keep the linear programming problem
bounded, i.e. constrained so that the value of the penalty function cannot be
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made arbitrarily small. If the penalty coefficients add up to a negative value,
then δnegi

and δposi
could be made arbitrarily large, canceling out each other

in the soft constraint and making the value of the objective function arbitrarily
small. The problem would be unbounded. This means that a negative pnegi

requires a positive pposi
at least as large as the absolute of pnegi

, resulting in a
straight line or an upward bent. Analogously, a negative pposi

requires a positive
pnegi

at least as large as the absolute of pposi
, again resulting in a straight line

or an upward bent. This monotonic increase of the gradient of each partial
penalty function causes the total penalty function to be convex as well.

In order to understand how to choose the penalty coefficients, let us have a
closer look at the term that is added to the objective function. First of all, the
individual summands that this term is made up of are all continuous because
they consist, as described in Sect. 4.2, of two linear functions that meet at one
point. As a consequence, the term we want to look at, which is the sum of those
summands, is continuous as well. In general, this term looks like this:

pneg1
δneg1

+ ppos1
δpos1

+ . . . + pnegn
δnegn

+ pposn
δposn

.

For 0 ≤ w ≤ w1, δnegi
≥ 0 and δposi

= 0 for all i ∈ {1, . . . , n} because w is
smaller than all the wi. Consequently, the term of the objective function looks
like this:

pneg1
δneg1

+ . . . + pnegn
δnegn

= pneg1
(w1 − w) + . . . + pnegn

(wn − w)

= (pneg1
w1 + . . . + pnegn

wn) + (−pneg1
− . . . − pnegn

)w

On this interval, we want the term to behave like a linear function going through
the points (0, p0) and (w1, p1), i.e. like the term

p0 +
p1 − p0

w1

w.

In order to realize this, we choose pneg1
, . . . , pnegn

so that the following system
of linear equations is satisfied:

pneg1
w1 + . . . + pnegn

wn = p0

−pneg1
− . . . − pnegn

=
p1 − p0

w1

Note that this system has exactly one solution for n = 2, and an unlimited
number of solutions for n > 2. However, as we have seen before this does
not mean that we can actually choose every such solution. Convexity has to be
preserved to keep the problem bounded. If we choose to set a penalty coefficient
to zero, this means we can replace the respective equality soft constraint by an
inequality soft constraint since only deviations to one side are penalized.

For wj ≤ w ≤ wj+1, j ∈ {1, . . . , n − 1}, δnegi
= 0 and δposi

≥ 0 for
i ∈ {1, . . . , j}. Furthermore, δnegi

≥ 0 and δposi
= 0 for i ∈ {j + 1, . . . , n}. The
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term of the objective function looks like this:

ppos1
δpos1

+ . . . + pposj
δposj

+ pnegj+1
δnegj+1

+ . . . + pnegn
δnegn

= ppos1
(w − w1) + . . . + pposj

(w − wj)

+pnegj+1
(wj+1 − w) + . . . + pnegn

(wn − w)

= (−ppos1
w1 − . . . − pposj

wj + pnegj+1
wj+1 + . . . + pnegn

wn)

+(ppos1
+ . . . + pposj

− pnegj+1
− . . . − pnegn

)w

On this interval, we want the term to behave like a linear function going through
the points (wj , pj) and (wj+1, pj+1), and we do this by choosing pposj

. Note
that all pneg1

, . . . , pnegn
have already been chosen to configure the function for

0 ≤ w ≤ w1. Furthermore, ppos1
, . . . , pposj−1

are already used for configuring
the function in 0 ≤ w ≤ wj . We only need to configure one parameter because
we only need to set the gradient of the linear function so that it passes through
(wj+1, pj+1) if it has passed through (wj , pj) before. We can be sure that the
linear function passes through (wj , pj) because the previous linear segment was
configured so that it passed through that point, and the overall function is
continuous. So all we need to do is choose pposj

so that

ppos1
+ . . . + pposj

− pnegj+1
− . . . − pnegn

=
pj+1 − pj

wj+1 − wj

,

which has exactly one solution.
For w ≥ wn, δnegi

= 0 and δposi
≥ 0 for i ∈ {1, . . . , n}. The term of the

objective function looks like this:

−ppos1
w1 − . . . − pposn

wn + (ppos1
+ . . . + pposn

)w.

Values for all free parameters except pposn
have been chosen already, so all we

need to do now is choose pposn
so that

ppos1
+ . . . + pposn

= c.

The whole process of determining the pnegi
and pposi

can be done beforehand
and has no footprint on the performance of the actual layout optimization. This
process can be completely hidden from the user’s view of the system, so that
GUI developers can specify arbitrary convex penalty functions only with the
parameters listed in Sect. 4.2, and without any understanding about the actual
implementation.

4.4 Constants as Abstractions

An inconspicuous, but indeed important concept of abstraction is to compute,
wherever possible, the coefficients in the linear program from symbolically de-
fined constants. An example would be the paper size in a print layout. If we
want to modify the problem so that a scaled layout for a different paper size is
produced, then certain coefficients in the linear program have to be changed. If
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the model is not defined in such a way that the constants that need to change
(typically by being scaled by a certain ratio) are clearly distinguished, then the
problem definition is not maintainable – a clear indication of a lack of abstrac-
tion. If all dependent coefficients are made explicit by using the paper size as
a symbolic constant, this gives a maintainable model: in the case of a change
in this constant, possibly all constraints have to be redefined. If a constraint
solver is used in a third generation language in the same manner as it is done
with the Auckland Layout Manager, then these constants are not necessarily
also constants in the third generation program; if the constants are changed in
the running program, a re-execution of the code that is defining the problem can
be performed. In the future, it might become more and more common practice
not to hard-code the constraint generation; instead, the constraints might be
given as documents, i.e. as structured data that can be changed and processed
at runtime.

4.5 Default Constraints

Default constraints should provide an expected or sensible behavior in cases
where the user has not specified a preferred behavior. A simple example is a
layout consisting of two areas next to each other. If the programmer does not
specify the mutual width, then the natural assumption would be that the areas
are rendered with equal width. With respect to the model, default constraints
should specify a unique solution if the constraints specified by the user do not
yet give a unique solution. Default constraints can be overridden by user spec-
ifications in two ways. Either, the default constraint is only added if no user
constraint is present. This requires a symbolic management of the problem spec-
ification. Alternatively, default constraints are marginalized by user constraints.
For this purpose, default constraints are specified as soft constraints.

4.6 Interactions between Soft Constraints

There is a common misconception about soft constraints in linear programs.
Generally, modelers might fear that soft constraints have a residual influence:
either harder soft constraints, which should simply be fulfilled, could wiggle out
of place a bit (a pixel or two, creating an annoying misalignment), or weaker
constraints that are violated for good could still exert influence on the solu-
tion. Here the linearity of our model is an advantage, making both cases rather
unproblematic. In an optimization problem we can consider the optimal solu-
tion to be a function of the direction of the objective function, i.e. the penalty
coefficients. For linear programs, this function is uniquely defined almost every-
where. The only unique solutions are the finitely many vertices of the solution
space polytope. This function is discontinuous and piecewise constant. If the
direction of the objective function becomes perpendicular to at least one of the
edges at this vertex, the solution becomes ambiguous. Further rotation makes
the opposite vertex at this edge the new solution. Since the solution is always a
vertex, only full jumps of the solution from one vertex to another are possible.
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4.7 Constraint Hierarchies

The concept of soft constraints first establishes a heterogeneous hierarchy of
two constraint types, hard constraints and soft constraints. We want to under-
stand whether we can view both types as being in principle of the same kind.
Moreover, in many applications one might want to have even multi-step hierar-
chies of numerical constraints. Constraint hierarchies are described in [8], and
used, for example, in [2, 15]. We discuss here how the notion of soft constraints
establishes hierarchies.

A constraint hierarchy is a partial order on soft constraints, so that softer

constraints will be easier violated in an informal sense. Different penalty coeffi-
cients are enabling such a hierarchy of constraints. Consider a layout description
with two soft constraints A and B, where B is supposed to be the softer of the
two. In order to be softer, constraint B has to have a smaller penalty coefficient
than A. Consider further the case that the hard constraints corresponding to A

and B are conflicting. In this way, only if A is satisfiable without penalty and
the whole description without B has a non-unique solution, then B will have
an influence on the solution. Otherwise, B has only an influence on the value
of the objective function for the optimal solution.

However, in the presence of many soft constraints care has to be taken in the
following sense. GUI developers may have an intuitive notion of several classes
of soft constraints that they want to use. Each such class we want to call a soft

constraint level. A natural approach is to use the same penalty coefficient for
each soft constraint in this class. Now, if several soft constraints in one class are
to be violated simultaneously, the penalties incurred add up. Thus, if a certain
number of related soft constraints are inserted, they might haphazardly become
more influential than a different constraint that was supposed to have priority.
This will be one reason to introduce the concept of myriads in due course.

Note that one solution that comes to mind would involve a redefinition of
soft constraints, more specific, soft inequalities: soft inequalities could be made
belonging to the same class by letting them all use the same deviation variable.
This would mean that once one constraint in this class requires a certain value of
a deviation variable δ, then all constraints using this deviation variable would
get the same play or leeway. As a result, more soft constraints on the same
level will not add up influence in the way described before. However, such an
approach does not lead to the usual behavior we want in soft constraints, where
every single constraint should be fulfilled in a best-effort approach. Therefore
we do not use such a concept for the soft constraints.

A second problem is that the influence of a soft constraint might be enlarged
through other linear dependencies in an effect we call the pantograph problem.
A pantograph in a layout is an informal name we want to give to a situation
where the features in one small area have a scale-up copy in some other area,
say scaled up by a factor of 10. We consider layouts as modifiable, and these
two copies will always change in unison, but with a scale factor of 10. This is
similar to the tool called a pantograph that is used in technical drawings. A
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very simple pantograph is given by a single linear constraint of the form:

10(asmall − b) − (alarge − b) = 0

where just the tabstop alarge is the scale-up copy of asmall. If now there are
soft constraints on the scale-up copy, these act also as soft constraints on the
smaller copy. However, in absolute coordinates, these soft constraints are 10
times harder on the smaller copy. This is the pantograph problem in determining
the mutual hardness of soft constraints.

The GUI developer often wants to ensure that both effects, the adding up of
penalties as well as the pantograph problem, do not influence the constraint hi-
erarchy. Formally we want to achieve that no linear combination of the penalty
coefficients from one soft constraint level becomes larger than any penalty co-
efficient from a higher soft constraint level. This is obviously not achievable
with penalty coefficient from the field of the other coefficients. Theoretically
this problem can be solved elegantly, if the whole linear problem is considered
as a problem over a non-Archimedean number field. A natural example of such
a field is the set of (fractional) rational functions. Such a field has numbers of
different levels in an infinite hierarchy, each level appearing to the next lower
level as infinite. We want to use the features of this extension only with respect
to penalty coefficients of soft constraints. For all other variables we introduce
inequalities that restrict their range to the ordinary real numbers. Also all other
coefficients must be real numbers.

Since we do not have non-Archimedean numbers in standard linear solvers,
we look for approximations. A straightforward approximation is of course to use
coefficients of different orders of magnitude, for example choosing coefficients of
level one in the order of unity, but choosing weights in the level with the next
higher priority in the order of say 10000. This gives a very workable solution.
We now explain and motivate this workaround in analogy to the concept of
non-Archimedean numbers.

It is a good pattern to use a first abstraction for the definition of such con-
straints. The abstraction should encapsulate the choice of the constant that
establishes the hierarchy. We call the constant a myriad and denote it with
capital M , since any confusion with the shorthand for “Mega” would be harm-
less. The word “myriad” stems from classic Greek “myrioi”, a term with two
meanings: depending on the pronunciation, it either means the number “ten-
thousand” or the indefinite numeral “countless”; hence it reflects our use of
the myriad as a symbol for a very big number that serves as a replacement for
Archimedean infinity. It is a good abstraction to express penalty coefficients as
polynomials of the myriad: each level in the hierarchy of constraints is assigned
a power of the myriad. Note therefore that in this way our problem definition
is not already tied to the decision to “cheat” by using a big finite number for
the myriad.

Again, this first abstraction has the disadvantage that it assigns each soft
constraint level a fixed priority. An obvious next step is not to put powers
of the myriad explicitly into the constraint, but to choose symbolic names for
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each such level. We call such a constant which acts as a symbolic name a rank

unit. This term indicates that the purpose of this constant on the one hand
is to establish a rank between constraints; on the other hand the term uses
an analogy to two physical units describing different physical dimensions. In
an example problem, we could have one rank unit image that applies to all
image dimensions, and one unit userresize that applies to all enduser-chosen
GUI dimensions. Soft constraints of the rank unit userresize are changed, for
instance, if the user resizes a frame for a photo album on the screen. If the
system is programmed using rank units consistently, then the GUI behavior can
be influenced late or even at runtime in the preferences menu of the application:
if we choose image = Muserresize, and the enduser resizes the frame, then
the size changes according to his wishes until the frame would become too small
to show all images; below that size, shrinking would not work. If we choose
userresize = Mimage, then the enduser could shrink the frame arbitrarily.
We might actually find that in a good definition of a linear layout, all coefficients
have a rank unit. In the proposed translation of the myriad into a big finite
number, and if the underlying number type are floating point numbers, then the
number of levels is actually limited and small, but this is acceptable especially
in our application context.

5 Areas

This section describes abstractions for the rectangular areas in the GUI that
contain its graphical controls. First we will discuss now how it is possible with
these abstractions to specify the topology of the different elements that make
up the GUI, without actually giving any quantitative data such as positions or
dimensions of controls. We call this the qualitative layout model of ALM. Then
we will discuss the metric properties of areas.

5.1 Problems of Total Order in Table Specifications

The following example shows why ALM allows partial ordering of tabstops and
does not require a total order like most other approaches do. Consider a table
that shows objects of two subtypes of a common class. For example, consider
a list of customers that contains both private and corporate customers, such as
the one in Fig. 6. Both customer types have columns for the customer number
and name. Corporate customers have an open account and a payment mode,
while private customers have a credit card type and an a credit card number.
Finally, both have a telephone number. The first two and the last column are
common to all customers, but the other attributes are specific to each of the
subtypes. Nevertheless they are aligned consistently in one subtype. Therefore
we want to call these sets of cells columns as well. So in the example, name as
well as payment mode are columns.

Assume the entries are supposed to be ordered alphabetically by name. Then
the list contains private and corporate customers in arbitrary order. The table
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constructs of many presentation technologies such as HTML, LATEX, or even
GUI toolkits allow for automatic adjustment of column widths; but there is
a problem with the columns specific to the subtypes. It should be possible to
adjust the relative widths of one subtype independently from the other subtypes.
For example, if the payment mode field of corporate customers would become
smaller, it should not affect the private customers.

If the example table is realized with HTML, one can create a partial so-
lution. In HTML, each cell element has modifiers colspan and rowspan that
create non-simple cells through the union of adjacent rows or columns by giving
an integer specifying the number of joined simple cells in each direction. Colspan
means that adjacent table cells lying on a horizontal line can be merged into
a single cell; rowspan means that adjacent table cells lying on a vertical line
can be merged. The resulting cell spans over several rows or columns. The
attribute account number and the attribute card number would have colspan 2,
which means that they actually merge two horizontally adjacent cells. However,
this solution is, however, incomplete: it requires to fix the total order of col-
umn borders, which is an unnatural solution. Assume for example, after some
minor changes in the formatting of the cell contents the account number field
would need less space than the credit card field, as shown in Fig. 7. This layout
cannot be produced by the HTML renderer with the same colspan declarations;
the colspan attribute would have to be moved to the cells of a different row.
The problem of fixing the total order of the column borders becomes even more
apparent if there are many independent column widths in different subtypes.
Hence, this solution is unsatisfactory with respect to dynamic adjustment of
table widths. Furthermore, the solution is unsatisfactory with respect to an
abstraction principle: the code for the rows representing different subtypes is
dependent on the other subtypes with regard to the colspan specifications, and
can therefore not be modified independently. Both disadvantages can be over-
come with the partially ordered tabstops and areas of ALM. ALM generalizes
colspan and rowspan by allowing areas that extend between any two x-tabs and
any two y-tabs.

In ALM we can let the layout engine adjust the width of the columns that
are specific to either private or corporate customer to the actual required size
for these specific attributes. The order of tabstops can be specified partially,
as is illustrated in Fig. 8 for the x-tabstops of the example. x3 is the tabstop
between the columns for credit card type and an a credit card number; x4 is
the one between the columns for account number and payment mode. It is
simply not defined whether x3 comes before x4 or vice versa, thus leaving more
flexibility for the layout engine, which can adjust the respective columns to the
space that is actually needed in each of the columns. In contrast to other layout
methods, a GUI developer does not have to fix the order of tabstops if it is
irrelevant for the layout or unknown in advance.

With ALM the order of specification of the different areas is independent
from the position of the areas in the presentation. Note, however, that the
shortcomings of current tabular layouts discussed here are not caused by this
circumstance alone. The crucial dependency on a total order is caused by the
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customer nr: 
1234

name: 
Agnew, C.

credit card: 
Visa

card nr: 
4321 4321 4321 4321

tel: 
+ 65 (3) 210987

customer nr: 
9876

name: 
Examp Ltd.

account nr: 
37473

payment mode: 
monthly

tel: 
+ 64 (5) 8765433

customer nr: 
6789

name: 
Peach, G. W.

credit card: 
Master

card nr: 
9876 5432 1234 5678

tel: 
+ 62 (3) 3456789

customer nr: 
7654

name: 
Plum, I. M.

credit card: 
Diners Club

card nr: 
2468 1357 9876 4321

tel: 
+ 64 (9) 9876

customer nr: 
8888

name: 
Samp-L Inc.

account nr: 
6543210

payment mode: 
weekly

tel: 
+ 61 (3) 4556778

Figure 6: Example of an HTML table using colspan. It shows two different
types of rows.

customer nr: 
1234

name: 
Agnew, C.

credit card: 
Visa

card nr: 
.... .... .... 4321

tel: 
+ 65 (3) 210987

customer nr: 
9876

name: 
Examp Ltd.

account nr: 
37473

payment mode (all invoices): 
monthly

tel: 
+ 64 (5) 8765433

customer nr: 
6789

name: 
Peach, G. W.

credit card: 
Master

card nr: 
.... .... .... 5678

tel: 
+ 62 (3) 3456789

customer nr: 
7654

name: 
Plum, I. M.

credit card: 
Diners Club

card nr: 
.... .... .... 4321

tel: 
+ 64 (9) 9876

customer nr: 
8888

name: 
Samp-L Inc.

account nr: 
6543210

payment mode (all invoices): 
weekly

tel: 
+ 61 (3) 4556778

Figure 7: This layout cannot be achieved with the same colspan settings.

colspan concept. This concept makes one column dependent on other, unrelated
tabstops that just happen to be in its interval of tabstops, and this creates the
maintainability drawback addressed here.

5.2 The Qualitative Layout Model

The qualitative layout model defines a partial order on x-tabstops and y-tabstops,
respectively. The overall tabular structure of the layout can be described just
with this ordinal information. The partial order of tabstops is given by the
definition of rectangular areas, which are bound by a pair of x-tabstops and a
pair of y-tabstops each. We want to define an area a as follows:

a =def (x1, y1, x2, y2, content)

The x-tabstops x1 and x2 delimit the area on the x-axis, with x1 being to the
left or on the same position as x2; the y-tabstops y1 and y2 delimit it on the
y-axis, with y1 being above or on the same position as y2. The content can be
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Figure 8: Partial order of x-tabstops for the example table.

a control of the GUI, but can also be empty. Empty areas are useful, e.g., for
defining margins or padding, or for extending a layout specification with ordinal
information.

Areas are similar to “bricks” in the Bricklayer layout system [5], but the
tabstops of their bounds are given directly, making it easier to define grid-like
layouts, which are very common in graphical design. The focus is on the location
of the tabstops rather than the location of each area. The areas are assigned to
the tabstops.

5.3 Partial Orders on Tabstops

The qualitative layout model specifies a tabular layout by a set of areas A. This
set creates a partial order of the x-tabstops and the y-tabstops, respectively.
Each area names a left and right x-tabstop, x1 and x2, and an upper and lower
y-tabstop, y1 and y2. Therefore it contributes an edge x1 ≤ x2 to the partial
order of x-tabstops, and an edge y1 ≤ y2 to the partial order of y-tabstops. By
topological sorting of the x- and y-tabstops according to the two partial orders,
a topology of a tabular layout can be inferred. Furthermore, additional ordinal
constraints in the form of equations or inequalities between two tabstops could
also be added explicitly.

In most other approaches the elements in a layout are ordered totally, e.g. it
is fixed if a control begins before, after or exactly on the beginning of another
control. Our approach allows a GUI designer to specify the order of elements
only partially, i.e. only when it is deemed necessary. A specifies just as much
ordinal information as is considered important, which prevents overspecification
of a GUI.

As a result, there are cases where the specification is ambiguous and different
topological sortings are possible. This is intended, as it leaves more flexibility for
the layout engine to optimize the layout when adjusting it to content dimensions
and screen space. Even if a layout specification is ambiguous, a deterministic
layout engine will always produce the same result.

A qualitative layout specification L is a list of areas and a set of additional
ordinal constraints given by the user. The closure of L is the transitive closure
on the ordinal constraints in L. A refinement L′ of L is a specification that has
at least one additional constraint that is not in the transitive closure of L. A
refinement S of L where the x- and y-tabstops are totally ordered is called a
qualitative solution of L.
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Figure 9: Equidistantly scaled layout for the ordinal data in Sect. 5.3.

If the ordinal information is conflicting, such conflicts can be detected and
reported to the user. Conflicts occur if there are cycles in the ordinal data
between tabstops that cannot have the same position. For example, if the
ordinal data contains the edges x1 ≤ x2 ≤ x1, and we know that there is an
area between x1 and x2 that cannot have width zero, then there cannot be a
valid layout.

To illustrate the qualitative layout model, let us consider the following set
A of areas:

A = {(x0, y0, x2, y1, diagonal1), (x2, y0, x3, y2, vertical),

(x1, y2, x3, y3, diagonal2), (x0, y1, x1, y3, horizontal),

(x1, y1, x2, y2, empty)}

This input creates a tabular layout as depicted in Fig. 9. The constants for the
content of the areas, horizontal, vertical, diagonal1 and diagonal2, denote the
type of hatching that marks the respective area in the figure. Although this
is not implied in the ordinal data, the coordinates of the x- and y-tabstops in
the figure were scaled equidistantly, so that the widths and heights of all the
columns and rows, respectively, are the same.

5.4 Representing Partial Orders

As already mentioned, all tabstops correspond to variables that eventually con-
tain their locations on the x- or y-axis of the GUI’s coordinate system. With
this in mind, it is very easy to formulate a set of linear constraints that describe
the ordinal constraints given by an area. For each area (x1, y1, x2, y2, content)
we introduce two constraints:

x1 ≤ x2, y1 ≤ y2.

ALM furthermore offers tabstops with given values that represent the bor-
ders of a GUI: xleft = 0 for the left border, ytop = 0 for the top border,
xright = wtotal for the right border, and ybottom = htotal for the bottom border.
wtotal and htotal are the width and height of the GUI, which are given by the
environment.
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5.5 Metric Properties of Areas

There are several aspects to the optimal layout of the areas of a GUI. For one
thing, we would like a system that does not waste screen real-estate unnecessar-
ily. Furthermore, we would like the system to be modular, so that each area can
contain properties describing its demands while having the system as a whole
find a global solution that respects the desires of each area as much as possible.

ALM supports the specification of properties for areas that allow the layout
engine to find optimal dimensions for them. One of those properties is the
preferred size. This value expresses the size that an area would need in order
to fulfill its function in an optimal manner. Usually it is based on the size of
the content that is displayed in a control. In many GUI toolkits, such values
are made available by all controls, and are thus taken directly from them by a
layout engine. That way the layout can be adapted immediately when preferred
sizes change, e.g. when the content shown in a control changes.

Each area has penalty coefficients. These coefficients determine the difficulty
with which the dimensions of the area deviate from its preferred size when the
layout engine has to resize areas. By varying the penalty coefficients, the space
demands of areas that are considered more important can be given preference
over those of less important areas. Areas that have high penalty coefficients
are only squeezed or stretched with difficulty, while areas with small penalty
coefficients change their size more easily.

If screen space is scarce and the areas have to be squeezed to fit, the areas
with small penalty coefficients will yield first and allow the areas with larger ones
to take up the space they prefer to have. Like this, penalty coefficients can be
used much like priorities, according to the degree to which an area should keep
its preferred size. If the areas with low penalty coefficients cannot be squeezed
any further and screen space is still tight, then the areas with the next higher
penalty coefficients are squeezed as well.

ALM allows GUI developers to specify penalty coefficients on a very detailed
level: not only can there be different penalty coefficients for the horizontal and
the vertical axes, but also different coefficients for squeezing and for stretching
an area, respectively. This way, the designer of a GUI can, for example, give
important areas a high penalty for squeezing and a low penalty for stretching,
so that the area will take up available space, but not yield easily when there is
not enough.

If there were only one penalty coefficient for both stretching and squeezing,
some resizing behavior could not be specified in a satisfactory way. An area with
high penalty coefficient would not yield easily when there is little screen space
available, but also would not take up available space easily. Sometimes we want
areas not to yield easily to the pressure of others, but to take up as much space
as they can. Or, we might have some decorative graphical elements in a GUI
that should vanish as soon as screen space becomes scarce, but grow only very
reluctantly in size. In both cases, we need very different penalty coefficients for
squeezing and stretching.

Each area has five main parameters:
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Preferred size spref : the preferred width wpref and height hpref of an area.

Minimum size smin: the minimum width wmin and height hmin of an area.
Both values are optional.

Maximum size smax: the maximum width wmax and height hmax of an area.
Both values are optional.

Shrink penalty pshrink: a coefficient for each dimension that indicates the re-
luctance on the part of the area to take on sizes that are smaller than the
preferred size. This value is optional.

Expand penalty pexpand: a coefficient for each dimension that indicates the
reluctance on the part of the area to take on sizes that are larger than the
preferred size. This value is optional.

While it is possible to imagine several different sets of parameters, we believe
this set to be both sufficiently general so as to obtain excellent optimal solutions,
and sufficiently simple so as to be manageable to the designer of the GUI.

We would like to point out that the preferred size and penalty coefficients
for areas are just absolute soft constraints of the form w = wpref and h = hpref ,
with w being the width and h being the height of an area. The properties pshrink

and pexpand of an area directly correspond to the penalty parameters ppos and
pneg of the respective soft constraint.

Often, it is reasonable to choose the penalty coefficients of an area dependent
on the control that it contains. Therefore, ALM offers default values for each
type of control. This means that when the penalty settings are left out for an
area, those settings can be chosen automatically depending on the control that
is contained in the area. For example, editable controls such as list boxes can
in general make much better use of additional space than controls that only
display a fixed amount of information, such as textual labels. Therefore, such
controls have lower coefficients for expand penalty by default.

Having useful default values for the different parameters of the model makes
specifications more compact and hides the complexity of unused model features.
A GUI developer needs, for example, only consider penalty coefficients if they
want to model something that differs significantly from the default behavior.
Like this, developers can learn the features of the model step by step, and can
use the model even with a limited understanding. In addition to making the
specification process easier, the default values serve as a guide when developers
want to customize parameters manually, i.e. new penalty coefficients are chosen
in relation to the predefined default coefficients.

5.6 Representing the Metric Properties of Areas

With the knowledge of how to represent soft constraints, representing the metric
properties of areas is easy. For the minimum and maximum width and height
of an area we add the following constraints:

w ≥ wmin, h ≥ hmin, w ≤ wmax, h ≤ hmax
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with w being the width of the area, i.e.w = x2 − x1, and h being its height,
i.e. h = y2 − y1. If a minimum or maximum for a dimension is not given, then
the respective constraint is simply omitted.

As described in the previous section, the preferred size of an area corresponds
to absolute soft constraints of the form w = wpref and h = hpref . The properties
pshrink and pexpand directly correspond to the penalty parameters pneg and ppos

of the respective soft constraint.
Besides the aforementioned parameters, ALM offers auxiliary area param-

eters such as settings for the margins between the borders of an area and the
borders of the content in the area, or the horizontal and vertical alignment of the
content in an area. The implementation of these parameters is slightly more so-
phisticated as they require the insertion of an additional area within the original
area’s bounds and linear constraints between those two areas for margins etc.
However, such additional areas are only added internally on demand, i.e. when
these parameters are actually used, and do not affect the way the user perceives
or uses areas. That is, the user is shielded from these complexities.

6 Rows and Columns

The organization of content in rows and columns is very common and well known
from spreadsheets, therefore ALM offers abstractions for rows and columns. As
described in the previous section, the location of an area is given by an x- and
a y-interval in the GUI coordinate system, each specified by a pair of tabstops.
Rows and columns are abstractions that allow several areas to use the same
intervals. They are first-class entities that can be used to specify important
properties of those intervals more easily. In the following, we discuss properties
of columns. The concepts used for rows and the concepts used for columns are
intrinsically symmetric to each other, therefore the discussion applies to rows
as well.

Columns are characterized by the x interval that they represent. Hence
two important variables of a column c are the left and right border c.left and
c.right of the interval. An operation for adding an area a to a column c is
defined that automatically creates the necessary constraints. When adding an
area to a column, alignment parameters can be set: similar to a spreadsheet,
an area in a column does not necessarily fill out the column width completely.
ALM allows GUI developers to set parameters for horizontal alignment, such as
making an area in a column left-aligned, right-aligned, centered or aligned to
both sides. Corresponding constraints are added automatically. When adding
areas to a row, analogous parameters for vertical alignment can be set.

Other important parameters of a column relate to the ordering of sets of
columns. We allow the user to give constraints that specify an order between
two columns c and d: a constraint c < d expresses that the row c is completely
left of row d, i.e. this is translated to c.right < d.left. Alternatively, a constraint
of the form c|d can be used that expresses that the two columns are directly
adjacent, i.e. c.right = d.left, as shown in Fig. 10. This makes it very easy
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Figure 10: Columns can be compared and declared to be adjacent.

for GUI developers to change the order of columns without having to consider
individual tabstops. The tabstops are taken care of by the layout manager.

A further abstraction becomes important in the context of applications that
use tables such as the one shown in Fig. 6. The rows present instances of two
different customer types. Every row of the same customer type uses exactly the
same set of columns, but the sets of columns used for each type differ. Each
type uses its own grid, i.e. its own set of columns and set of rows. In a grid,
there must be one area in every column of every row. However, the columns and
rows of a grid need not be adjacent to each other, and different grids may share
several rows and columns. By specifying two grids with disjoint rows and some
common columns, the layout in Fig. 6 can be described. This is much easier
than using ordinary table constructs, and leaves the two grids independent of
each other. The two grids can be maintained independently, commonalities
between grids can be factored out and defined separately, and an order between
rows and columns of different grids needs only be specified if this is necessary
for the application.

7 Examples

This section describes two small examples. The first example demonstrates
areas with additional linear constraints. The set of areas A for this example is
taken from Sect. 5.3, and the linear constraints are the following ones:

C = {y1 = 50,−2x1 − x2 + x3 = 0}.

In order to illustrate the dynamic adaptation of the layout, Fig. 11 shows several
screenshots of the GUI, each rendered in a window of different size. No matter
how we resize the window that contains the UI, the top-left area will always
end at y-position 50, and the top-right area will always be twice as wide as the
bottom-left one, as specified in the linear constraints.
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Figure 11: Example layout with linear constraints, adjusted to window resizing.

The second example demonstrates the effect of penalty constants in layouts.
The layout is defined by the set of areas A = {a1, a2, a3, a4} with

a1 = (x0, y0, x1, y1, button1),

a2 = (x1, y0, x2, y1, button2),

a3 = (x0, y1, x2, y2, button3),

a4 = (x0, y2, x2, y3, textBox)

and a single linear constraint

x1 − x0 = x2 − x1.

For a1 and a2 pexpand = 0.6, for a3 pexpand = 0.5, and for a4 pexpand = 0.4.
Furthermore, a4 has a maximum height of 50.

Figure 12 shows three screenshots of this GUI. We see that, as specified in
the linear constraint, the two buttons at the top of the GUI always have the
same width. When we increase the total height of the GUI a bit, the additional
space is first given to the textbox at the bottom of the GUI. This is because the
area that contains the textbox, a4, has the smallest penalty for expanding the
size over its preferred size. However, when we keep increasing the height of the
window, the maximum height of a4 is reached and a3, the area with the second
lowest pexpand, is given the additional space.

8 Patterns in the ALM

Since a focus of this work is to identify powerful abstractions for constraint
modeling, we want to discuss ways in which such abstractions are found and
motivated in practice. One way how abstractions can be found naturally is to
start with examples of good models. From this one can obtain guidelines which
improve the quality of a model definition. One way how such guidelines are
captured in Software Engineering, is to present them as patterns. Patterns are

28



Figure 12: Example layout with linear constraints and penalty constants, ad-
justed to window resizing.

considered a particular high level form of abstraction. A pattern is a recurring
solution to a common type of problem. It generally encodes good practice. The
application of patterns typically does not require automatic tool support. In this
section we want to understand how some aspects of good modeling would look
like if they are only realized in the form of patterns in a model. This will then
shed light on the usefulness of the other abstractions presented in this article,
because then many abstractions described in this work can be understood as
automated realizations of such patterns.

8.1 An Overview of Patterns in Tabular Layout

The first pattern used in the Auckland Layout Manager is the use of variables
as tabstops. With our fundamental concept of tabstops, it is possible to define
some of the remaining features of other layouts as mere patterns of tabstop use.
Some widespread parameters of table layout can be reduced to the concept of
tabstops. Also the use of constants and rank units could well be seen as a use of
patterns, but because of their close relation to soft constraints we have discussed
them in a different context.

A useful pattern that enhances maintainability of table definitions is the
interval tabstop pattern. It enables easy rearrangement of columns and rows.
Let us consider this pattern for columns: for each column, two tabstops are
defined, the left and the right. All cells of this column use these two tabstops
as their left and right x-tabstops. The order of the columns within the table
is then fixed afterwards, by adding constraints that identify the start tabstop
of a column with the end tabstop of the previous column. In this manner, the
order in which the columns appear in the table is encapsulated in a separate set
of constraints, independent of the definition of the columns themselves. Conse-
quently, the order of the columns can be changed very easily without interfering
with the rest of the specification. In the same manner, we can specify the order
of the rows of a table in a separate set of constraints. This pattern is actually
the foundation of our abstractions for rows and columns described in Sect. 6.

Further patterns could be identified for table embellishment: for the padding
of a cell, two tabstops can be introduced at each side of the cell, and the absolute
width can be fixed. Other concepts, such as the global cell spacing of the table,
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can then be seen as being paired with a generative concept. For expressing
global cell spacing we have to introduce new tabstops at all previously defined
tabstops and to define auxiliary cells which implement the padding. All these
cells are set to the same width, and this width is the cell spacing. A natural
way to deal with this relationship would be to offer the concept of global cell
spacing as an abstraction, that is, a separate notion just like in HTML tables
that is convenient for the user. In the rendering engine one could then use the
translation into the more fundamental representation based solely on tabstops.

Another example for a common parameter in table constructs is the existence
and appearance of delimiters and borders between and around parts of the table.
Like padding, any kind of decorations, be it simple delimiting lines or elaborate
frames, can be supported with additional tabstops and areas adjacent to the
existing ones. For example, a line can be represented as a thin unicolored area.
Again, it is conceivable to encode common table styles in higher-level constructs
that generate the lower-level representation of tabstops and areas.

8.2 Advantages and Drawbacks of Patterns

The pattern approach does not immediately yield a high degree of automation,
therefore we did not restrain ourselves to the use patterns but provided some of
these abstractions in the implementation of the Auckland Layout Manager as
API definitions that can be used in specifying a layout. It has to be said though
that patterns have advantages as well: one advantage is the semantic austerity
of the approach, which leads to a great clarity of the definitions. Take the inter-
val tabstop pattern above as an example. It provides already an abstraction for
rows and columns. It does not allow us to define new operators as did the full
abstractions for rows and columns that we have presented earlier, but in some
sense the user will have to read the definition of these operators anyway in order
to understand their semantics. Patterns seem to be particularly powerful in the
area of constraint programming, because there is one fundamental pattern in
constraint programming that is extremely powerful in itself, and we want to call
this the separate variable pattern. This pattern can be defined as follows: wher-
ever you can identify several clearly distinguishable uses of the same variable,
there you should introduce one separate variable for each use and add explicit
equality constraints that set these variables equal. This is the generalization of
the interval pattern discussed above. For many abstractions the main insight
lies in the recognition of such separate uses of a variable. For many abstractions
it is very interesting to consider the actual model that will be generated and to
realize the patterns that are present in this model due to the use of higher level
API functionality.

9 Related Work

In order to create document layouts, most people use simple desktop publishing
software such as, for example, MS Word or MS Powerpoint. These programs

30



offer a medium range of features for arranging graphical elements and thus cre-
ating a layout suitable for a particular kind of media. The layout paradigm
commonly used in such software is a very simple one: the user can arrange
graphical elements on absolute coordinates of a viewport and modify their ap-
pearance by changing a predefined set of properties for each of them. It is not
possible to formulate constraints, but merely possible to change coordinates in
an operational manner such as, for example, aligning an element. This means
that the layout usually does not adapt well to any changes of the context, such
as changes of the overall size.

Tools with functionality for GUI design, e.g., MS Visual Studio, usually take
the same approach and therefore suffer from the same shortcomings. But since
re-layout of GUIs in resizable windows is a common problem, there exist some
common solutions, which are made explicit in the Java framework in the form of
layout manager classes. Besides some rather simple layout managers, one of the
most powerful ones is the GridBag layout manager, which allows arranging GUI
widgets in a tabular manner. During runtime, the layout manager is an object
that is updated in order to populate the cells. The simple cells are numbered,
and each actual compound cell is inserted with a command specifying one cor-
ner and the size of the cell. Each cell can specify a set of parameters that are
called constraints, for padding and dimensioning of the cell. However, program-
ming of layouts with the GridBag and similar constructs is not easy, requires
programming skills and also good knowledge of the particular UI technology
used.

Tables in text documents and the widespread GridBag layout [29] represent
identical layout concepts. The HTML table construct [26] is a good represen-
tative. The colspan and rowspan attributes have been explained in Sect. 5.
Furthermore, it features a range of additional table parameters such as horizon-
tal and vertical cell spacing, outset of the table, inset of cells, and parameters
for single cells such as padding and cell dimensions. HTML tables offer the
possibility to specify cell dimensions either absolute in pixels or relative by
giving percentages. Similar tables can be found in the earlier LATEXtabular en-
vironment, where the table content is given with a markup language as well.
Non-simple cells are created by special LATEXcommands such as multicolumn,
and the LATEX framework defines a set of default values, e.g., for cell padding.
Several frameworks support definition of sizes that are tolerant and can change
according to the rest of the layout, and the usual metaphor is that of a com-
pressible placeholder. Examples are the variable measures in LATEX and the
Java SpringLayout. The concept of tolerances is again an abstraction, similar
to padding etc., and can be defined in our constraint methodology by using aux-
iliary tabstops. In all the mentioned table concepts the cells have to be specified
in a strict order, i.e., the tabular layouts use totally ordered columns and rows.
In order to give tables more flexibility, they feature cells that are not simple.
As discussed in Sect. 5, our table concept does not require non-simple cells, but
offers superior flexibility by allowing only a partial order of tabstops.

The scientific community has examined the concepts of layout already very
early. In [30] a graphics typesetting language is described that employs a number
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of different constraints, also nonlinear ones, in order to create images. Although
very powerful, solving nonlinear constraints can also be very slow and is not nec-
essary for a good layout. Such languages were made for creating complex images
rather than for layout and, in our opinion, they do not offer the level of abstrac-
tion and ease of use that would be desirable for our task. Other approaches
that do focus on layout, such as the one described in [10], support only basic
layout schemes such as simple rows and columns or a flow layout, which makes
them insufficient for elaborate UI design. Then, there are approaches that focus
on the theory of automatic optimization of tabular layouts rather than their
specification. In [1], for example, the geometric problem of space-efficient table
layout is examined from a theoretical point of view, but the model used for the
specification of the tables is rather simplistic.

The idea to use linear constraints for UI layout is not new and has been
described, for example, in [9, 2]. But in contrast to our idea, these approaches
often make only use of such constraints in order to describe a layout. While it
would be possible to map our approach onto one that uses linear inequalities
instead of partial orders, we find it much more natural to specify the ordinal
information implicitly by just defining areas. Specifying numerical constraints
can be cumbersome if the topology of the layout is not yet established, and a
user should only be required to work out numerical equations where it is really
necessary.

Also the idea to specify the topological and metric properties of the layout
has been described before. For example, [3] proposes a grid for the definition
of an “abstract layout” and a constraint solver to calculate the concrete layout.
But in contrast to our approach, a grid describes the topology of a layout as
a total order, which is sometimes not flexible enough. Nevertheless, the grid
layout is widespread and, for example, also used in the most popular professional
publishing program, QuarkExpress, and in [19, 18]. The latter describes the
automatic adaptation of documents to different document formats.

Some approaches use quite sophisticated models to represent the layout of
tables. For example, the model in [28] uses an object network of about 7 con-
nected layers to describe the physical layout. Our approach tries try to keep
the complexity involved in layout specification to a minimum. The same pa-
per distinguishes, like many others, between the logical, content-related and the
physical, appearance-related information contained in a table. In this paper we
are merely concerned with the physical side but it is conceivable to put further
abstractions on top of our model for the generation of layouts for collections of
content.

For constraint-based drawing tools, dedicated constraint solving approaches
have been developed, particularly making use of incremental change [13]. Such
approaches are able to handle more general constraints than linear constraints.
Since the Auckland Layout Manager serves however as a specification and not
only as a single implemented product, we consider it advantageous to stick
with linear constraints, since they are certainly powerful enough to model the
constraints desired in this application.

Our work on ALM is based on previous work that was published in [22]. Our
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Figure 13: Screenshot of a structured data editor using ALM.

old layout engine is not based on linear programming, but uses a combination
of topological graph sorting and Gauss-Seidel linear solving instead. This is a
lot less powerful than ALM, e.g. it does not support soft constraints or penalty
functions, and formally not as coherent as the linear programming approach.
These essential shortcomings became clear to us when using the layout engine
in practice, and led to the development of ALM.

10 Evaluation

We have used ALM to implement a multi-view structured data editing system
called AP1 [20], which is shown in the screenshots of Fig. 13. AP1 is based
on a structured data repository that can be accessed by multiple users simulta-
neously. The repository uses the parsimonious data model (PDM) [12], which
structures data using entity types and relation types. Entity types are sets of
elements called instances. Relation types are sets of links that connect the in-
stances of two entity types. Each end of a relation type is identified by a role.
Two dynamic, editable views were implemented using ALM: a table view, which
is shown at the top of Fig. 13, and a tree view, which is shown at the bottom.
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The screenshot of the table view shows instances of type Address, one in each
row. The first column “Address” contains the identifier of each Address instance.
The other columns show instances that are linked to the Address instances using
a particular role. For example, each Address instance has a link to an instance of
type Customer. Hence, there is a column “customer:Customer” listing Customer
instances that are connected to the respective Address instances through a role
“customer”. Analogously, we have columns that represent String and Integer
instances for street names and house numbers that are linked to each Address.
The tree view was implemented using the abstractions for rows and columns.
ALM offers operations for insertion and removal of rows and columns, therefore
updates of the view were easy to implement. The ALM features for alignment
of controls in areas were used to place the column headers in the center of
their column, and align instances at the left column borders. As described in
Sect. 6, ALM supports reordering of rows and columns. This made it relatively
straightforward to enable sorting of rows and reordering of columns in the view.

The screenshot of the tree view shows a Customer instance “Customer 1”
and the Address instances that are connected to it through role “addresses”.
Each address has a role “street name” that is used to connect a String instance,
and a role “house no” that is used to connect an Integer instance. Instances
and roles are arranged in rows. The indentation of child nodes is expressed
as linear constraints. The plus and minus signs on the left side of roles and
instances can be used for elision, i.e. in order to hide or expose subtrees. This
was implemented using the operations for removal and insertion of rows.

When first implementing the editing system, we were trying to use the stan-
dard C# controls for tables and trees. However, they put strong restrictions
on the way data elements can be represented. For example, a tree node can
basically just contain a single icon and a textual label, and has to have a fixed
height. As a result, it was not possible to represent instances in a flexible man-
ner. This was one of the reasons why we decided to implement the views with
ALM. Another reason is the inability of the standard controls to adjust them-
selves to the size of their content. For example, the widths of columns have to
be set explicitly and are not adjusted according to the width of the items they
contain. This results in columns that take up more screen space than necessary,
thus wasting screen real estate, and columns that make their content unreadable
by truncating it. Furthermore, the standard controls do not properly support
view configuration tasks such as reordering and sorting.

When switching to ALM, we first implemented the views using merely tabs,
areas and linear constraints. It became clear very soon that the level of ab-
straction of these concepts was too low in order to achieve a clean, maintainable
implementation. Using the constructs for rows and columns improved the level
of abstraction drastically, and made the implementation much easier. Instead
of having to worry about individual tabstops and areas, it was now possible to
manage them grouped in columns and rows. Most operations such as placement,
removal and insertion could be done on that level. In terms of lines of code,
the parts of the implementation concerned with view layout shrunk to less than
half their original size. Testing and debugging of the layout code took about a
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day, compared to about a week of debugging when using the original approach.
While mostly manipulating layouts on the level of rows and columns, it

was still necessary to access lower levels such as tabstops and constraints. For
example, this was necessary for implementing non-tabular layout characteristics
such as the indentation in the tree view. Because the semantics of the row
and column constructs were well-defined in terms of linear programming, the
combination of specifications from different levels of abstraction turned out to
be unproblematic. That is, adding constraints manually to the specification did
not cause any surprises such as unexpected interactions.

A significant advantage of ALM became apparent while implementing the
tree view: using a constraint-based approach such as ALM, it is much easier
to achieve modularity in the layout specification [23]. Before using ALM, we
implemented the tree view using recursively nested panels. Each instance and
role was represented in its own panel, which also contained the panels of its
children. That is, each subtree was represented as a panel, and the tree structure
was reflected in the containment hierarchy, which could be very deep. Each
panel control took care of the representation of a single tree node and its direct
children. Apart from being rather slow, this approach worked only as long
as there were no dependencies between different branches of the containment
hierarchy. For example, if subtrees at different places should share the same
horizontal alignment, then this was extremely hard to express. It meant that
the panels – although not directly related – had to communicate to make sure
they used the same alignment. In other words, the concept of a hierarchical
partitioning of a GUI cannot always result in a modular design in which the
parts are independent of each other. However, ALM is not bound to such a
hierarchical structure: the specification modules are arbitrary sets of constraints
that may relate to any tabstop in the GUI. The composition of the modules is
simply the union of those sets. If we want to express a crosscutting concern such
as a uniform horizontal alignment across different subtrees in the tree view, then
we can do so by specifying a new modular set of constraints and inserting it
into the set of all constraints.

Multiple users can simultaneously work on the same data in the repository,
each using their own client with their own views. In this situation, notifications
about changes in the data are synchronously transmitted to every client as
soon as they are committed to the repository. Upon receiving such a change
notification, each client immediately updates all its views. As a result, both
the tree and the table view are highly dynamic. With many users working
on the same data, many changes occur and views keep changing all the time.
However, individual data changes and the corresponding changes in the layout
of a view are usually quite small. Through incremental constraint solving layout
calculation times could be kept low, so that it was possible to deal with such
frequent changes of the underlying layout specification without affecting the
user interface negatively. As it turned out, the bottleneck of the presentation
layer was not the layout engine but the .net graphics rendering system.

Despite the good performance of our ALM implementation, it is unclear if
ALM would be a preferable option for devices with low resources, e.g. portable
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devices such as PDAs or mobile phones. ALM is still slower than most of the
simple layout managers commonly used in applications, and it is built on top of
a linear solver, which increases the memory footprint of an application (in our
implementation by about 300KB). Furthermore, ALM is not only more powerful
but also more complex than many other simple layout techniques, which means
that developers have to invest time to get used to it.

Nowadays there is a fairly good range of tools supporting the construction
of GUIs, often in a WYSIWIG manner. Although support for layout managers
in such tools is often insufficient, they do nevertheless contribute significantly to
the efficiency of the GUI development process. As a fairly new layout model, tool
support for ALM has not fully matured yet, but is in the prototype stage. As
a more sophisticated layout model, such tool support is not as straightforward
as it is for simple layout managers. However, there is a reverse engineering
technique for ALM that makes it possible to use existing GUI construction
tools and automatically recover an ALM specification afterwards [21].

Sometimes layout specifications contain errors such as conflicting constraints,
or simply constraints that cause a malformed or undesired layout. In order to
make debugging of specifications easier, ALM makes textual representations of
all the layout constructs at all the different abstraction levels readily available.
Like this, developers can examine a specification or a subset of it in human-
readable form. It is also possible to export the underlying linear programming
specification in standardized formats, so that the specification can be used from
other mathematical tools such as MATLAB. This makes it possible to use ex-
ternal tools for analyzing specifications and detecting faults. As future work,
it would be desirable to integrate support for debugging into a visual layout
specification tool.

To find out how efficient it is to specify GUI layout using ALM, compared
to other layout models, an experimental study is necessary. Such a study could
measure indicators such as the time and accuracy with which test subjects
complete certain layout specification tasks, using different layout approaches.
Such studies are hard to perform and have to be designed very well in order to
avoid potential pitfalls. The test subjects have to be chosen from a well-defined
population and the sample needs to have a considerable size in order to get
statistically meaningful results. Factors such as differences between the test
subjects in experience and skills, and the order in which tasks are presented to
test subjects need to be considered and controlled carefully. Having different
groups of test subjects may improve the validity of the result, but means that
more test subjects are required. The tasks need to be chosen so that they are
meaningful and reflect real-world requirements.

11 Conclusion

Constraint programming approaches to GUI layout are interesting in that they
make the constraint solving process truly ubiquitous: many changes in the GUI,
such as resizing of a window or changes in the presented content, lead to a reeval-
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uation of the underlying constraints. Our vision is to bring this approach to
the working developer and to supersede the weaker layout managers without
constraint programming currently in use. We described what kind of abstrac-
tions are necessary to make GUI layout with linear programming easier for GUI
developers, by discussing the abstractions provided by the ALM. The following
abstractions are provided by ALM and were found very useful for GUI specifi-
cation and GUI maintenance:

• Soft constraints with support for constraint hierarchies and approximation
of arbitrary penalty functions, enabling affinity towards several particular
values.

• Area specifications that impose a partial order on a grid of tabstops and
offer straightforward parameters for the resizing behavior of controls.

• Abstractions for rows, columns and grids, allowing GUI developers to ar-
range controls similarly to widely-used spreadsheets, but with more flexi-
bility and modularity.

• Patterns and minor abstractions for improving maintenance such as per-
vasive use of constant parameters, support for different units. . .

GUI layout systems that use linear programming without offering higher-
level constructs such as the ones described here may be sufficient from a formal
point of view, but fail to serve the needs of the practitioners of that domain. If
constraint solving approaches are to be successful in practice, they need to offer
abstractions that capture the concepts of the application domain rather than
just providing a mechanism that is merely formally complete.
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