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Abstract. In this paper we describe a type system for a generative
mechanism that generalizes the concept of generic types by combining it
with a controlled form of reflection. This mechanism makes many code
generation tasks possible for which generic types alone would be insuffi-
cient. The power of code generation features are carefully balanced with
their safety, so that we are able to perform static type checks on generator
code. This leads to a generalized notion of type safety for generators.

1 Introduction

Generators are a cornerstone of today’s software engineering, especially in the
area of enterprise application development [1]. There exists a large variety of
tools for the generation of database interfaces, GUIs and compilers, and even
CASE tools can be subsumed under the notion of generators. Besides these very
specialized examples of code generation technology, many systems have been
developed that offer a more generic approach toward code generation. Some
of these systems allow the user to extend a programming language with new
constructs which trigger the generation of customized code.

In many cases it is not easy for a user to develop own code generators, even
when using systems that support this explicitly. The user has to have knowledge
about how a generator receives its parameters, how code is represented and
processed, how code is emitted, and how a generator is deployed. The answers
to these questions vary greatly from technology to technology. Code generation is
a sensitive area because it depends on parameters, and the usual data structure
involved, a syntax tree, is not trivial. A generator may work well most of the time
but can potentially fail with some rare actual parameters, and an error may not
be obvious but express itself in some slightly malformed parts of generated code.
Using generators always bears the risk of introducing hard to find bugs, while a
good generator has the potential to provide an economic and solid solution to
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a common problem. Complexity in the development of code generators leads to
generators that are more error-prone.

In this paper we show how the concept of code generators can be made acces-
sible to the user directly in object-oriented languages and how a type system can
be extended to take generators into account. The aim is to make generators part
of a program and not of the compiler while retaining the safety properties of a
typed language. No internal knowledge of the compiler should be required, and
the generation process should be transparent for the user. Placing generators into
the language itself instead of into a compiler affects the language syntax as well
as its semantics and safety; the challenge lies in integrating the new constructs
syntactically without interfering with existing semantics. Typed languages usu-
ally offer a high degree of safety through the use of type systems, and type
checkers are able to detect many potential execution errors statically. With the
new concept of generators, however, new types of potential execution errors are
introduced, namely those that happen when code generation produces ill-typed
code. Consequently, code generation poses new challenges to type systems.

In Sect. 2 we introduce the Genoupe language, which integrates code genera-
tors into the C# language, by looking at source code examples. We also discuss
its general applicability to different problems. Section 3 presents the novelties
of Genoupe’s type system and discusses some malformed examples of Genoupe
code that cannot be given a correct type. Section 4 looks at related work and
explains how Genoupe is different to similar approaches. The paper concludes
with Sect. 5.

2 Object-Oriented Programming with Parameterized
Generators: The Genoupe Language

Our concept for the integration of generators into object-oriented programming
is called Genoupe. It was developed from the language Factory [2], which in-
tegrated reflective generators into Java, and implements a similar but strongly
revised concept for C#. Genoupe introduces a syntax that is reminiscent of that
of generic types, although it is not limited to classes or interfaces. Like for generic
types the template paradigm is used, but in contrast to simple genericity, the
template can contain generator code written in a special compile-time level lan-
guage. This sublanguage is kept in an imperative style and along the lines of
the C# language itself, so that a C# programmer will intuitively understand its
meaning. Also the type system is analogous to the runtime one, but simpler for
ordinary types, since we usually do not need as many features here for generation
as we usually want for runtime code. With respect to generated types the type
system gets somewhat more sophisticated, and we need a whole set of essentially
new type rules. However, this is well worth it because, as we will see in Sects. 3
and 4, the new type system makes it possible to detect parts of a generator that
can potentially generate malformed code, in contrast to just detecting code that
is malformed itself.
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In the Genoupe language a generator can be embedded into the source code
like an ordinary type definition. Source code files written in the Genoupe lan-
guage have the name suffix .genoupe and are compiled to ordinary C# source
files with the same name but .cs suffix (see Fig. 1). Each time a generator is
applied with new arguments, new types with unique names are created. If a
generator is applied more than once with the same arguments in a compilation
run, the corresponding code is generated only once.

Genoupe

Compiler

a.genoupe

ordinary code

+ generators

b.genoupe

ordinary code

c.genoupe

ordinary code

+ generators

a.cs

ordinary code

+ generated code

c.cs

ordinary code

+ generated code

b.cs

ordinary code

Fig. 1. The Genoupe compilation process

In a generator actual type parameters can be accessed through so called
generator variables. These are variables that, in contrast to runtime variables,
hold objects at generation-time and make them accessible in the generator code.
Analogous to the parameters in an ordinary method, each declared generator
parameter creates a generator variable, which can be used in generator expres-
sions. A generator expression describes a values that is used at generation-time,
just as an ordinary expression describes a value that is used at runtime. It is very
similar to an ordinary C# expression in the sense that most generator expres-
sions are valid C# expressions. One speciality of generator expressions is that,
with the same values assigned to the generator variables, two structurally equal
generator expressions describe the same value. We do not have non-deterministic
effects like, e.g., random values, which are not needed in code generators. As we
will see in Sect. 3.1, this will help us to rule out some potential generation errors
statically.

Usually generator expressions are used to introspect type parameters and
extract or construct the information that is needed for intercession, i.e., infor-
mation that represents code that should be made part of the generator output.
In order to make the value of a generator expression part of the generated code,
the generator expression is enclosed in @ characters and placed into the code
template at a position where the entity that is represented by the expression’s
value is allowed to occur. If we want, for example, to generate a certain type in
a declaration of a generated class, we would create a generator expression that
evaluates to a Type object representing the desired type. This generator expres-
sion would be placed, enclosed in @ characters, at the position in the source code
where we would normally place a type name. At generation time all generator ex-
pressions are evaluated and substituted by the code represented by their values.
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That is, if we had a generator expression of type Type, i.e., one that evaluated to
a Type object, Genoupe would substitute the generator expression by the name
of the type represented by the type object in the generated code. Genoupe makes
use of the standard C# metaobject protocol, so that it is obvious in most cases
which type represents which language entity.

In the following subsections we will consider some simple examples of
Genoupe source code, which will point up how Genoupe can be used. Some
applications for Genoupe, e.g., the generation of interfaces like GUIs or APIs,
are not discussed here. Information on those and further examples can be found
in [3,4].

2.1 Parametric Polymorphism

One of the simplest applications for Genoupe is parametric polymorphism. The
following generic stack generator has a single parameter T of type Type and
generates a stack class for elements of type T:

1 public class Stack(Type T)
2 {
3 private Stack s = new Stack();
4

5 public void push(@T@ x) {
6 s.push(x);
7 }
8

9 public @T@ pop() {
10 return (@T@) s.pop();
11 }
12 }

The generator parameter declaration in line 1 looks a bit similar to a method
declaration, and like in a method declaration, a generator can have an arbitrary
number of parameters with arbitrary type. In lines 5, 9 and 10 we insert generator
expressions containing only the generator parameter in order to generate correct
type declarations and type casts.

2.2 Class Extensions

Genoupe can be used for the generation of useful extensions. In contrast to
ordinary inheritance mechanisms, which also extend classes, a generator can
adapt the extension it generates to the class that is extended. This makes it
possible to address static crosscutting concerns [5].

The following code snippet shows a generator that takes a class T and an
array of field names FNames for that class. It generates a subclass of T that
extends it by a new method Randomize that assigns random values to the fields
of T. This can be useful, for example, for the generation of test data.



A Type System for Reflective Program Generators 331

1 public class Randomizeable(Type T, String[] FNames) : @T@
2 {
3 public void Randomize() {
4 Random r = new Random();
5 @if(FNames!=null) {
6 @foreach(FName in FNames) {
7 @const F = T.GetField(FName);
8 @if(F.FieldType==Double)
9 this.@F.Name@ = r.NextDouble();

10 else @if(F.FieldType==Boolean)
11 this.@F.Name@ = (r.NextDouble()>=0.5);
12 // ...handle other data types...
13 }
14 } else {
15 @foreach(Field in T.GetFields()) {
16 // ...generate assignments for all fields...
17 } }
18 } }

In line 5 we see the @if control construct of the generator language for con-
ditional generation. It checks if an array of field names has been given at all,
and only then the FNames array is used. In line 6 we see the @foreach con-
struct, which is used for iterative generation. Its only difference to the foreach
construct of C# is that the static type of the iterator variable needs not to be
declared. In line 7 we define a new generator variable with a constant value,
which is just syntactic sugar for our convenience. In the following lines, depend-
ing on the type of the respective field, we generate a statement that assigns
to the field a compatible random value. The field’s identifier is generated with
a corresponding generator expression of type String. In the else-clause of the
outermost @if, which is analogous to the aforementioned code, we handle the
case that an array of field names was not given by generating code that assigns
random values to all fields of T.

2.3 Proxies and Wrappers

A common pattern for modifying the behavior of existing classes or bridging
incompatibility is the use of proxies [6] and wrappers. With Genoupe both of
these can be generated automatically, which makes it possible to address dynamic
crosscutting concerns [5].

The following class generator takes a type parameter T and creates a subtype
of T that overrides and wraps T’s methods. A class generated by this generator
behaves like T but logs all method calls and exits, which can be useful for de-
bugging purposes.

1 public class Logger(Type T) : @T@
2 {
3 public String Log = new String();
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4

5 @foreach(M in T.GetMethods()) {
6 @const Pars = M.GetParameters();
7

8 public override @M.ReturnType@ @M.Name@
9 (@foreach(P in Pars) { @P.ParameterType@ @P.Name@ })

10 {
11 Log += @new Literal(M.Name)@+" called.\n";
12 base.@M.Name@(@foreach(P in Pars) { @P.Name@ });
13 Log += @new Literal(M.Name)@+" exiting.\n";
14 }
15 } }

In lines 8 and 9 we use generator expressions to generate the signature of each
of T’s public methods. A list of method parameter declarations is generated
by iterating over all the parameters and generating each parameter declaration
individually. The same approach is used in line 12 in order to generate the list of
arguments for a method call. The Literal objects constructed in lines 11 and
13 represent generated string literals, opposed to generated identifiers.

3 Generator Type Safety

When dealing with metaprograms, i.e., programs that process other programs
or themselves in some suitable representation, a whole set of new sources of
execution errors comes into play. Generation errors in generators are those parts
of the generator program that can potentially generate malformed code, which
in turn may cause execution errors when executed. Of course, we also want our
generators to be free of execution errors themselves. In addition to normal type
systems, which can only detect potential forbidden errors in the code that is
type checked, we need a new kind of type system that can also detect parts in
generators that can potentially generate ill-typed code. This requirement leads
to a new notion of type safety, which we want to call generator type safety. It is
the property of a generator not to be able to generate ill-typed code, i.e., code
that may cause a forbidden execution error. If a generator is not generator type
safe, it contains one or more generator type errors, i.e., parts in the generator
code that are responsible for the generation of ill-typed code. We call a type
system that can detect generator type errors a generator type system.

Before we describe the generator type system of Genoupe in the next section,
let us look at examples of malformed generators that can potentially generate
ill-typed code. The following generator generates a class with a single field:

1 class C(Type T)
2 {
3 @T@ x = 1;
4 }
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The fact that x is assigned a numerical value restricts its possible type. The
type parameter T however is not subject to any such restriction. This is clearly a
generator type error that leads to some arguments producing type-correct code
and others not.

The next example demonstrates another issue of type compatibility.

1 class C(T istype Component)
2 {
3 @T@ x = new Button();
4 }

The Genoupe keyword istype makes it possible to set a bound for type pa-
rameters, i.e., parameters of type Type. Line 1 signifies that parameter T is a
type parameter and that all possible arguments represent types that are either
class Component itself or one of its subclasses. In the generator body we define
a member variable x with type T, to which we assign a Button object. Button
is a subclass of Component, but what if T is a subclass of Component but not
compatible to Button, i.e., not either Button itself or one of its superclasses?
The generated code is type correct iff T is Button or one of its superclasses.

The following example is a class generator that has a string parameter ID. As
the name suggests, the string is used to generate the identifier of a local variable
in a method.

1 class C(String ID)
2 {
3 void m() {
4 int @ID@ = 1;
5 x++;
6 }
7 }

In line 5 we increment a variable x. Since there are no other variable definitions
in the generator, x must be defined in the preceding line where the identifier of
a variable is generated by a generator expression. If the generator is given the
argument "x", the generated code works just fine, otherwise it is ill-typed. This
is also known as the problem of inadvertent capture [7].

The next generator contains a conditional generation.

1 class C(String X)
2 {
3 @if(X.Equals("hello")) {
4 @T@ y = "world";
5 }
6

7 void m() {
8 Console.WriteLine(y);
9 }

10 }
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The definition of the member variable y is only generated when "hello" is the
string argument in X. Again, we have cases where this generates an error and
others where it does not.

Our last example illustrates a generator type error that can occur in iterative
generation.

1 class C(Type S, Type T)
2 {
3 @foreach(F in S.GetFields()) {
4 @F.FieldType@ @F.FieldName@;
5 }
6

7 void m() {
8 @foreach(F in T.GetFields()) {
9 Console.WriteLine(this.@F.FieldName@);

10 }
11 }
12 }

The first generative iteration replicates the field definitions of type parameter
S. The second one in method m generates statements that access and print the
values of fields as defined in type parameter T. Clearly this can only work if T
contains fields with identical name for all the field definitions in T, which is of
course the case when S and T are bound to the same type.

All these generator type errors also occur in real generators, and usually they
occur in a subtler way that makes them much harder to find. Such errors are
typically introduced, for example, when applying inconsistent changes: one part
of a generator is changed without adjusting other parts accordingly that are
affected by that change.

Note that the Genoupe language has another property which makes its gen-
erators safer than those in many other languages: if all the methods we use
in generator code terminate and we do not use generators recursively, which
is usually unnecessary, a generator is guaranteed to terminate. This is because
our looping construct, the @foreach, iterates over collections without modifying
them, and the collections contain of course only a finite number of elements. In
C++ templates, for example, we must use recursion when we want to repeat
something arbitrarily often. C++ templates can potentially recourse endlessly,
and only a limited recursion-depth prevents this [8]. In other technologies which
use a Turing-complete language for metaobject manipulation, like CLOS [9],
OpenC++ [10] or Jasper [11], generators potentially do not terminate as well.

3.1 The Genoupe Type System

In order to detect generator type errors, we developed a generator type system
which is compatible with and extends the type system of the host language C#.
Its notation is similar to the one used in [12]. It consists of rules with judgments
about the correctness of certain program parts in their pre- and postconditions,
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and only the programs that can be derived by those rules are considered type
correct. In some respects, however, our type system deviates from the way in
which type systems of object-oriented languages usually work. We use an en-
vironment Γ , which keeps track not only of the signatures of declared runtime
variables but also of the signatures of generator variables. The signature of a run-
time variable can contain generator expressions because its identifier and type
may be generated by them. For handling conditional and iterative generation of
declarations correctly, definitions that are generated conditionally or iteratively
have special signatures, and Γ is also used to store additional facts about the
code portion that is being type-checked.

Rather than delivering a complete description of the type system, this paper
focuses on explaining the main concepts by looking at some exemplary type
rules. These rules can be found in Table 1, and we will go through them one
after another. Rule [Env V ar] describes how the signature of a generated variable
can be included into Γ . The two judgments in the precondition state that we
need a correct generator expression of type String for the variable’s identifier,
and a correct generator expression of type Type for the variable’s type. The
: : symbol associates a generator expression with its type. In the postcondition
the new environment is a conjunction of the old Γ and the new signature. The
: symbol associates the identifier of a variable with its type. Rule [Env then]
allows us to register in Γ that a generator expression Gexpr evaluates to true.
The generator expression must be of type Boolean and the opposite, i.e., that
Gexpr evaluates to false, must not be registered in Γ already. As the name of
the rule suggests, this rule is used for type-checking in the then-clause of an @if
construct, where the generator expression describing the condition of the @if
is known to be true. Analogous to this, rule [Env loop] allows us to register in
Γ that an iterator variable of a @foreach contains an element of a particular
collection, which is the collection over which is iterated.

Rule [Def V ar] describes how a variable definition can be generated with
suitable generator expressions and what its signature looks like. The ∴ symbol
associates a signature to a definition. A signature is a set of facts that describe
a definition. Rule [Def @if ] describes the conditional generation of definitions.
In the second and third line of the precondition, we see that the facts Gexpr
and ¬Gexpr are included in the environment when we demand that the declara-
tions D1 and D2 have the signatures Sig1 and Sig2, respectively. Consequently,
the judgment in the postcondition states the correctness of an @if with D1 in
the then- and D2 in the else-clause. The signature of the @if , which becomes
part of the environment during type-checking, has two parts: one describing
the signature of the generated definition in the case that the condition is true
and one describing the signature of the generated definition when its not. Rule
[Def @foreach] describes the iterative generation of definitions. In the second
judgment of the precondition we demand that D is a correct definition with
signature Sig. The environment states that ID is an iterator variable which
contains an element of the collection described by Gexpr. The signature of the
resulting @foreach is again a special one: it signifies that for any generator vari-
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able X , with X being an element of some collection described by Gexpr, there
is a signature that looks like the signature of D, only that each occurrence of
ID in that signature is substituted by X .

The rules [Expr V ar 1], [Expr V ar 2] and [Expr V ar 3] will hopefully clarify
why we need these unusual elements in Γ . They all specify how we can use a
generated variable in a generated expression. Rule [Expr V ar 1] states that if
there is a generated variable declared in Γ , we can generate an expression that
uses it by generating its identifier with a corresponding generator expression.
Rule [Expr V ar 2] describes under which circumstances a variable can be used
that has been generated in the then-clause of a conditional generation: it can
be used if Γ states that Gexpr, the condition under which the variable was
generated, is true. Analogous to this rule, there is also one for using a variable
that has been generated in the else-clause of an @if. Finally, rule [Expr V ar 3]
handles the usage of variables that have been generated in a @foreach. Such a
variable can be used if Γ states that the usage of the variable is in the body of
a @foreach loop that loops over a collection described by the same generator
expression as the collection of the loop in which the variable was defined. This
means that the collections of the two loops are equivalent. In the loop in which
we generate code that uses the variable, the iterator variable may have a different
identifier. Therefore we substitute the X in the variable’s signature by the ID
of this loop’s iterator variable.

3.2 Limitations

Like most type systems, the Genoupe type system is restrictive: it forbids not
only programs that are obviously incorrect but also many others which do not
contain generator type errors. In the rules for the @if, for example, we require
that a conditionally generated variable must be used in the body of a conditional
with equivalent condition. Logically it would be enough, though, to require that
the condition of the defining conditional implies the condition of the condi-
tional in which the variable is used. Analogously, if variables are generated in
a @foreach, it would be sufficient to demand that they are used in a loop that
iterates over a subset of the collection in the defining iteration. Because the
underlying problems are undecidable, we did not try to solve them, although it
would be possible to address these issues using approaches from logical program-
ming like, for example, constraint solving and model checking. Note that this is a
popular way for type systems to deal with issues that restrict the way a language
is used but do not really limit its applicability: C# and Java, for example, do
not really check whether a method with a non-void return type returns a value;
they merely check if a superset of possible execution paths returns a value.

The possibility to generate arbitrary identifiers with generator expressions
brings about lexical problems: a generated identifier might be malformed, e.g.,
it might clash with a keyword, or might not be unique. Both these problems
could only be solved if we restricted the way identifiers can be generated. But
if we did that, we would lose flexibility and potentially the ability to produce
clear human-readable names, and the language would become more complicated.
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Table 1. Exemplary type rules of the Genoupe generator type system

[Env V ar]
Γ � Gexpr1: : String Γ � Gexpr2: : Type Gexpr1 /∈ Dom(Γ )

Γ ∪ {Gexpr1: Gexpr2} � �

[Env then]
Γ � Gexpr: : Boolean (¬Gexpr) /∈ Γ

Γ ∪ {Gexpr} � �

[Env loop]
Γ � Gexpr: : ICollection

Γ ∪ {ID ∈ Gexpr} � �

[Def V ar]
Γ � Gexpr1: : Type Γ � Gexpr2: : String

Γ � @Gexpr1@ @Gexpr2@; ∴ {Gexpr2: Gexpr1}

[Def @if ]

Γ � Gexpr: : Boolean
Γ ∪ Sig1 ∪ {Gexpr} � D1 ∴ Sig1

Γ ∪ Sig2 ∪ {¬Gexpr} � D2 ∴ Sig2

Γ � @if(Gexpr) { D1 } else { D2 }
∴ {Gexpr → Sig1, ¬Gexpr → Sig2}

[Def @foreach]
Γ � Gexpr: : ICollection Γ ∪ Sig ∪ {ID ∈ Gexpr} � D ∴ Sig

Γ � @foreach(ID in Gexpr) { D } ∴ {∀X ∈ Gexpr.Sig[X/ID]}

[Expr V ar 1]
(Gexpr1: Gexpr2) ∈ Γ

Γ � @Gexpr1@:Gexpr2

[Expr V ar 2]
{Gexpr, Gexpr → Gexpr1: Gexpr2} ⊆ Γ

Γ � @Gexpr1@: Gexpr2

[Expr V ar 3]

{ID ∈ Gexpr, ∀X ∈ Gexpr.(Gexpr′1: Gexpr′2)} ⊆ Γ
(Gexpr′1: Gexpr′2)[ID/X] = (Gexpr1: Gexpr2)

Γ � @Gexpr1@: Gexpr2

The more freedom we allow for the generation of identifiers, the more complex
a collision detection scheme would have to be in order to avoid this problem.
We decided not to implement any such restriction or detection scheme and take
the risk of lexical collisions, which is inherent when working with a textual
source code representation. The responsibility for handling the generation of
identifiers carefully lies with the programmer of a generator, for whom this is
usually unproblematic.

4 Related Work

Genoupe is an extension of genericity or parametric polymorphism found, for
example, in ADA or Java [13,14]. With parametric polymorphism it is possible
to program components that are uniformly reusable for many types. However,
these generic type parameterization mechanisms are at the same time type ab-
straction mechanisms: the construction of the type cannot be exploited in the
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parameterized software component – at most it can be exploited up to a bound,
known as bounded parametric polymorphism. Therefore it is useful for container
libraries, e.g., C++ Standard Template Libraries, but it is not as powerful as
Genoupe.

The original C++ template mechanism does not allow for the enforcement
of properties for actual type parameters as, for example, supported by the no-
tion of bounded parametric polymorphism [12,15]. Ad-hoc solutions to provide
some level of concept checking for C++ templates, like specialized macros [16]
and static interfaces [17], has been generalized by the introspection library ap-
proach in [18]. This approach targets user-customized checks for both compile-
time adaptation and diagnostics.

The new C++ templates standard allows in principle Turing-complete meta-
programming with static and dynamic reflection in C++ [19], sufficient, e.g., for
an interface generator for a relational database [20]. It is still less powerful than
Genoupe; for example, it is not possible to generate function names dependent on
a parameter. It does not support any static notion of generator type safety; type-
checks are done with the ordinary C++ type system. Furthermore, a template
metaprogram may not terminate. The Turing-completeness makes it impossible
to analyze the generating templates exhaustively.

Aspect oriented programming aims at handling of crosscutting concerns in
programs. AspectJ [5] is a Java extension for aspect oriented programming,
which offers two approaches: dynamic and static crosscutting. Crosscutting does
not help us with type-dependent generative problems, e.g., the implementation
of a transparent data-access layer. Static crosscutting allows to extend the sig-
nature of classes and interfaces, but not in an adaptive manner: we can add a
new method to a class from within an aspect – so-called member introduction –
but still the method has to be specified literally and cannot be made dependent
on some parameter. The generative approach to aspect-oriented programming
in [21] characterizes certain uniform patterns that arise in using the aspect ori-
ented style of inverting functional decomposition as amenable to be handled by
the incremental computation approach. Based on this insight the approach es-
tablishes a behavioral semantics for generative aspect-oriented features that are
oriented towards finite differencing [22].

The concept of runtime reflection dates back to Lisp [23] and has been subject
of major interest in the functional programming community. The combination of
parametric polymorphism with reflective features in Generic Haskell [24,25] ben-
efits from the theoretical well-understood type-system of the host language. In
the context of the object-oriented functional programming language CLOS [26,9],
a mature metaobject protocol has been elaborated. In [27] CLOS is used to prove
the value of metaprogramming by embedding representations of common object-
oriented design patterns [6] into programs. Multistage programming [28,29] is an
approach that focuses on runtime program generation and execution. The pro-
grammer is supported by constructs for partial evaluation and program special-
ization, whereas several properties of runtime generation can already be ensured
statically. An implementation of the multistage programming approach is pro-
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vided on top of the object-based functional programming language O’Caml [30].
The language Metaphor [31] results from extending the subset of an object-
oriented language like C# or Java by the multistage constructs of the functional
programming language MetaML [28,29], i.e., a construct for building represen-
tations of expressions, a construct for splicing code and a construct for running
staged evaluated code. With its multi-staged language design Metaphor achieves
type-safe generation of code that makes use of the reflection system of the base
language.

Jasper [11] is a reflective syntax processor for Java. It provides mechanisms
for static reflection. It does not follow the template approach; instead it allows for
metaprogramming through the extension/modification of the syntax processor
itself [32] – an architecture that is known as open compiler. It supports universal
metaprogramming and is as such more powerful, but less understood.

5 Conclusion

Genoupe implements a concept for generative programming that integrates re-
flection by means of a metalanguage into a template mechanism reminiscent of
genericity. It can be used to solve common problems of generative programming
and offers advantages compared to other languages with respect to the degree
of integration of the runtime and the metalanguage and safety:

– Genoupe places the concept of generators into the language instead of relying
on an external tool driven approach, thus minimizing the interface to the user
and avoiding potential errors.

– It integrates well with an object-oriented host language and can be seen as a
generalization of genericity. It uses similar syntax for runtime and generator
code, which makes it easy to use and understand.

– A wide range of common applications of generative programming can be
addressed.

– Genoupe offers an particular high degree of static safety for reflection by
means of a type system that is able to detect generator type errors.

More information about Genoupe and implementations of the Genoupe system
can be found on our project web site, http://www.genoupe.formcharts.org/.
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