2012 IEEE 24th International Conference on Tools with Artificial Intelligence

Extending Linear Relaxation
for User Interface Layout

Noreen Jamil, Johannes Miiller, Christof Lutteroth, Gerald Weber

Department of Computer Science
University of Auckland
Private Bag 92019, Auckland, New Zealand

{njam031,

Abstract—Linear relaxation is a common method for solving
linear problems as they occur in science and engineering. In
contrast to direct methods such as Gauss-elimination or QR-
factorization, linear relaxation is inherently efficient for problems
with sparse matrices as they are often encountered, for instance,
in the application domain of constraint-based UI layout. However,
the linear relaxation method as described in the literature has
its limitations: it works only with square matrices and does not
support soft constraints, which makes it inapplicable to the Ul
layout problem.

In this paper we extend linear relaxation to non-square
matrices and soft constraints, and identify pivot assignment
as the major issue to overcome in this process. We propose
two algorithms for pivot assignment: random pivot assignment,
and a more complex deterministic pivot assignment algorithm.
Compared to the standard pivot assignment, which selects the
elements on the diagonal of the problem matrix as pivot elements,
these algorithms make the solving process more robust and
make it possible to solve non-square matrices. Furthermore, we
propose two algorithms for solving specifications containing soft
constraints: constraint insertion and constraint removal. With
these algorithms, it is possible to prioritize constraints. That is, if
there are conflicting constraints in a specification as is commonly
the case for UI layout, only the constraints with lower priority
are violated to resolve the conflict.

The performance and convergence of the proposed algorithms
are evaluated empirically using randomly generated UI layout
specifications of various sizes. The results show that our best
linear relaxation algorithm performs significantly better than that
of LP-Solve, which is a well-known efficient linear programming
solver, and QR-decomposition.

Index Terms—UI layout, linear relaxation, soft constraints,
non-square matrices.

I. INTRODUCTION

Linear problems are encountered in a variety of fields such
as engineering, mathematics and computer science. Hence,
various numerical methods have been introduced to solve
them. These methods can be divided into direct and indirect,
also known as iterative, methods. Direct methods aim to calcu-
late an exact solution in a finite number of operations, whereas
iterative methods begin with an initial approximation and
usually produce improved approximations in a theoretically
infinite sequence whose limit is the exact solution [1].

Many linear problems are sparse, i.e. most linear coefficients
in the corresponding matrix are zero so that the number
of non-zero coefficients is O(n) with n being the number

1082-3409/12 $26.00 © 2012 IEEE
DOI 10.1109/ICTAIL.2012.132

939

jmue933}@aucklanduni.ac.nz, {lutteroth, gerald}@cs.auckland.ac.nz

of variables [2]. Since it is useful to have efficient solving
methods specifically for sparse linear systems, much attention
has been paid to iterative methods, which are preferable for
such cases [3].

Iterative methods do not spend processing time on coeffi-
cients that are zero. Direct methods, in contrast, usually lead to
fill-in, i.e. coefficients change from an initial zero to a non-zero
value during the execution of the algorithm. In these methods
we therefore may weaken the sparsity property and may have
to deal with more coefficients, which makes processing slower.
Therefore iterative, indirect methods are often faster than naive
direct methods in such cases.

We are concerned with a domain where sparse problems
occur frequently, namely user interface (UI) layout. Section II
describes the common properties of this domain, and delin-
eates the solving approaches that have been proposed for it.
The contributions of this paper are motivated by and were
evaluated for the UI layout problem.

One of the most common iterative methods used to solve
sparse linear systems is linear relaxation. Starting with an
initial guess, it repeatedly iterates through the constraints of
a linear specification, refining the solution until a sufficient
precision is reached. For each constraint, it chooses a pivot
variable, and changes the value of that variable so that the
constraint is satisfied. Linear relaxation with its variations and
properties is discussed in Section III. Despite its efficiency for
sparse systems, linear relaxation is currently not widely used
for UI layout, for the reasons explained in the following.

A common property of many linear problems in Ul layout
is that the matrices corresponding to these linear problems
are non-square. For example, when specifying Ul layouts
with linear constraints, there are generally more constraints
than variables. This is possible because of soft constraints
and the presence of inequalities. Both reasons are discussed
later. Also, constraints in user interfaces are often not in
general position because of many coefficients being 1,0 or —1.
Finally, constraints are often generated and may be generated
repeatedly in one specification. Therefore there is a reasonable
likelihood that a UI specification contains redundant, non-
conflicting constraints.

This leads to the problem of pivot assignment: the problem
of choosing a pivot variable for each constraint so that a
iterative method converges. The standard linear relaxation

@) CO‘ pute
1(!) I
& SOCIety

algorithms choose for each constraint the pivot variable on
the diagonal of the coefficient matrix. However, in the general
case the diagonal approach has several problems:

1) Diagonal elements may be zero, making them infeasible
as pivot elements.

Diagonal elements may be small compared to other
elements in the same row of a matrix, making them a
bad choice that may cause the solving process to diverge.
If there are more constraints than variables, then not
every constraint contains an element on the diagonal of
the coefficient matrix.

If there are less constraints than variables, then not every
variable is chosen at least once. This means that its
value cannot be adapted and the method might not find
a solution.

2)

3)

4)

As a first contribution, we describe how the linear relaxation
method can be extended to deal with these problems. We
propose two pivot assignment algorithms that can be used
with any problem matrix, regardless of its shape or diagonal
elements. A pivot assignment algorithm has to ensure that
every constraint has a pivot variable, and that every variable
is chosen at some stage. The first algorithm selects pivot
elements pseudo-randomly. The second algorithm selects pivot
elements deterministically by optimizing certain selection cri-
teria. The overall problem of pivot assignment and the two
algorithms are explained in detail in Section IV.

Besides its inability to deal with non-square matrices, the
common linear relaxation method has another shortcoming.
Many problems, such as UI layout, may contain conflicting
constraints. This may happen by over-constraining, i.e. by
adding too many constraints, making a problem infeasible.
If a specification contains conflicting constraints, the common
linear relaxation method simply will not converge.

To deal with conflicts, soft constraints need to be introduced.
In contrast to the usual hard constraints, which cannot be
violated, soft constraints may be violated as much as necessary
if no other solution can be found. Soft constraints can be
prioritized so that in a conflict between two soft constraints
only the soft constraint with the lower priority is violated.
This leads naturally to the notion of constraint hierarchies,
where all constraints are essentially soft constraints, and the
constraints that are considered hard simply have the highest
priorities. Using only soft constraints has the advantage that
a problem is always solvable, which cannot be guaranteed if
hard constraints are used.

We propose two algorithms for solving systems of priori-
tized linear constraints with the linear relaxation method. The
first algorithm successively adds non-conflicting constraints in
descending order of priority. The second algorithm starts with
all constraints and successively removes conflicting constraints
in ascending order of priority. These algorithms are described
in Section V.

The methodology and the results of an evaluation are
described in Section VI. The proposed extensions of linear
relaxation were evaluated with regard to their convergence and

940

performance, using randomly generated UI layout specifica-
tions. The results show that most of the proposed algorithms
are efficient, in particular they outperform LP-Solve, a well-
known linear programming solver that has been used for UI
layout, and QR-decomposition, a direct method. One of our
motivations is to develop solvers that have a smaller and more
flexible codebase so that they can be more easily used, e.g. in
web-based applications. LP-Solve, for example, is not a pure
Java program and therefore cannot be used in certain web
applications that our user interface technology is targeted at.
The evaluation indicates that our best algorithms can be used
efficiently in such situations. Our conclusions can be found in
Section VIII.

II. USER INTERFACE LAYOUT AS A LINEAR PROBLEM

Constraints are a suitable mechanism for specifying the
relationships among objects. They are used in the area of
logic programming and artificial intelligence, but also for
user interfaces. They can be used to describe problems that
are difficult to solve, conveniently decoupling the description
of the problems from their solution. Due to this property,
constraints are recognized as a powerful method for specifying
Ul layouts, where the objects are widgets and the relationships
between them are spatial relationships such as alignment
and proportions [4]. In addition to the relationships to other
widgets, each widget has its own set of constraints describing
properties such as minimum, maximum and preferred size.

UI layouts are often specified with linear constraints [5].
The positions and sizes of the widgets in a layout translate to
variables. Constraints about alignment and proportions trans-
late to linear equations, and constraints about minimum and
maximum sizes translate to linear inequalities. The resulting
systems of linear constraints are sparse. There are constraints
for each widget that relate each of its four boundaries to
another part of the layout, or specify boundary values for
the widget’s size as shown in Fig. 1. As a result, the direct
interaction between constraints is limited by the topology of
a layout, resulting in sparsity.

Button by Label | Button bp
W Xq P X2 1 X3
12 | Cohfirm Delete m—
yi [\TT -.. .
.. Ar¥ you sure you want to delete "nofes.txt"?
Y2 H
va _
Labell Hard: x5 - X4 2 l.minwidth, y, - y; = [.minheight

Soft: x3 - X1 = l.prefwidth, y, - y; = |.prefheight
Button by Hard: x, - x; 2 by.minw.idth, Y3-Yo 2 by.minhei.ght

Soft: X, - X4 = by.prefwidth, y; - y, = by.prefheight
Button by Hard: x5 - X, 2 bn.minwidth, ys- y, = bp.minheight

Soft: X3 - X, = bp.prefwidth, y; - y, = bp.prefheight

Fig. 1: Example layout with hard and soft constraints

For sparse linear problems, linear relaxation is known to
perform very well. However, linear relaxation in its standard
form cannot be applied to the UI layout problem for two
reasons. First, the coefficient matrices are non-square: there
are usually more constraints than variables. Secondly, many
of the constraints are soft because they describe desirable
properties in the layout (e.g. preferred sizes), which cannot
be satisfied under all conditions (e.g. all layout sizes). As a
result, the existing Ul layout solvers use algorithms other than
linear relaxation. Some of these solvers will be discussed in
Section V-A.

III. LINEAR RELAXATION

The approximate methods that provide solutions for systems
of linear constraints starting from an initial estimate are known
as iterative methods. Most of the research on iterative methods
deals with iterative methods for solving linear systems of
equalities and inequalities for sparse square matrices, the
most important method being linear relaxation. This section
summarizes the most important findings.

The best known iterative method for solving linear con-
straints is the Gauss-Seidel algorithm [1]. Given a system of
n equations and n variables of the form

Az =1 ¢))
we can rewrite the equation for the ith term as follows:
1 i—1 n
1 1
ot = (i~ D agaltt = Y aia)) 2
v j=1 J=it1

with 7 is the iteration number and ¢ is the row index. The
variable x;, which is brought onto the left side, is called the
pivot variable, and a;; is the pivot coefficient or pivot element
chosen for row i. After an initial estimate for x is chosen, it
is substituted into the right-hand side of the above equation to
produce the next approximation. Iteration is continued until the
relative approximate error is less than a pre-specified tolerance.

Linear relaxation, also known as successive over-relaxation
(SOR), is an improvement of the Gauss-Seidel method [6].
It is used to speed up the convergence of the Gauss-Seidel
method by introducing a parameter w, known as relaxation
parameter so that

1—1
r+1 _ w . o+l
z, = —(b — E aijT;
A4 =1

- Z ai;r;) + (1 —w)x;
j=it1
3

SOR reduces to the Gauss-Seidel method when w 1. It
is known as over-relaxation if w > 1, and known as under-
relaxation if w < 1. One of the main advantages of using linear
relaxation is that it is a simple and robust method, which has
the ability to handle large sparse problems.

A. Convergence

A frequently used sufficient condition for the convergence
of the Gauss-Seidel method is the property of diagonal domi-
nance. There are other characterizations of convergence in the

941

literature, e.g. based on the spectral radius of a normalized
matrix, but we focus here on diagonal dominance.

A matrix is said to be diagonally dominant if the absolute
value of the diagonal element in each row is greater than or
equal to the sum of the absolute values of the rest of the
elements in that particular row [7]:

laii|> > lasj|
J#i
for all i. Convergence is guaranteed if the problem matrix is
diagonally dominant.
This gives naturally rise to a more general quantity that
describes the influence of a variable and that can be used to
restate the condition of diagonal dominance.

“)

Definition 1. The influence of the kth variable in the ith

constraint is

|ai|
> jlag]

All influences of variables in a constraint sum up to 1. If
the constraints are normalized by dividing by the denominator
above, then the absolutes of the coefficients of the variables
are simply their influences. A matrix is diagonally dominant if
all diagonal variables have an influence greater or equal to %
If a coefficient matrix is diagonally dominant and 0 < w < 2,
then linear relaxation is guaranteed to converge [8].

®)

influence;;, =

B. Inequalities

Linear relaxation supports linear equalities as well as in-
equalities. Inequalities are handled similar to equalities [9]—
[11]: in each iteration, inequalities are ignored if they are
satisfied, and otherwise treated as if they were equalities.
However, there are potential practical problems, which are
described below using the following definitions.

Definition 2. Mixed System: A system containing equalities
as well as inequalities is called a mixed system.

Definition 3. Maximum equality subsystem: The subsystem
that consists of all the equations in a system of linear con-
straints is called maximum equality subsystem.

A mixed system with a square matrix cannot have a unique
solution because this is only possible if there is an equality
for each variable. In a typical mixed system, as it occurs in UI
layout, the maximum equality subsystem is under-determined,
i.e. there are fewer equalities than variables, and the whole
system has more constraints than variables. This means that for
typical mixed systems the standard linear relaxation algorithm,
which works only on a square matrix, is insufficient.

C. Advantages

Iterative methods such as linear relaxation have certain
advantages over direct methods. Iterative algorithms are typ-
ically simpler than direct ones, hence can be implemented
in smaller programs. Furthermore, they have fewer round-off
errors compared to direct methods [3]. They start with an
approximate answer and improve its accuracy in each iteration,

so that the algorithm can be terminated once a sufficient
accuracy is achieved.

Compared to direct methods, iterative methods are very
efficient for sparse matrices, i.e. matrices where the number
of non-zero elements is a small fraction of the total number
of elements in the matrix. They are faster than direct methods
because zero-coefficients are ignored implicitly, whereas direct
methods have to process the zero-coefficients explicitly [3].
This also means that iterative methods need not store zero-
coefficients explicitly, and hence generally use less memory
than direct methods. Considering these advantages, it would be
useful if the limitations of linear relaxation could be overcome.

IV. NON-SQUARE MATRICES

As pointed out in Section III-B, mixed systems usually
have a non-square matrix with more constraints than variables.
Furthermore, they may have zero-coefficients on the diagonal.
In some cases, they may also have more variables than
constraints (under-determined). In all these cases, the standard
linear relaxation algorithm cannot be applied. In this section,
we describe two algorithms that can be used to overcome these
limitations.

A. Related Work

Linear systems with non-square matrices are typically
solved using direct methods, such as the normal equations [12]
and the QR-factorization [7] method.

The normal equations method is used to solve linear systems
of the form AT Az = ATb. It is fairly simple to program, but
suffers from numerical instability when solving ill-conditioned
problems. The condition of the normal equation matrix A” A
is worse than that of the original matrix A. When the original
matrix is converted into the normal equation matrix and the
right-hand side vector, information can be lost. The normal
equations method is considered the most common method
despite the loss of information because, as shown in [13], an
accurate solution for the normal equations can be achieved
with iterative refinement [14].

The QR-factorization method is a direct method used to
solve linear systems of equations. Several methods can be used
to compute QR-factorization, e.g. the Gram-Schmidt process,
Householder transformations, or Givens rotations. In contrast
to the normal equations method, these methods require the
calculation of a significant number of norms, which makes
them slower [7].

There are some iterative methods [15] that can be used to
solve systems of linear equations that are over-determined.
These methods include the simplex [16] and generalized
minimal residual [17] method. They have some limitations that
make them inapplicable for some problems. These limitations
are described as follows.

The simplex algorithm [16] is a well-known method used to
solve linear programming problems. It is an iterative method,
but one linear solving step per iteration is required, which
means this method cannot be faster than linear solving alone. It
moves from one feasible corner point to another and continues

942

iteration until an optimal solution is reached. The revised
simplex method [18] is a variant of the simplex algorithm
which is computationally efficient for large sparse problems.

The generalized minimal residual method [17] is considered
the most efficient method for solving least squares problems.
This method converts a non-square matrix into a square matrix
by applying normal equations. One of its shortcomings is
instability and poor accuracy of the computed solution due
to the possibly high ill-conditioning of the normal equations
system. Several methods for iteratively solving linear least
squares problems are surveyed in [17]. These methods are
also known as Krylov subspace methods.

Numerical difficulties encountered for under-determined
problems are the same as in over-determined problems as
described above. However, round-off errors accumulated in
the under-determined case are more complicated than in the
over-determined case because the solution is not unique.

B. Pivot Assignment

Since the diagonal elements do not lend themselves natu-
rally as pivot elements if the matrix is non-square, we need
to explicitly select a pivot element for each constraint. In
other words, we need to determine a pivot assignment. Pivot
assignment is also important for square matrices as it has an
effect on convergence.

Definition 4. An assignment of constraints to variables is
called pivot assignment.

v: Constraints — Variables

A pivot assignment vy is called feasible if it is surjective and
total.

Surjectiveness is necessary because we require at least one
constraint for each variable, otherwise the variable’s value
would not be changed by the algorithm. The requirement of
totality is inherent in the definition of the linear relaxation
algorithm, which requires a pivot variable for every constraint.

C. Extension of Linear Relaxation

In the following we propose two pivot assignment algo-
rithms, a random and a deterministic one. While the random
algorithm avoids the issues of surjectiveness and totality
by randomization, the deterministic algorithm ensures these
properties, using the notions of most influential variables and
constraints defined as follows.

Definition 5. The most influential variable of a constraint
is the one with the highest influence. The most influential
constraint of a variable is the constraint where the variable
has the highest influence.

D. Random Pivot Assignment

The random algorithm assigns the pivot variable for each
constraint randomly in each iteration. This means that in
general the pivot assignment is changed for each iteration. To
prevent ill-conditioned situations, the algorithm makes sure
that variables with influence close to zero are never selected.

It is not inherently obvious that randomized assignments
work for the linear relaxation approach, but it is the simplest
approach that may work. Although the random algorithm does
generally not make the optimum assignment with regard to
convergence, it reduces the effect of bad assignments while
allowing for good assignments. In particular, it is guaranteed
that every suitable variable will be chosen as pivot variable at
some point. The general assumption underlying randomized
algorithms is that the effect of good choices outweighs the
effect of bad choices.

One of the observed drawbacks of random assignment is
that it causes more fluctuation of the error. This makes it
harder to recognize whether the algorithm diverges, or whether
fluctuations are only temporary. To address this problem, we
propose a deterministic approach in the following section.

E. Deterministic Pivot Assignment

The deterministic pivot assignment algorithm is only needed
for the equalities, therefore the algorithm described here is
applied to the maximum equality subsystem. Choosing a
variable in an inequality as a pivot element is not enough to
satisfy the criterion “choose every variable at least once” since
an inequality will not be further considered if it is fulfilled.
The deterministic algorithm for pivot assignment, working on
the maximum equality subsystem, is given in Fig. 2. It creates
a single pivot assignment that is used consistently during the
solving process. It is explained in the course of the following
proof of correctness. For the inequalities, one can choose
the most influential variable as a pivot variable. However, in
general it must be ensured that the same variable is not chosen
in two subsequent constraints.

Theorem 1. The deterministic algorithm produces only feasi-
ble assignments.

Proof: In lines 1-7 each constraint is assigned a variable
x, therefore the resulting assignment is total. In lines 8-11
every variable y that has not been assigned a constraint yet is
assigned a new constraint, which is a duplicate of an existing
constraint. As a result, the resulting assignment is surjective.
|
If the matrix is diagonally dominant, at the time the algo-
rithm iterates over a particular constraint, the most influential
variable of this constraint will still be unassigned. After the
first loop, there will be no unassigned variables left. As a
result, the algorithm correctly chooses the diagonal elements
as pivots in the case of diagonally dominant matrices. The al-
gorithm may duplicate constraints. Since this does not change
the solution of the problem, this is a valid transformation.

V. SOFT CONSTRAINTS

Hard constraints are constraints that must always be sat-
isfied. If this is impossible, there is no solution. For many
problems, including UI layout, conflicting constraints occur
naturally in specifications, as they express properties of a
solution that are desirable but not mandatory. As a result,
soft constraints need to be supported, which are satisfied if

943

Input: Constraints
Output: Pivot Assignment
1: for each constraint ¢ do
2: if some variables of c are still unassigned then

3: Choose unassigned variable = of ¢ with the largest
influence, assign y(c) = x

4: else

5: Choose the most influential variable x of ¢, assign
V() =x

6: end if

7: end for

8: for each still unassigned variable y do

9: Find the most influential constraint ¢ for y

_.
=

Duplicate ¢ to ¢/, assign v(¢') =y

11: end for

Fig. 2: Deterministic pivot assignment

possible, but do not render the specification infeasible if they
are not. A natural way to support soft constraints is to treat all
constraints as soft constraints, with different priorities. These
priorities can be defined as a total order on all constraints that
specifies which one of two constraints should be violated in
case of a conflict.

To define the solution of a system of prioritized soft
constraints we first have to define the subset ' C Constraints
of enabled constraints. We consider the characteristic function
1p : Constraints — {0,1} of E as an integer in binary
representation. The value of the characteristic function for
the constraint with the highest priority is considered the most
significant bit. Then such subsets can be compared by using
the numerical order > of the integers. We are interested in the
subset that is largest in that order and still fulfills the following
property: all constraints in the subset are non-conflicting. In
the following, we discuss existing approaches for solving
linear soft constraints. Then, we describe two algorithms that
address support for soft constraints in the linear relaxation
method: constraint insertion and constraint removal.

A. Related Work

All constraint solvers for Ul layout must support over-
constrained systems. There are two approaches: weighted
constraints and constraint hierarchies. Weighted constraints are
typically used with direct methods, while constraint hierarchies
are used with linear programming.

Direct methods for soft constraints are least squares meth-
ods such as LU-decomposition, QR-decomposition [19] and
Householder reflections. The Ul layout solver HiRise [20] is an
example of this category. HiRise2 [21] is an extended version
of the HiRise constraint solver which solves hierarchies of
linear constraints by applying an LU-decomposition-based
simplex method.

Many UI layout solvers are based on linear programming
and support soft constraints using slack variables in the
objective function [5], [22]-[25].

Input: Constraints
Output: Non-conflicting constraints
1: DISABLE all constraints
2: SORT constraints by priority
3: for each constraint ¢ in order of priority, descending do
4: Remember current variable values
5: ENABLE ¢
6: Assign pivot elements for all constraints
7 Apply linear relaxation
8: if solution not optimal then
9

: DISABLE ¢
10: Restore old variable values
11: end if
12: end for

Fig. 3: Constraint insertion algorithm

Many different local propagation algorithms have been
proposed for solving constraint hierarchies in UI layout. The
DeltaBlue [26] and SkyBlue [27] algorithms are examples
of this category. These algorithms arrange weaker constraints
prior to stronger constraints. They cannot handle simultaneous
constraints that depend on each other.

B. Constraint Insertion

The first algorithm that we propose for solving a system
of soft constraints is called constraint insertion and is defined
in Fig. 3. In this algorithm, we test constraints incrementally.
We start with an empty set £/ of enabled constraints (line
1). Iterating through the constraints in order of descending
priority, we add each constraint tentatively to E (“enabling”
it), and try to solve the resulting specification (line 7). Note
that whenever a constraint is added, the pivot assignment needs
to be recalculated. If a solution is found, then we proceed to the
next constraint. If no solution is found within a fixed maximum
number of iterations, then the tentatively added constraint is
removed again. In that case, the previous solution is restored
and we proceed to the next constraint.

This algorithm assumes that an adequate relaxation param-
eter is chosen so that linear relaxation converges if there is no
conflict. For every feasible linear specification, there is a linear
relaxation parameter so that linear relaxation converges [28].
The algorithm is approximating the maximum characteristic
function starting from the most significant bit.

C. Constraint Removal

Constraint removal, which is defined in Fig. 4, was used
successfully during our evaluation but has a limitation with
regard to the set E of constraints that are solved. In contrast
to constraint insertion, non-conflicting constraints of lower
priority may be lost if there are conflicting constraints of
higher priority in a specification. We present this approach
to provide another perspective on addressing soft constraints,
and as a pointer to future work.

We start with all constraints enabled, i.e. £ = Constraints
(line 1). We try to solve the specification, and assuming that

944

Input: Constraints
Output: Non-conflicting constraints
1: ENABLE all constraints
2: SORT constraints by priority
3: Assign pivot elements for all constraints
4: for each constraint do

5 Apply linear relaxation

6: if solution is optimal then

7: return solution

8: end if

9: for each constraint ¢ in order of priority, ascending do

10: if conflicting(c) then

11: /I ¢ is the conflicting constraint with the lowest
priority

12: DISABLE ¢

13: Assign pivot elements for all remaining constraints

14: break

15: end if

t6: end for

17: end for

Fig. 4: Constraint removal algorithm

an adequate linear relaxation parameter has been chosen, a
solution is found if F is conflict-free. In this case, we return
the solution. Otherwise, we remove the conflicting constraint
with the lowest priority from £ (“disabling”) and recalculate
the pivot assignment.

The algorithm as described above would provide correct
results, according to the requirement that the integer corre-
sponding to the characteristic function of E is maximized. The
problem is the definition of the predicate conflicting. Currently,
we use a heuristic: we treat a constraint ¢ as conflicting if the
value of its pivot variable v(c) has been changed significantly
during the last linear relaxation iteration. While this is true
for conflicting constraints, this is not a sufficient condition, as
other non-conflicting constraints may be affected by a conflict
and hence satisfy this condition, too. The consequence is that
some constraints with a priority below that of the conflicting
constraint with the lowest priority may be removed, too.

VI. EVALUATION

In this section we present an experimental evaluation of
the proposed algorithms with regard to their convergence, and
their performance.

A. Methodology

In our experiments we used the following setup: a desk-
top computer with Intel Core 2 Duo 3GHz processor under
Windows 7, running an Oracle Java virtual machine.

Layout specifications were randomly generated using the
test data generator described in [5]. For each experiment the
same set of test data was used. The specification size was
varied from 6 to 2402 constraints in increments of 4 (2 new
constraints for the position and 2 new constraints for the
preferred size of a new widget). For each size 10 different

@ Removal with random pivot assignment
O Insertion with random pivot assignment

600
I

Runtime (ms)

1000 1500 2000

Constraints

Fig. 5: Performance comparison between constraint insertion
and removal using random pivot assignment

layouts were generated resulting in a total of 6000 different
layout specifications which were evaluated. A linear relaxation
parameter of 0.7 and a tolerance of 0.01 were used for linear
relaxation. As a reference, all the generated specifications
were also solved with LP-Solve [29], which is a well-known
efficient linear programming solver, and QR-decomposition,
using the Apache Commons Mathematics Library [30]. LP-
Solve is written in C and compiled to native code, which
gives it a slight performance advantage compared to our Java
implementations.

Solving of each of the random layout specifications was
repeated 10 times. In the performance graphs, individual
measurements are illustrated as differently shaded circles. We
applied several types of regression models (linear, quadratic,
log, cubic) to the performance data. The polynomial model
(2 + 22 + %) showed the best fit for the performance data of
all solvers (R% > .92). The fitted polynomials are shown as
black lines in the graphs.

B. Results

The performance results are shown in Figs. 5, 6 and 7.
Figure 5 illustrates the performance comparison of constraint
insertion and constraint removal using random pivot assign-
ment. Constraint removal exhibited a better performance than
constraint insertion.

Figure 6 compares constraint insertion and removal using
deterministic pivot assignment. Insertion using deterministic
assignment is slow because after adding each of the constraints
the pivot assignment has to be recomputed. In comparison,
the runtime of constraint removal using deterministic pivot
assignment appears almost linear in the number of constraints.
One reason for this difference is that for removal the pivot
assignment needs only be recomputed for each conflicting
constraint.

Figure 7 compares all the aforementioned algorithms ex-
cept the slow insertion with deterministic pivot assignment

945

@ Insertion with deterministic pivot assignment
- O Removal with deterministic pivot assignment

150000

100000
I

Runtime (ms)

50000
I

1000 1500 2000

Constraints

Fig. 6: Performance comparison between constraint insertion
and removal using deterministic pivot assignment

Removal with random pivot assignment
Insertion with random pivot assignment
Removal with deterministic pivot assignment
Lp-Solve
QR-decomposition

2000

1500

Runtime (ms)
1000
I

1000 1500 2000

Constraints

Fig. 7: Performance comparison of all algorithms with LP-
Solve and QR-decomposition

to LP-Solve and QR-decomposition. All our algorithms in
Figure 7 performed significantly better than LP-Solve and
QR-decomposition. The convergence results of our proposed
algorithms were all optimal.

VII. DISCUSSION

The performance results showed that constraint insertion
with deterministic pivot assignment does not have a satis-
factory performance compared to our other algorithms. All
our proposed algorithms, except insertion with deterministic
pivot assignment, are faster than an implementation of QR-
decomposition and the simplex algorithm implementation of
LP-Solve. As described earlier, direct methods suffer from fill-
in effect when solving sparse systems, which generally makes
them inferior to indirect, iterative methods in this case.

We already mentioned that constraint removal suffers from
the limitation that sometimes non-conflicting constraints are
removed in the presence of conflicting constraints. However,
using constraint insertion with random pivot assignment does
not have this limitation and performs almost as well as
constraint removal. Hence, constraint insertion with random
pivot assignment appears to be the most appropriate algorithm.

One of the limitations of using indirect, iterative methods is
that convergence is not guaranteed in certain circumstances.
They may not converge if the conditions described in Sec-
tion III are not fulfilled. However, the two proposed algorithms
converged for all the tested 6000 specifications, yielding (with
the aforementioned exception of constraint removal) optimal
results. This is a strong indication that in practice, convergence
is not a problem for UI layout specifications.

VIII. CONCLUSION

We have proposed new algorithms for using linear relaxation
for solving constraint-based UI layout problems. In particular,
we presented the following contributions:

o Algorithms for pivot assignment that make it possible to
solve non-square matrices.

« Support for soft constraints that makes it possible to solve
over-constrained specifications.

¢ An evaluation that indicates that most of the proposed
algorithms are optimal and outperform a modern linear
programming solver, LP-Solve, and a QR-decomposition
solver.

These algorithms, in particular constraint insertion with ran-
dom pivot assignment, bring the benefits of efficiently solving
sparse matrices to Ul layout.

As a future work, a more accurate way of detecting con-
flicting constraints for the constraint removal algorithm needs
to be found. Another possible future direction is to extend
the proposed algorithms to solving of non-linear UI constraint
problems.

REFERENCES

[1] A. B. Saeed and A. B. Naeem, Numerical Analysis. Shahryar, 2008.

[2] S. Kunis and H. Rauhut, “Random sampling of sparse trigonometric
polynomials, ii. orthogonal matching pursuit versus basis pursuit,”
Journal Foundations of Computational Mathematics, vol. 8, no. 6, pp.
737-763, Nov. 2008.

H. M. Anita, Numerical Methods for Scientist and Engineers.
Birkhauser, 2002.

C. Zeidler, J. Miiller, C. Lutteroth, and G. Weber, “Comparing the usabil-
ity of grid-bag and constraint-based layouts,” in OzCHI ’12: Proceedings
of the 24th Australian Computer-Human Interaction Conference. New
York, NY, USA: ACM, 2012.

C. Lutteroth, R. Strandh, and G. Weber, “Domain specific High-Level
constraints for user interface layout,” Constraints, vol. 13, no. 3, 2008.
[6] M. J. Maron, Numerical-Analysis. Collier Macmillan, 1982.

[5

946

[7]
[8]

[9]

(10]

(11]
(12]

(13]

[14]

[15]

[16]
[17]

(18]
[19]

[20]

[21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]
(29]

(30]

B. N. Datta, Numerical Linear Algebra And Applications. Cole, 1995.
C. G. Broyden, “On convergence criteria for the method of successive
over-relaxation,” Mathematics of Computation, vol. 18, pp. 136-141,
1964.

J. L. Goffin, “The relaxation method for solving systems of linear
inequalities,” Mathematics of Operations Research, vol. 5, no. 3, pp.
388-414, 1980.

S. Agmon, “The relaxation method for linear inequalities,” Canadian
Journal of Mathematics, pp. 382-392, 1954.

T. Motzkin and I. Schoenberg, “The relaxation method for linear
inequalities,” Canadian Journal of Mathematics, pp. 393-404, 1954.
M. T. Heath, Scientific Computing, An Introductory Survey. McGraw-
Hill, 1997.

L. V. Foster, “Modifications of the normal equations method that
are numerically stable,” In Numerical Linear Algebra, Digital Signal
Processing and Parallel Algorithms, pp. 501-512, 1991.

A. Bjork, “Error analysis of least squares problems,” Proc.of the NATO
Adv.Study Inst. On Numerical Linear Algebra,Digital Signal Processing
and Parallel Algorithms, 1988.

X. Wang, “Incomplete factorization preconditioning for linear least
squares problems,” Technical Report, University of Illinois,USA, pp. 1—
212, 1984.

G. B. Danzig, Linear Programming and Extensions, 1lst ed., ser.
Princeton Landmarks in Mathematics. Princeton Uni. Press, 1998.

G. Golub and C. Van Loan, Matrix Computations. Johns Hopkins Uni.
Press, 1996.

H. A. Taha, Operations Research: An Introduction. Mcmillan, 1992.
Y. Yoshioka, H. Masuda, and Y. Furukawa, “A constrained least squares
approach to interactive mesh deformation,” in Proceedings of the IEEE
International Conference on Shape Modeling and Applications 20006,
ser. SMI "06. IEEE Computer Society, 2006, pp. 23—.

H. Hosobe, “A scalable linear constraint solver for user interface con-
struction,” in Proceedings of the 6th International Conference on Prin-
ciples and Practice of Constraint Programming, ser. CP *02. Springer,
2000, pp. 218-232.

——, “A simplex-based scalable linear constraint solver for user in-
terface applications,” in Tools with Artificial Intelligence (ICTAI), 2011
23" J[EEE International Conference on, Nov. 2011, pp. 793-798.

G. J. Badros, A. Borning, and P. J. Stuckey, “The cassowary linear arith-
metic constraint solving algorithm,” ACM Transactions on Computer-
Human Interaction, vol. 8, no. 4, pp. 267-306, 2001.

A. Borning, K. Marriott, P. Stuckey, and Y. Xiao, “Solving linear
arithmetic constraints for user interface applications,” in Proceedings
of the 10™ annual ACM symposium on User interface software and
technology (UIST '97). ACM, 1997, pp. 87-96.

M. S. Bazaraa, J. J. Jarvis, and H. D. Sherali, Linear Programming and
Network Flows, 4th ed. Wiley, 2009.

K. Marriott, S. C. Chok, and A. Finlay, “A tableau based constraint
solving toolkit for interactive graphical applications,” in Proceedings
of the 4th International Conference on Principles and Practice of
Constraint Programming, ser. CP "98. Springer, 1998, pp. 340-354.
J. M. Freeman-Benson and A. Borning, “An incremental constraint
solver,” Communications of the ACM, vol. 33, no. 1, pp. 54-63, 1990.
M. Sannella, “Skyblue: a multi-way local propagation constraint solver
for user interface construction,” in Proceedings of the 7" annual ACM
symposium on User interface software and technology (UIST '94).
ACM, 1994, pp. 137-146.

R. L. Burden and J. Faires, Numerical Analysis. Bob Pirtle, 2005.
M. Berkelaar, J. Dirks, K. Eikland, P. Notebaert, and J. Ebert. (2012)
Lp-solve: A (mixed integer) linear programming problem solver.
[Online]. Available: http://Ipsolve.sourceforge.net/

Apache Software Foundation. (2012) Commons Math: The Apache
Commons mathematics library. [Online]. Available: http://commons.
apache.org/math

