
S3J: A Parallel Semi-Stream Similarity Join

Hao Gao, Muhammad Asif Naeem,
School of Computer and Mathematical Sciences,

Auckland University of Technology
Private Bag 92006, Auckland, New Zealand

alexgao726@gmail.com
mnaeem@aut.ac.nz

Christof Lutteroth, Gerald Weber
Department of Computer Science,

University of Auckland
Private Bag 92019, Auckland, New Zealand

christof@cs.auckland.ac.nz
gerald@cs.auckland.ac.nz

ABSTRACT
Semi-stream join algorithms join a continuous stream with
a large disk-based relation. While there are efficient semi-
stream equijoins for exact matches in the joined data, there
are currently no semi-stream similarity joins for approxi-
mate matches. The existing similarity join algorithms work
either offline (on datasets that are fully known) or on sev-
eral streams (using a join window), and are less suitable
for applications where continuous, immediate and complete
similarity join results are required. To address this gap
we propose S3J, the first semi-stream similarity join algo-
rithm. To utilize disk and CPU optimally, S3J combines a
disk-intensive queue-based semi-stream join approach with
a CPU-intensive similarity matching algorithm. The simi-
larity matching algorithm is based on tries to minimize the
memory footprint. Moreover, it supports parallel execution
to utilize modern multicore CPUs. We provide a cost model
for S3J and evaluate its performance empirically.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Query process-
ing

Keywords
Semi-stream join; similarity search; trie

1. INTRODUCTION
Semi-stream joins appear naturally during stream process-

ing when a stream is interpreted in the context of organiza-
tional knowledge. They combine stream data with relatively
stable but large master data, often with near real-time per-
formance requirements. There are numerous applications of
semi-stream joins, such as real-time data warehousing, sen-
sor networks and social media analysis. In most cases, semi-
stream join algorithms perform equijoins, i.e. exact matches
between attribute values of stream tuples and disk-based
master data records.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
DOLAP’15, October 23, 2015, Melbourne, Australia.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3785-4/15/10 ...$15.00.
DOI: http://dx.doi.org/10.1145/2811222.2811226 .

There are some applications where equijoins are too strict
and similarity joins are preferable, as data is not always la-
beled with exact attribute values. For example, this is the
case when data is entered manually or recognized by machine
learning methods. Hash tags in real-time tweets can be seen
as keys in some applications, but they inevitably contain
some typographical errors. Searching for similar names and
related information in a large database is another kind of ap-
plication of a similarity join. In ETL process of data ware-
housing, many documents such as orders and reports are
usually generated manually, and therefore attributes such
as product names and customer addresses also contain ty-
pos. A similarity join is required to join this kind of data.
This is particularly useful for data cleaning, to find correct
master data for slightly incorrect stream attribute values.

Accordingly, semi-stream similarity join algorithms are a
promising field of research. There are other similarity joins,
which work either offline or purely on streams (without disk-
based master data). For offline algorithms, the datasets that
are joined must be fully known – a condition that is not given
for a continuous data stream. Furthermore, these algorithms
often require all data to be fully loaded into main memory,
which may not always be possible. Semi-stream joins are
designed to work on a continuous stream and can typically
handle very large relations, by keeping them on disk and
optimizing disk access.

Also, purely stream-based joins cannot easily satisfy the
requirements of a semi-stream join. In order to perform
a complete join (i.e. all possible pairs of stream tuples are
matched), such algorithms would have to keep all previous
stream data in memory indefinitely, as any new stream tu-
ple may join with old data. To avoid this, stream join algo-
rithms are typically confined to a join window, i.e. matches
are only performed over recent parts of the streams. By
contrast, we expect a semi-stream similarity join to produce
all join results between stream and master data, and do so
efficiently (near real-time) by considering the characteristics
of the stream and the disk-based relation.

To address this gap, we propose S3J, the first semi-stream
similarity join algorithm. To utilize disk and CPU optimally,
S3J combines a disk-intensive queue-based semi-stream join
approach with a CPU-intensive similarity matching algo-
rithm. The similarity matching algorithm is based on an or-
dered tree data structure – a trie – to minimize the memory
footprint, and supports parallel execution to utilize modern
multicore CPUs. In particular, we make the following main
contributions:

Resource utilization: S3J takes advantage of the com-

putational intensity of similarity joins and the IO intensity of
semi-stream joins. Many prominent semi-stream joins leave
available resources underutilized. For many of these joins,
the disk access is the bottleneck, meaning the processor is
mostly idle. We show that in scenarios where a reasonable
number of matching errors can be expected (i.e. similarity
matches), this idle processor time can be brought to good
use by performing a relaxed equijoin.

Low memory consumption: The proposed similarity
join is based on tries, which have been found in recent re-
search to be a data structure with very low memory con-
sumption [8]. S3J was specifically designed to match a given
service rate with minimal main memory consumption.

Near real-time performance: The time complexity of
a similarity join is much larger than that of an equijion,
which significantly increases the difficulty of executing the
similarity join in near real-time. Although tries have a very
low memory footprint, they have a high processing cost [8].
To deal with this, S3J can execute semi-stream similarity
joins in parallel, making use of multicore CPUs.

Improved bi-trie algorithm for stream joins: We
have improved previous techniques to use two tries [8] and
considerably improved performance, for a very modest in-
crease in memory consumption.

Cost model and experiments We provide a theoretical
cost model for S3J. Furthermore, we report the results of
experiments that validate the cost model and systematically
explore the behavior of the algorithm.

Section 2 summarizes related work on semi-stream and
similarity joins. Section 3 provides background information
about tries and fuzzy search. Section 4 presents S3J in its
single-threaded form, with details about its algorithm and
cost model. Section 5 describes how S3J can be parallelized
and how this affects the cost model. Section 6 provides an
experimental evaluation. Section 7 sums up conclusions and
points out future work.

2. RELATED WORK
Semi-stream joins have been studied for a while with a fo-

cus on equijoins. MESHJOIN [13] is a seminal semi-stream
join algorithm. It puts available stream data rather than the
whole relation into memory to deal with the problem of very
large disk-based relations. It can be seen as a CPU-memory
trade-off, which solves the problem of limited memory. It
employs a hash table to enable equijoins between stream
data with the disk-based relations. Chakraborty et al. [4]
propose a partition-based algorithm adjusting the partitions
loaded into memory to adapt to the arrival frequency of keys
of stream tuples. It exploits the spatio-temporal locality of
stream data to reduce disk overhead and therefore reduce
delay. HYBRIDJOIN [11] provides a near-real-time algo-
rithm to process intermittent streams using an index on the
master data. C-MESHJOIN [12] takes advantage of the dis-
tribution of stream tuples to boost the performance in real
applications where data is not subject to uniform distribu-
tions.

Current research on similarity joins mainly falls into one
of two categories: gram-based methods and character-based
methods. The former usually adopts a filter-and-verify ap-
proach [8]. By building an inverted index associating n-
grams and string signatures, pruning methods can be ap-
plied to reduce similar candidates in the filtering step. The
verification step examines the candidates to generate the fi-

nal set of similar strings. Based on the constraints of grams,
positional grams and length difference of similarity strings,
Gravano et al. [6] propose count filtering, position filtering
and length filtering.

The process of generating grams is very time-consuming.
AllPair [2] uses prefix filtering to alleviate this problem. Ed-
join [19] lowers the prefix length bound and uses frequency
histograms to further prune the candidates. QChunk [14]
proposes new signature schemes based on q-chunks that re-
duce the the number of generated candidates. PPJoin [20]
adopts position filtering and suffix filtering to boost the met-
rics of Jaccard, Cosine and Dice based algorithms. Adap-
tJoin [17] provides a framework to improve prefix-filtering
based algorithms. VChunk [18] adopts variable-length chunks
as signatures to organize the inverted index, while FastSS [3]
uses substrings as signatures. PassJoin [10] and PartEnum [1]
propose two different pigeon-hole principle based schemes to
filter the candidates.

Trie-based similarity joins have been studied to imple-
ment character-based algorithms. Wang et al. [16] propose
TrieJoin and BiTrieJoin taking advantage of the trie struc-
ture to join two big datasets efficiently. Jiang et al. [7] de-
sign a partition-based parallel algorithm to boost the per-
formance of a trie-based similarity join by utilizing com-
putation resource. Deng et al. [5] propose MASSJOIN, a
MapReduce-based framework to explore repetitive patterns
of key-value pairs in data.

Jiang et al. [8] provide a comprehensive evaluation and
analysis of different algorithms [2, 19, 14, 20, 17, 18, 3, 10,
1, 16, 7]. For edit distance, it finds FastSS, TrieJoin and Bi-
TrieJoin are efficient for small datasets and low thresholds,
e.g., Levenshtein distances ≤ 2; FastSS has a higher per-
formance for datasets with short strings; PassJoin performs
better for big datasets. For the metrics of Jaccard, Cosine
and Dice, AdaptJoin is preferable for big datasets; PPJoin
and AdaptJoin perform better for small datasets with high
and low thresholds respectively.

3. BACKGROUND

3.1 The Trie Data Structure
A trie is a tree-based key/value multi-map. The keys are

strings (over an arbitrary alphabet A) and stored as a path
in the tree, hence the trie uses lexical ordering. Every tree
node can represent a key and can be associated with the
values of the key. The root node represents the empty string.
Every node can have up to one child node for each letter in
A. Apart from the root, every node is associated with a
letter, and with a path. All the descendants of a node share
the common prefix represented by the path from the root to
the node.

Tries also facilitate the computation of edit distances be-
tween strings. If two strings stored in a trie share a common
ancestor node, they share the same prefix. A dynamic pro-
gramming method can be used to search for similar words
in a trie by using this characteristic.

A trie is an asymptotically very compact data structure
for storing strings. The height of a trie is one more than the
length of the longest key in the trie. If we use, e.g., English
words as keys, we can construct a wide and flat trie with a
fan-out of 26, which makes the operations of insertion, dele-
tion and search fast. Asymptotically a trie can also reduce
memory usage compared to storing strings separately, but

L e v e n s t a i n
0 1 2 3 4 5 6 7 8 9 10

L 1 0 1 2 3 4 5 6 7 8 9
e 2 1 0 1 2 3 4 5 6 7 8
v 3 2 1 0 1 2 3 4 5 6 7
e 4 3 2 1 0 1 2 3 4 5 6
n 5 4 3 2 1 0 1 2 3 4 5
s 6 5 4 3 2 1 0 1 2 3 4
h 7 6 5 4 3 2 1 1 2 3 4
t 8 7 6 5 4 3 2 1 2 3 4
e 9 8 7 6 5 4 3 2 2 3 4
i 10 9 8 7 6 5 4 3 3 2 3

n 11 10 9 8 7 6 5 4 4 3 2

Table 1: The computation of Levenshtein distance.
In fuzzy search, only the entries in red are needed.

the constant overhead for the size of a trie node has to be
taken into account. Our experiments in Section 6 show a
compression ratio of about 80% for general English words.

3.2 Fuzzy Search
In this section we will rehash the concept of edit distance

and its relationship with tries. We call the search for strings
with an edit distance smaller than a given c henceforth a
fuzzy search. An edit distance measures dissimilarities be-
tween two strings in terms of some basic operations, where
each operation has a certain cost. The edit distance of two
strings is the minimum overall cost of the operations that
convert one string to the other. Vladimir Levenshtein de-
fined a commonly used edit distance, the Levenshtein dis-
tance [9], with three single-character operations:

1. Character Deletion: axb→ ab

2. Character Insertion: ab→ axb

3. Character Substitution: axb→ ayb (where x 6= y)

The Wagner-Fischer algorithm [15] is a dynamic algorithm
that can efficiently compute the edit distance between two
strings with a time complexity of O(mn), where m and n
are the lengths of the two strings. Table 1 illustrates how
this algorithm works by building a table of edit distances for
substrings.

The Wagner-Fischer algorithm for computing the Leven-
shtein distance can be adapted to perform fuzzy search ef-
ficiently in a trie. The path for one node from the root in
a trie represents a string or a prefix of a string. Let pathj

be the character sequence from the root to the node j. If
node j + 1 is a descendant of node j, then pathj is a prefix
of pathj+1 that is one character shorter.

Table 1 shows the usual dynamic programming tableau
for the algorithm. The string ”Levenshtein” can be a path
in a trie, and the string ”Levenstain” (494 examples of this
misspelling in Google) can be a search key. Then every row
corresponds to a node in the path. The simplest dynamic
algorithm flood-fills the tableau based on the recursive defi-
nition of the Levenshtein distance; the resulting value in the
bottom-right corner is the Levenshtein distance between the
two strings. Already for the isolated distance between two
strings, optimization is possible to bring the time complexity
down to O(dmaxm) where m is the length of the shorter one
of the two strings and dmax is the maximum edit distance.

Stream
Buffer BS

Disk Buffer
BR

Relation
R

Queue QStream S

 Trie T

Figure 1: Architecture of the S3J algorithm

The computation of edit distances between a target string
and the keys in the trie can be optimized based on the fact
that the maximum distance dmax is given. In an edit dis-
tance table, if an element di,j > dmax, it cannot contribute
to the computation of the following distances di+a,j+b where
a ≥ 0 and b ≥ 0. In Table 1, only the elements in red around
the diagonal need to be computed for dmax = 3. We use this
simple improvement in our implementation of fuzzy search.
The computation complexity is O(dmaxN) where N is the
node number of the trie and dmax is the maximum edit dis-
tance.

In this work we restrict the choices of similarity search
methods to tries and our improved bi-trie. We do not com-
pare other approaches because we focus here on the paral-
lelization of the similarity search in order to utilize multicore
processors. Space consumption apart from the trie is not an
issue for the fuzzy search algorithm; the only data structure
needed is the table. Thus, there is one array for every node
recording edit distance. So the memory usage is HL where
H is the trie height and L is the query length.

4. SEMI-STREAM SIMILARITY JOIN (S3J)
We propose S3J, an algorithm that performs a similar-

ity join between stream data and disk relation data. The
stream data can be processed in a near real-time fashion,
while only a fraction of the disk relation needs to be loaded
into memory. S3J creates a balance between computation
cost and memory cost. Section 4.1 presents the high-level
architecture and design. Section 4.2 describes the details of
the algorithm.

S3J, presented as Algorithm 1, can be configured to use
any similarity lookup data structure. We investigate here
the use of a traditional trie and our improved bi-trie, re-
spectively. Algorithms 1 and 2 represent S3J using a trie,
Algorithms 1 and 3 represent S3J using a bi-trie.

4.1 Architecture
The basic components of S3J include the stream buffer

BS , the disk buffer BR and the trie T as shown in Figure 1.
The stream buffer BS stores the stream tuples waiting to
be processed. Because the stream S constantly feeds tuples
into the stream buffer, the current fill level of the stream
buffer is an important indicator of processing delays in the
join. The relation R is assumed to be too large for the main

memory assigned to the algorithm. It is loaded into memory
in partitions in a round robin fashion; each round is a table
scan.

The algorithm performs the loading of the partitions from
the disk in parallel to the similarity join computation. The
trie is constructed from the stream tuples, and then rela-
tion tuples are used to find stream tuples with similar join
attribute in the trie. When a match is found, the corre-
sponding result is output. A stream tuple in the trie stays
in the trie until it had a chance to be matched with every
relation tuple, i.e. for one table scan of R.

4.2 Algorithm
The procedure of S3J is shown in Algorithm 1. In the

algorithm, the relation R is split into k partitions each of
which will be loaded into the relation buffer BR in one it-
eration. i in the second line points to the partition to load
in the coming iteration. Q is a fixed-length queue which
records the time order in which a batch of tuples is put into
the trie T . From Line 4 to Line 22, a loop is performed to
process the infinite stream S. S continuously feeds tuples
into the stream buffer BS .

In every iteration, all the tuples in BS are put into the
trie T , and a copy of the references is put into a container
C that is put into the queue Q. The bi-trie is a component
for an improved version of the fuzzy search, which will be
discussed in Section 4.3 After this, the ith partition of the
relation R is loaded into the relation buffer BR. At the same
time, the pointer i is moved to the next partition. As shown
in line 12, after every k iterations, i is set to the beginning of
the relation. Then, relation tuples are used to traverse the
trie, and fuzzy search is performed to find the tuples with
similar keys in the trie T .

Finally, the head element C of the queue Q is dequeued.
C is a container with references to tuples in the trie T , and
all these tuples are removed from the trie. As the length of
the queue Q is k, and in k iterations all the relation tuples
have traversed the trie, the tuples in the trie T will only be
removed after trying to match all the relation tuples. This
guarantees that all the stream tuples are fully processed.

4.3 Bi-Trie Fuzzy Search
An efficient similarity join requires a fast fuzzy search al-

gorithm. In this section, we present a modified bi-trie fuzzy
search, which improves search performance. Briefly, the bi-
trie join employs two trie structures in the Algorithm 1 in
Line 7. If two strings r = r1r2...rm and s = s1s2...sn are
similar within edit distance d, at least one of the following
two conditions must be satisfied:

1. r1r2...rbn2 c is similar to a prefix of s within edit dis-

tance
⌊
d
2

⌋
.

2. rbn2 +1c...rn is similar to a suffix of s within edit dis-

tance
⌊
d
2

⌋
.

Wang et al. [16] use this property as a filtering condition by
building two tries. In this paper, we also build two tries,
one normal trie and one trie built from reversed strings.
However, we change the fuzzy search algorithm to search on
the two tries and directly get results rather than using them
as filtering tools. This removes the verification process and
therefore boosts the performance.

Algorithm 1 Semi-Stream Similarity Join

1: procedure Semi-stream Similarity Join
2: i← 0
3: Q← Queue(length = k)
4: loop
5: C ← Container()
6: for all t ∈ BS do
7: add t into trie (or bi-trie) T
8: add the reference of t into C
9: end for

10: enqueue C into Q
11: load the ith partition of the relation R into BR

12: i← (i+ 1) mod k
13: for all t ∈ BR do
14: w ← key(t)
15: results ← fuzzy search(w, dmax)
16: output results
17: end for
18: C ← dequeue(Q)
19: for all t ∈ C do
20: remove t from T
21: end for
22: end loop
23: end procedure

We can change the fuzzy search algorithm (as shown in
Algorithm 2) on a trie to utilize the two tries. If we want
to search similar strings of r within edit distance d in a
collection of strings U , we can build a trie Tleft from the
collection U . First, we search r1r2...rbn2 c with edit distance⌊
d
2

⌋
in Tleft. If we cannot reach any node in this step, the

search process is finished. Otherwise, we change the edit
distance constraints from

⌊
d
2

⌋
to d and continue the search

process on the trie. The results of the above process satisfy
the first condition of the previous paragraph, and they are
similar with r within edit distance d. If we build another trie
Tright using the reverse form of the strings in the collection
U and search the reverse form of the second half of the string
rbn2 +1c...rn on Tright following the same procedure, we will

get the similar strings satisfying the second condition. How-
ever, if a similar string in U satisfies the two conditions, it
will exist in both of the results from Tleft and Tright. So
a merge process is needed to remove the duplication in the
results. The complete procedure is shown in Algorithm 3.

Algorithm 3 is used for S3J with a bi-trie. Firstly, we
put every stream tuple t into trie Tleft and the tuple t with
reversed key into trie Tright, and then use Algorithm 3 to
perform fuzzy search on the two tries. The final results are
the combination of the results from the two tries without
duplicates.

Figure 2 compares the search speeds of trie and bi-trie.
The experiments are performed on fixed tries and bi-tries
with 10000 strings from the dictionary dataset described in
Section 6.1 and for different maximum edit distances. The
experiment corroborates the hypothesis that since the search
in the upper levels of the tries is performed with a smaller
maximum edit distance, the effort for the search is reduced.
It also shows that at least up to distance 5, the cost for odd
distances is not noticeably larger than for the next smaller
even distance. This effect is theoretically expected, since for
odd maximum distances d, the value

⌊
d
2

⌋
is still the same

Algorithm 2 Trie Fuzzy Search

1: procedure Fuzzy Search(w, dmax) . Trie Variant
2: results ← array()
3: row ← associative array()
4: for all i ∈ length(w) and i ≤ dmax do
5: row[i]← i
6: end for
7: for all node ∈ sub-nodes of root do
8: results ← append(results, search(w, node, row,
dmax, 0))

9: end for
10: return results
11: end procedure
12: procedure search(w, node, last row, d max, depth)
13: results ← array()
14: row ← associative array()
15: for all i ∈ keys of last row do
16: d← edit distance(w, last row, depth, node)
17: if d ≤ dmax then
18: row[i]← d
19: if node contains a key then
20: results ← append(results, values(node))
21: end if
22: end if
23: end for
24: if row 6= ∅ then
25: for all sub node ∈ sub-nodes of node do
26: results ← append(results, search(w,

sub node, row, dmax, depth+ 1))
27: end for
28: end if
29: return results
30: end procedure

0

10000

20000

30000

0 1 2 3 4 5
Edit Distance

N
um

be
r o

f V
is

ite
d

N
od

es

type

bitrie

trie

Figure 2: Search speed of trie and bi-trie

as
⌊
d−1
2

⌋
. This means that for odd maximum distances the

search in the upper levels of the trie requires no more effort
than for the next smaller even edit distance. Overall it shows
that the bi-trie can reduce the search considerably.

4.4 Cost Model
In this section, we construct the cost model for the algo-

rithms and deduce the optimal values for the key parameters

Algorithm 3 Bi-trie Fuzzy Search

1: procedure Fuzzy Search(w, dmax) . Bi-trie variant
2: resultsleft ← bitrie fuzzy search(Tleft, w, dmax,
LEFT)

3: resultsright ← bitrie fuzzy search(Tright, w, dmax,
RIGHT)

4: results ← merge(resultsleft, resultsright)
5: return results
6: end procedure
7: procedure bitrie fuzzy search(trie, w, dmax,
trie type) . By Changing Algorithm 2

8: add the following lines between Line 1 and Line 2.
9: ”

10: if trie type is RIGHT then
11: w ← reverse(w)
12: end if
13: ”
14: replace Line 17 with ”if d ≤ adjust(length(w), depth,

dmax, trie type)”
15: end procedure
16: procedure adjust(length, depth, dmax, type)
17: if (type = LEFT and depth ≤

⌊
length

2

⌋
) or (type =

RIGHT and depth ≤
⌈
length

2

⌉
) then

18: return
⌊
dmax

2

⌋
19: end if
20: return dmax

21: end procedure

Parameter Symbol

Size of a stream tuple vS
Size of a disk tuple vR
Size of the disk relation R
Partition number k
Service rate µ
Ratio of the trie size to node number α
Cost of one iteration cloop
Reference size vp
Cost of reading one partition of the relation cIO
Cost of reading one stream tuple cS
Cost of inserting one tuple into a trie cinsert

Cost of adding one reference into C cadd
Cost of fuzzy search csearch
Cost of putting an element into a queue cenqueue

Cost of dequeuing an element from a queue cdequeue
Cost of deleting one tuple from a trie cdel

Table 2: Notations of the cost model

to tune the overall performance. The cost model provides
a convenient way to evaluate the processing time as well as
the memory footprint. The key parameters include the par-
tition number of the disk relation k and the service rate µ.
As the algorithm provides guaranteed service, the service
rate is equal to the stream tuple arrival rate. The nota-
tions for the cost model are listed in Table 2. It is worth to
mention that the costs of operations related to the trie are
approximate, as they vary with the trie size. Because the
trie built in our algorithm tends to be wide and flat, it only
slightly influences the real costs in real situations.

Firstly, we construct the model for the trie join, as it is
easy to derive the cost model for the bi-trie from the trie. In

the main loop of the algorithm, the time cost of one iteration
cloop mainly includes four parts: the time for loading stream
data into the trie, the time for reading relation tuples, the
time for the similarity join, and the time for deleting fully
processed tuples from the trie. The number of processed
stream tuples is the product of cloop and the service rate µ,
so we can construct Equation 1 to express cloop. Then, we
can solve for cloop in Equation 2.

cloop =cIO + csearch
R

k
+ cenqueue + cdequeue

+ µcloop(cs + cadd + cinsert + cdel)
(1)

cloop =
cIO + csearch

R
k

+ cenqueue + cdequeue

1− µ(cs + cadd + cinsert + cdel)
(2)

In Equation 2, R
k

is the partition size of the relation data.
From Equation 2, we can see cloop increases with decreasing
k. To examine the influence of k on the service rate µ, we
transform Equation 2 into Equation 3. From Equation 3 we
can see that the service rate µ increases with decreasing k.
In particular, for k = 1 the service rate µ is the largest. It
also shows that a bigger trie can improve the service rate.

µ =
1− 1

cloop
[cIO + R

k
csearch + cenqueue + cdequeue]

cS + cadd + cinsert + cdel
(3)

On the other hand, the processing time increases with
decreasing k. For stream tuples, the processing time of a
tuple tprocess is about cloopk. From Equation 2 we can de-
duce tprocess in Equation 4. As the values of cenqueue and
cdequeue are very small compared to cIO and csearch, it is
safe to omit them. From Equation 4, tprocess increases with
increasing µ. µ increases with decreasing k, so tprocess in-
creases with decreasing k. This demonstrates that a balance
between the processing time and the service rate can be cre-
ated by adjusting k.

tprocess =
k(cenqueue + cdequeue) + kcIO +Rcsearch

1− µ(cS + cadd + cinsert + cdel)
(4)

The memory is comprised of the stream buffer, the rela-
tion buffer, the trie and the queue. In a loop, the number
of stream tuples in the stream is cloopµ. The total memory
footprint is shown in Equation 5.

M =vScloopµ+ vR
R

k
+ αvpkcloopµ

+ vSkcloopµ
(5)

In this equation, the stream buffer size vScloopµ and the
relation buffer size vR

R
k

increase with decreasing k, while
the other two parts, the trie and the queue, decrease with
decreasing k. Consequently, the memory consumption can
be optimized by varying k. In reality, relation data tends to
be very big, and consequently there are limits on how small
k can be, in order to reduce the memory usage.

If we substitute Equation 2 into Equation 5, we get the
relationship between service rate µ and the memory usage as
shown in Equation 6. It shows the memory footprint is pro-
portional to the service rate when µ� 1

cS+cadd+cinsert+cdel
.

When the condition is not satisfied, the memory usage in-
creases exponentially with respect to the service rate µ.
However, in Equation 6, µ can be very large as the time com-
plexities of cS , cadd, cinsert and cdel areO(1). So the memory

usage is nearly linearly or quadratically proportional to the
service rate for most practical situations.

Mtrie =
µ(cIO + csearch

R
k

+ cenqueue + cdequeue)

1− µ(cS + cadd + cinsert + cdel)

× (vS + kαvp + kvS) + vR
R

k

(6)

For the bi-trie join, the memory needed for the tries is
doubled as shown in Equation 7, as there are two tries rather
than one. However, as the search speed is faster, the total
memory can be smaller for the same service rate by reducing
the average stream buffer size and therefore the trie size.

Mbi-trie =
µ(cIO + csearch

R
k

+ cenqueue + cdequeue)

1− µ(cS + cadd + 2cinsert + 2cdel)

× (vS + 2kαvp + kvS) + vR
R

k

(7)

5. PARALLELIZATION OF S3J
As we will see in the evaluation section, for larger val-

ues of the maximum edit distance, the fuzzy search becomes
the dominating factor. However, the fuzzy search can be
effciently parallelized in the sense of Amdahl’s law, by tak-
ing advantage of the constant structure of the trie. Since
modern processing hardware provides typically a number of
cores, currently typically 4, this can extend the range of in-
put sizes for which the algorithm can be executed at the
minimal cost that is incurred by its table scan design.

The only serial fraction (in Amdahl’s law terminology) of
the fuzzy search phase is the access to the disk buffer and
the update of the trie. For the access to the disk buffer there
are two obvious alternatives. One alternative is that paral-
lel threads read new tuples from the buffer with exclusive
locking. The other alternative is to pre-allocate an equal
number of disk buffer tuples to the different threads. In the
first alternative one can see intuitively the risk of a serial-
ization between the threads. The second alternative avoids
this risk. However, in our experiments the first alternative
performs better than the naive version of the second alterna-
tive, because in the second alternative not all threads finish
at the same time, creating long waiting times. In the experi-
ments, the size of the relation is 547910 tuples. Waiting time
is measured with the setting of four parallel threads and an
average trie size of 13000. From Table 3 we can see that the
maximum extra time cost is (time(synchronized method)+
time(lock unlock))×number of disk tuples = 11.17736ms in
the first alternative, while the average waiting time for the
second alternative is about 403ms. Hence the second alter-
native would need a more complicated strategy which does
not look worthwhile given that no problem with mutual de-
lay was observed in the first alternative.

Furthermore, the threads performing the join (the slave
threads) have to be coordinated with the thread loading the
relation (the master thread). When the master thread gets
a new set of relation tuples, it adds them to the trie and in-
forms the slave threads to execute the join. After every slave
thread has finished the join, they inform the master thread
to execute the prune operation to remove fully processed
stream tuples. The experimental environment is described
in Section 6.

Operation Relative time time (ms)

Plus (baseline) 1 4e-7
Moving iterator 1 4e-7
Lock-unlock 50 2.162e-5
Fuzzy search 186 435 0.07457429
Waiting time 1 007 500 000 403

Table 3: Time comparison of the main operations

5.1 Efficient Access of Disk Relation
The computation intensity of the algorithm enables ef-

ficient loading of disk relation data. Loading disk relation
data into the disk buffer can be performed in the background
while the program is executing the similarity join between
stream and relation tuples. As the similarity join is com-
putation intensive and loading data from disk into memory
is IO intensive, both the CPU and IO resources can be ef-
fectively utilized. As the relation data can be very large,
this can reduce idle IO wait times and increase the overall
performance. The extra cost for this design is that the disk
buffer is doubled.

The evaluation in Section 6 shows that the time cost of
the similarity join is considerable. It is about 10226ms for
the measurements in Table 3. Based on the type of hard
drives and data organization methods, data in the order of
Gigabytes can be loaded during the similarity join phase.

5.2 Cost Analysis
In the modified parallel version, the strict serial parts of

the algorithm are the cost of reading tuples from the stream
and inserting them into a trie. The time complexity of the
serial part is O(1) given the trie is wide and flat, which is
much smaller than the time complexity of the similarity join
operation. So there is only a small part of the algorithm
that cannot be parallelized. Based on Amdahl’s law, the
service rate can be boosted to nearly N times of the original
algorithm with efficient IO access, where N is the number
of CPU cores.

A cost model can be used to describe the performance
increase. The cost of the similarity join cjoin in a loop is
R
kN
csearch. Normally, cjoin is larger than cIO. By elim-

inating the cost cIO, the cost model can be expressed in
Equations 8 to 11.

cloop =
csearch

R
kN

+ cenqueue + cdequeue

1− µ(cs + cadd + cinsert + cdel)
(8)

tprocess =
k(cenqueue + cdequeue) + R

N
csearch

1− µ(cS + cadd + cinsert + cdel)
(9)

Mtrie =vScloopµ+ 2vR
R

kN
+ αvpkcloopµ

+ vSkcloopµ
(10)

Mbi-trie =vScloopµ+ 2vR
R

kN
+ 2αvpkcloopµ

+ vSkcloopµ
(11)

The analysis in Section 4.4 is also applicable. Briefly, the
service rate µ increases, and the processing time tprocess de-
creases, while the memory increases due to the doubled disk

3.5

4.0

4.5

5.0

5.5

6.0

1000 3000 5000 7000
Service Rate

lg
(M

ax
 T

rie
 S

iz
e)

threadNumber

1

2

3

4

Figure 3: Comparison of different numbers of
threads for max. edit distance 1

40

60

80

100

1 2 3 4 5 6 7
Thread Number

C
P

U
 U

til
iz

at
io

n
(%

) Service Rate

1000

3000

5000

7000

Figure 4: CPU utilization for different numbers of
threads

buffer. Especially, since k(cenqueue + cdequeue) is very small
compared with Rcsearch, the delay tdelay can be reduced to
less than one Nth of the original time. For the bi-trie join,
the memory allocated for the trie is doubled.

6. EVALUATION

6.1 Experimental Setup
We performed the tests on a PC with Intel Core i5-3570

(3.4G HZ), 8 GB memory and 500 GB HDD, using a 64 bit
Windows 7 operating system and a 64 bit Oracle Java JDK
1.8. All tests ran in the server mode of the JVM. The stream
and relation data used were a corpus of DBLP authors1,
which had 1,598,437 records with an average length of 14.5,
and an English dictionary containing 109,582 words2. Typos
were randomly injected into the stream tuples. To focus on
program performance, the action of finding similar words for

1
http://dblp.uni-trier.de/xml/dblp.xml.gz

2
http://www.institute.loni.org/lasigma/ret/products/

Burkman/wordsEn.txt

a word was also performed if the word was already correctly
spelled. This made the test results less sensitive to the ratio
of errors in the stream.

6.2 Performance Analysis
The results show that the parallel optimization can im-

prove the performance significantly. Figure 3 compares the
performance using different numbers of threads for the trie
join on the English dictionary. The unit for service rate is
tuples/s, and for the trie size it is the number of stream tu-
ples stored in the trie. We can see that for a service rate of
about 1000 tuples/s with a maximum edit distance of one,
the maximum trie size when using four threads is less than
one-tenth of the maximum trie size when using only one
thread.

Figure 4 shows the CPU utilization of the trie join. The
average CPU usage peaks at nearly 100 percent with four
threads as expected with the four core architecture of the
hardware that we used. Accordingly, we can not expect any
further benefits by increasing the number of threads. We
have tested the algorithm up to 7 threads and have observed
no benefit in using more than 4 threads, in accordance with
the expectations from our hardware setup.

it should be noted that the service rate does not influence
the CPU utilization since the algorithm pursues the strategy
of serving stream tuples as soon as possible, which means a
lower stream tuple arrival speed decreases delay rather than
lowering CPU usage.

The ratio of trie size to the number of words in the trie
for DBLP Authors is about 9, which varies slightly with trie
size. In our current implementation, one node needs 120
Bytes memory on average, so it needs about 1.62 GB mem-
ory to store the DBLP Authors in a trie. As the trie takes
the majority of the total memory, the trie size can indicate
the memory usage. By limiting the trie size to 900000 (about
10000 words, 220 MB memory), the maximum service rate
of the bi-trie join is about 10000 tuples/s for edit distance
one and 600 tuples/s for edit distances 2 and 3.

Figure 5 shows the relation between the service rate and
the maximum trie size on a log-log scale. It reveals the ob-
served asymptotic behavior of the algorithm. The blue line
shows the fitting line of maximum trie size and service rate.
For the same edit distance, the bi-trie shows a shallower
slope and hence a considerably better asymptotic behavior.

The performance statistics for Levenshtein distance 0 are
shown for reference – of course its time complexity is much
smaller and in this case, the bi-trie cannot improve the per-
formance, so no data for it is shown. Note that the range
of service rate shown decreases with higher Levenshtein dis-
tances, since these distances are much more costly to pro-
cess. This is also the reason why Figure 5 (c) shows the
range where the bi-trie starts to outperform the trie. In
fact, for that edit distance, the simple trie developed stabil-
ity issues and the algorithm could not be made to deliver
higher service rates reliably.

7. CONCLUSION
We have proposed two algorithms, trie join and bi-trie

join, to perform semi-stream similarity joins efficiently. Our
bi-trie algorithm makes higher maximum edit distances fea-
sible, and odd maximum edit distances can be supported
particularly well. A framework was implemented to demon-
strate their efficiency and effectiveness. We have also as-

sessed some practical optimizations of the algorithms. The
evaluation results show that our algorithms can perform
semi-stream similarity joins for short edit distances in a near
real-time fashion. Furthermore, we have shown that since
similarity joins are compute-intensive, they can make good
use of modern multi-core CPUs.

As a future work to improve performance, taking the dis-
tribution of stream tuples into account can potentially be
better for real-world data. There are many kinds of mis-
spellings that are not subject to uniform distributions. A
similarity join algorithm can potentially take advantage of
the distribution of such misspellings.

8. REFERENCES
[1] A. Arasu, V. Ganti, and R. Kaushik. Efficient exact

set-similarity joins. In Proceedings of VLDB, pages
918–929, 2006.

[2] R. J. Bayardo, Y. Ma, and R. Srikant. Scaling up all
pairs similarity search. In Proceedings of the
International World Wide Web Conference, pages
131–140. ACM, 2007.

[3] T. Bocek, E. Hunt, and B. Stiller. Fast similarity
search in large dictionaries. Technical Report
ifi-2007.02, University of Zurich, Department of
Informatics, 2007.

[4] A. Chakraborty and A. Singh. A partition-based
approach to support streaming updates over persistent
data in an active datawarehouse. In Proceedings of the
International Symposium on Parallel & Distributed
Processing (IPDPS), pages 1–11. IEEE, 2009.

[5] D. Deng, G. Li, S. Hao, J. Wang, and J. Feng.
Massjoin: A mapreduce-based method for scalable
string similarity joins. In Proceedings of the
International Conference on Data Engineering
(ICDE), pages 340–351. IEEE, 2014.

[6] L. Gravano, P. G. Ipeirotis, H. V. Jagadish,
N. Koudas, S. Muthukrishnan, D. Srivastava, and
others. Approximate string joins in a database
(almost) for free. In Proceedings of VLDB, pages
491–500, 2001.

[7] Y. Jiang, D. Deng, J. Wang, G. Li, and J. Feng.
Efficient parallel partition-based algorithms for
similarity search and join with edit distance
constraints. In Proceedings of the Joint EDBT/ICDT
Workshops, pages 341–348. ACM, 2013.

[8] Y. Jiang, G. Li, J. Feng, and W.-S. Li. String
similarity joins: An experimental evaluation. In
Proceedings of VLDB, pages 625–636, 2014.

[9] V. I. Levenshtein. Binary codes capable of correcting
deletions, insertions, and reversals. In Soviet physics
doklady, volume 10, pages 707–710, 1966.

[10] G. Li, D. Deng, J. Wang, and J. Feng. Pass-join: A
partition-based method for similarity joins. In
Proceedings of VLDB, pages 253–264, 2011.

[11] M. A. Naeem, G. Dobbie, and G. Weber.
X-HYBRIDJOIN for near-real-time data warehousing.
In Advances in Databases, LNCS 7051, pages 33–47.
Springer, 2011.

[12] M. A. Naeem, G. Weber, G. Dobbie, and C. Lutteroth.
A generic front-stage for semi-stream processing. In
Proceedings of CIKM, pages 769–774. ACM, 2013.

5.5

6.0

6.5

7.0

3.75 4.00 4.25 4.50
lg(Service Rate)

lg
(M

ax
 T

rie
 S

iz
e)

Algorithm

trie

(a) Edit Distance: 0

4

5

6

3.0 3.5 4.0
lg(Service Rate)

lg
(M

ax
 T

rie
 S

iz
e)

Algorithm

bitrie

trie

(b) Edit Distance: 1

2

3

4

5

6

1.0 1.5 2.0 2.5
lg(Service Rate)

lg
(M

ax
 T

rie
 S

iz
e)

Algorithm

bitrie

trie

(c) Edit Distance: 2

5.0

5.5

6.0

2.0 2.2 2.4 2.6
lg(Service Rate)

lg
(M

ax
 T

rie
 S

iz
e)

Algorithm

bitrie

(d) Edit Distance: 3

Figure 5: Comparison of trie and bi-trie with DBLP Authors

[13] N. Polyzotis, S. Skiadopoulos, P. Vassiliadis,
A. Simitsis, and N. Frantzell. Meshing streaming
updates with persistent data in an active data
warehouse. IEEE Transactions on Knowledge and
Data Engineering, 20(7):976–991, 2008.

[14] J. Qin, W. Wang, Y. Lu, C. Xiao, and X. Lin.
Efficient exact edit similarity query processing with
the asymmetric signature scheme. In Proceedings of
SIGMOD, pages 1033–1044. ACM, 2011.

[15] R. A. Wagner. On the complexity of the extended
string-to-string correction problem. In Proceedings of
the Annual Symposium on the Theory of Computing,
pages 218–223. ACM, 1975.

[16] J. Wang, J. Feng, and G. Li. Trie-join: Efficient
trie-based string similarity joins with edit-distance
constraints. In Proceedings of VLDB, pages
1219–1230, 2010.

[17] J. Wang, G. Li, and J. Feng. Can we beat the prefix
filtering?: an adaptive framework for similarity join
and search. In Proceedings of SIGMOD, pages 85–96.
ACM, 2012.

[18] W. Wang, J. Qin, C. Xiao, X. Lin, and H. T. Shen.
VChunkJoin: An efficient algorithm for edit similarity
joins. IEEE Transactions on Knowledge and Data
Engineering, 25(8):1916–1929, 2013.

[19] C. Xiao, W. Wang, and X. Lin. Ed-join: an efficient

algorithm for similarity joins with edit distance
constraints. In Proceedings of VLDB, pages 933–944,
2008.

[20] C. Xiao, W. Wang, X. Lin, J. X. Yu, and G. Wang.
Efficient similarity joins for near-duplicate detection.
ACM Transactions on Database Systems (TODS),
36(3):15, 2011.

