
Enterprise Tester – A Model Driven Testing Project

Bryce Day
Catch Limited

Auckland, New Zealand
Email: bryce.day@catchlimited.com

Christof Lutteroth
Department of Computer Science

University of Auckland
Auckland, New Zealand

Email: lutteroth@cs.auckland.ac.nz

Abstract—We detail the theory and development of Enter-
prise Tester, a web based test management tool that utilizes
UML analysis specifications to automatically generate test
cases at the system, integration and user acceptance testing
levels. Enterprise Tester was designed to streamline the process
between the analysis and test teams. During its development,
a number of challenges had to be faced regarding support
for other vendors’ tools, numerous interpretations of the UML
standard, and full round trip support for test cases that trace
back into the analysis model. The paper discusses requirements,
challenges and results of the Enterprise Tester tool, and outline
some future work.

Keywords-Testing, UML, models, test cases, tool integration

I. INTRODUCTION

More often than not software development teams are
considered an organizational type of their own. Current
software development teams tend to work using various
methodologies to deliver an end result. Rarely are they
compared to standard manufacturing organizations, though
on closer inspection they have many similar traits. Both
types of organizations try to be as efficient as possible in
the production of goods they produce, minimize rework,
test for quality of output and try to standardize components
across multiple products within the product range produced.
A typical manufacturing organization is physical in nature,
and it tends to be relatively simple to see inefficiencies
in the production line. Software development organizations
deal in intellectual property and have a production line
made of people, processes and other software applications,
making it much harder to see inefficiencies in the Software
Development Life Cycle (the production line).

This paper discusses a project developing a tool for
software testing, Enterprise Tester. The project was under-
taken by the New Zealand ICT consulting company Catch
Limited. Enterprise Tester is a web based test management
solution that allows organizations to create, manage and
execute test cases within a web based environment. It allows
software development organizations to implement an end-to-
end solution that streamlines the development process, at a
fraction of the price of other comparable solutions in the
market place.

One of the main functions of the Enterprise Tester is
to extract use case specifications from the analysis phase

to automatically create test cases for the testing phase.
This avoids much of the duplicated work that had to be
done when defining test cases for an application. The tool
also integrates with an issue tracking system in order to
manage the defects discovered while testing. Use cases
from requirements specifications are related to test cases
and tracked issues. As a result, the tool is able to provide
traceability between issues and requirements, helping to
prioritize defects and software development efforts.

Section II introduces the company, Catch Limited. Sec-
tion III discusses the main requirements for the Enterprise
Tester tool. Section IV discusses the UML Testing Profile,
explains why it has not been used for Enterprise Tester,
and how Enterprise Tester is different from other popular
testing tools. Section V introduces the model underlying
Enterprise Tester, and Section VI describes the tool itself.
Section VII outlines its implementation, and Section VIII
gives an evaluation of the tool’s success so far. Section IX
points out some future work, and Section X concludes the
paper.

II. ABOUT CATCH LIMITED

Catch Limited is a New Zealand based business and ICT
consulting company whose focus lies toward delivering both
outstanding service and excellent value to its clients. It
has seen the business significantly expand its revenue and
services in the years since it started out in July of 2004.
Catch provides services with a business focus primarily on
business analysis, project management, quality assurance,
training, mentoring, and the development of products to
improve organizational efficiency. Catch works with other
ICT companies or companies with an ICT function to assist
them in becoming more efficient, e.g. by implementing
and improving tool support, or by training and mentoring
them to use tools and methods such as Object Orientation
(OO), Unified Modeling Language (UML), Business Process
Modeling Notation (BPMN) [1], and The Open Group
Architectural Framework (TOGAF) [2].

The organization has seen significant growth even over
this short period of time. By delivering a high quality of
service, adapting to clients needs and harnessing relation-
ships with other leading ICT companies, Catch to date has
achieved a doubling of turnover in each year of operation.



Some of the organizational milestones worth mentioning
are the organizations placement in the Deloittes FAST 50
programme in 2008 and 2009 [3], which is a measure of
the fastest growing companies in the region. Catch Limited
placed 15th and 31st respectively in the country, as well
as making it into the Asia Pacific FAST 500 rankings
for the past three years. This growth is extremely unusual
for a consulting organization, since product or recruitment
organizations typically grow at this pace, and is testament
to the planning, processes, and systems that have been im-
plemented. Other notable achievements include the opening
of a second branch in Wellington, besides the main branch
in Auckland, the 2009 Jolt productivity award received
for the rapid prototyping product Screen Architect, and its
recent inclusion in the MIS Australia Strategic 100 and New
Zealand CIO Strategic 100 as one of ten “Rising Stars”
across the Asia Pacific region.

The organization has a five-year business plan, which aims
to continue this rapid growth over the coming financial years.
Some of the aims include the further growth of the Auckland
and Wellington offices in terms of staff, as well as further
expansion into the Sydney region, where they are currently
working with a number of major financial organizations. To
achieve further growth, consultancy operations had to be
made more efficient.

Right from its inception, Catch has aimed to be a global
organization and as such global standards and methodologies
have been adopted throughout the organization. All software
development is specified using Sparx Systems’ Enterprise
Architect CASE tool [4], and utilizes UML and BPMN
in a central repository of projects. Over the years Catch
has become very efficient in producing UML specifications
for projects the organization has been involved in. These
specification documents are read and referenced particularly
during handover to subsequent teams within the development
process. However, it has become increasingly apparent that
very little reuse of the models occurs, specifically in the
testing of developed software.

III. REQUIREMENTS

With an increasing volume of testing work, Catch real-
ized that the organization needed a test management tool.
Roughly 15% of the time of a project was spent on testing.
There is a strong trend towards automated testing, but
Catch chose to invest in the creation of a test management
tool without a focus on test automation for the following
reason: 80% of the time spent for testing was spent on
the specification of test cases, while only 20% was spent
on performing the testing itself. Automated testing would
only address the 20%, which is relatively unskilled and
inexpensive anyway. Therefore the main objective of the new
tool was to optimize the specification and management of
test cases, and integrate this into an organizational workflow.
Additionally, automated testing requires specialist skills and

is more suited towards large projects that require substantial
amounts of regression testing.

Previously there would be a duplication of work in the
software development process. Enterprise Architect [4], a
popular CASE tool by Sparx Systems, would be used for
analysis, i.e. for specifying requirements and associated use
cases. This would be done using UML diagrams and textual
documents. At a later stage, test cases would be created from
these specifications in a semi-manual process. Although the
use cases provided most of the necessary data for testing,
additional efforts would have to be spent, with much of the
relationships between requirements, use cases and test cases
becoming hard to trace.

The tool should be web based because this would enable
easy access from everywhere, and circumvent the common
problems of having to install a new application on each
staff members client machine. This would fit well into the
organization’s infrastructure, as Catch is aiming to become a
global organization with capabilities for distributed operation
and development. Other tools that Catch is using, such as
the JIRA issue tracker [5], are also web based.

After some investigation we were unable to find any test
management tools that were web based and integrated with
Enterprise Architect. Integration with Enterprise Architect
was key for us as an organization since our standard for
analysis was to use this tool. We then looked at the buy
and modify options, i.e. extending an existing tool with
the functionality we required, versus the option to build
our own testing tool. What we found is that the space of
test management tools was not very crowded. Few tools
are available besides the well know HP Quality Center and
Rational tools, both of which we considered too expensive
compared to Sparx Systems and Atlassian pricing.

In order to relate issues back to use cases and require-
ments, it was important to integrate the test management
tool with an issue tracking system. Such tracability would be
useful for prioritizing issues and guiding software develop-
ment and maintenance, since requirements are usually easier
to prioritize than the issues themselves. What we quickly
realized from our analysis was that incident management
tools were quite common, and that we should not attempt to
develop any type of incident management tool. After further
investigation, we decided that Atlassian had a well regarded
set of tools. Furthermore, we found that as an organization
they aligned with our values and with the Sparx Systems
values and philosophy, making them a great fit as a partner.
These values are to provide tools of high quality at an
affordable price, improving those tools continuously with
short development cycles, and being very customer focused.

So the decision was made to develop our own web-
based test management solution, which would integrate with
Enterprise Architect as well as Atlassians JIRA incident
management system. This would not only allow Catch to
become more efficient, but also allows us to build a product



and grow a new global revenue stream.

IV. RELATED WORK

A UML Testing Profile [6] was released July 2005. It
looks to add a methodology for specifying software test
cases to the UML standard. This profile, while useful in
defining terms and structuring automated testing within the
UML format, seems to add additional work to the tester’s
role. An organization would require the test analyst to be
upskilled in UML in general and the UML Testing Profile
in particular prior to them making use of it.

Rightly or wrongly we believed that testers working with
the UML Testing Profile did not achieve the efficiency gains
we were looking for. The profile seems to target automated
testing, in particular unit testing, which is not the problem
that Catch wanted to address. As mentioned earlier, Catch
was trying to optimize the specification and management
of test cases primarily at the system, integration and user
acceptance test levels.

While Catch is using UML extensively, we were looking
for a simple solution that would use the existing UML
constructs, rather than having to integrate a completely new
layer of complexity. Compared to the status quo, we believed
that this profile adds additional work to the testing role,
and would cost the project and organization more. For the
specification of test cases that would be executed manually,
the existing UML constructs as used in the requirements and
use case specifications seemed sufficient.

Our aim was to streamline testing and analysis and to
facilitate information sharing, as well as minimizing the
documentation and set-up the tester was required to perform.
The simplest way we saw of doing this was to achieve
the following: first, allowing the automatic reuse of the
analysis specifications such as use cases and scenarios;
second, creating an application that could manage test
cases systematically; third, integrating the tools used for
requirements specification, test case management and issue
tracking.

Regarding the management of test cases, it is important
to understand the difference to a purely document based
approach. Previously, test case specifications were created
in the form of individual documents for each project. This
meant that a test case occurring in different contexts or
projects was copied and pasted, which caused inherent
problems in the maintenance of such documents. If a test
case was changed, all of its occurrences in all the documents
had to be changed – a process that is cumbersome and error
prone. Enterprise Tester was designed to support inclusion of
test cases by reference, also across projects. For example,
most web applications would use the same test cases for
testing a login function with the process being the same the
data may be different.

In the following, we will contrast unit testing, which is
not addressed by Enterprise Tester, with system level testing,

Figure 1. Sequence Diagram Example from the UML Testing Profile.

which is what the tool was created for. This will help to
clarify the differences to various other testing tools.

A. Unit Testing

Unit testing is designed to test the application at a
code level. Each line of code that is written could have a
corresponding test associated with it. Typically unit testing
is performed by the developer during the development phase
of the project, and allows the developer a level of certainty
over the quality of the code they are producing. In recent
times, the trend is to move into test driven development,
where automated unit tests are developed around functions
of the code while the developer is creating these functions.
This way, they can run these tests to check any new or altered
code and verify that the changes have no detrimental effect
on the existing code base.

The more common tools used for unit testing are JUnit
and NUnit, which allow Java and .NET applications to be
tested. While not widespread, there are fairly well known
translations between UML and JUnit / NUnit testing frame-
works, which in the most part utilize Sequence Diagrams as
models to generate unit test code. Such translations between
models and code are used in Model Driven Development
(MDD), where this translation can be performed automati-
cally by tools.

The sequence diagram in Figure 1 shows a test case that
checks if two monetary amounts, 20 USD and 50 USD,
add up to 70 USD after the method add is used on them.
The diagram describes a sequence of messages that are
passed from one person or object to another, and allows
a modeller to specify the operations that occur. As can be
seen in the example, sequence diagrams are often very close
to source code and contain a lot of implementation details.



Such details typically cannot be specified by an analyst, but
may instead require a developer.

This form of Model Driven Testing (MDT) [7] works
fairly well for people well versed in UML Sequence Di-
agrams, which typically developers are. But testers for the
most part do not have an in depth understanding of UML. If
they have worked with UML, they do not typically model in
it on a daily basis, so putting a correctly formed Sequence
Diagram together is not second nature. As a result, using
UML Sequence Diagrams makes the familiar and often very
simple task of testing an application much more complex for
testers, and requires them to learn UML.

B. System Level Testing

System testing sees the testing of the system from end-
to-end, i.e. not only testing individual functions that make
up the different components but also testing the integration
between components. This is the typical form of testing that
a tester would perform. In most cases, they will treat the
internals of the system being tested as an unknown (black
box testing), and aim to perform tests that look for an
expected result across a module or the entire system. This
form of testing allows the application as a whole to be tested,
verifying that the output is what the stakeholder expects.
In most cases, for performing the actual testing relatively
unskilled resources can be utilized.

This is the type of testing addressed by the Enterprise
Tester tool. Compared to tools for unit testing, the market for
this type of tool is only sparsely populated. Enterprise Tester
focuses on tool and workflow integration, optimizing the
specification and management of test cases. Automated test
case execution is planned, but currently not yet supported.
Note that test automation on the system level is harder than
for unit testing. This is because system level testing usually
needs to operate through the user interface rather than a
lower level API. Naturally, getting a program to simulate a
user’s actions is harder than calling API functions.

V. TESTING MODEL

The challenge with system testing is finding the skilled
resource that can develop the test cases to then be executed.
Since analysts must develop specifications that typically
include use cases, this is the ideal place to “pull” the infor-
mation from. This would then streamline the analysis-test
phase integration without adding any additional overhead to
the UML model, or cost in the form of higher skilled testing
resources.

We believe the solution is to utilize the use cases and the
information they contain that were specified by the analysts.
A use case in simple terms is a function to be performed,
which has a specified goal and defined steps in which to
achieve a certain outcome. A use case may have several
scenarios, which are paths through that specific use case,
commonly referred to as user stories in agile development.

Use Case

Scenario

Activity

Requirement Test Case

Test
Scenario

Step

UML Analysis
Requirements

Modeling Testing

Figure 2. Relationships between requirements modeling, UML analysis
and testing as utilized in Enterprise Tester.

For example, a Login use case would have at least two
scenarios: one in which the login is successful, and one in
which it fails.

Testers can reuse approved use cases and associated
scenarios as test cases. To this end, Enterprise Tester was
developed to allow the automatic development of these
test cases from the UML analysis model that contains the
use cases and scenarios. Figure 2 roughly outlines the
relationships between requirements, UML analysis models,
and the testing framework, which allow integration between
analysis and testing in Enterprise Tester.

In UML analysis models, use cases consist of a number
of scenarios, which in turn consist of several activities.
Enterprise Tester associates corresponding test cases to the
use cases, with test scenarios corresponding to the different
use case scenarios. The activities in the UML analysis
models correspond to steps that are performed during testing.
Because use cases are mapped to requirements, test cases
can eventually be traced back to the requirements that are
tested.

VI. USING ENTERPRISE TESTER

During the project we found that just creating a web
based test management tool was not enough. The application
needed to be simple to use, so particular attention was given
to the user interface. The key component of the user interface
is a tree control, the Explorer Tree, that allows the user to
perform all the common functions. For simplicity, no menu
bar was added. The Explorer Tree can be used to navigate the
items associated with a project, as well as manage different
project contexts.

Historically, other test management tools have the user
select a context (typically a project), and then allow the user
to work within that context. Because one of our aims was
to bring a OO approach to testing, we wanted to be able to
reuse elements not only within a project but across projects.
Because the Explorer Tree contains all projects, it allows
users to move or copy elements across different projects. The



Figure 4. Example of a Use Case Model developed in Sparx Systems
Enterprise Architect.

tree structure allows users to perform complex tasks with
simple mouse operations such as dragging and dropping. For
example, a test case from the library area of the tree can be
dragged into the execution area of the tree to automatically
create a test execution script.

Figure 3 shows a screenshot of Enterprise Tester, which
contains the Explorer Tree on the left side and a User
Dashboard with various testing related data on the right. The
User Dashboard allows users to create a custom overview
of the testing. It contains various user generated reports that
are updated each time the dashboard is refreshed. As can
be seen in the figure, Enterprise Tester has four key areas
within the Explorer Tree:

1) Requirements: This is where requirements are stored;
it allows users to associate the requirements with test
cases.

2) Templates: This is the library where test cases are
created and stored as templates for use in different
execution sets.

3) Execution Sets: This is where a test case is executed
and execution results recorded.

4) Incidents: This is where all incidents are recorded,
allowing a user to see the status of the incidents.

Let us first look at the specifications Enterprise Tester
imports from the Enterprise Architect tool. A basic Use Case
model in Enterprise Architect is shown in Figure 4. The
model outlines the use cases for an Automatic Teller Ma-
chine, and includes the use cases Withdraw Funds, Deposit
Funds and Transfer Funds. Each of these use cases contain
several scenarios. For example, the scenario Successful Cash
Withdrawal, with a list of all scenarios of use case Withdraw
Funds, is shown in Figure 5.

The bottom panel contains a list of all the scenarios,

Figure 5. Successful Cash Withdrawal Scenario of the Withdraw Funds
Use Case in Enterprise Architect.

while the top panel displays the description of the selected
scenario. One of the challenges we have is to take the
free form text contained in the description area and apply
a structure to it. In the current v1.8 release of Enterprise
Tester, we allow this information to be imported, but we
do not attempt to manipulate it in any structured way. In
version 1.9 of Enterprise Tester we integrate with the newly
release version 8.0 of Enterprise Architect that includes an
enhancement to allow the creation of structured use cases.

A simple testing overview is readily accessible by double
clicking on any execution package. This provides a snapshot
of the testing process to date, with time estimates and
test case execution summary reports. An example of such
a report is shown in Figure 6. The screenshot shows the
overall estimated testing time, the time taken to date, and
the remaining testing time in the top left panel. The top right
hand panel shows the status of the test execution, i.e. the
number of failed tests, passed tests, blocked tests etc. The
bottom panel shows a list of the test case execution scripts
that are contained under the selected execution package.

VII. IMPLEMENTATION

The project was undertaken initially by a core team of 5
over a 6 month period, and has continued at a reduced rate
for another 6 months. The initial development was focused



Figure 3. The Enterprise Tester Explorer Tree and User Dashboard.

on creating the correct architectural framework and a simple
to use user interface, while implementing core test man-
agement features into the product. After this initial period
of development, customer feedback was sought, building
a community around the tool and allowing customers to
submit suggestions. This helped to guide the project strate-
gically, and to identify feature requests that were of high
priority to our customer’s test practices. We tempered cus-
tomer enhancements with a product roadmap that identified
core functionality that the team aimed to implement. This
allowed us to continuely improve the product while not
getting pushed too far off core product features by very
specialist customer requests.

We implemented Enterprise Tester using AJAX with a
.NET backend, and utilized nHibernate to interface to var-
ious database systems. Our initial database implementation
was based on MS SQL, but subsequently we have added
support for Oracle, PostgreSQL and MySQL. Additional
database support has not been too difficult using nHiber-
nate, since it abstracts away most of the database specific
implementation details, allowing support to be added with
minimal time and effort.

An overview of the architecture is given in Figure 7. It
was designed with simplicity in mind, avoiding unnecessary
complexities and reusing as many existing components as
possible. Furthermore, the architecture supports tool ex-
tensions through plug-ins. Like this, many functions can
be modularized as plug-ins, instead of having to integrate
them into the application core. A number of plug-ins were
implemented that are shipped with the core tool.

AJAX

.NET

nHibernate

.NET

Database
(MS SQL / Oracle / MySQL)

Figure 7. Architecture with the key technologies used in Enterprise Tester.

Enterprise Tester ships with a defect tracker, JIRA and
Enterprise Architect plug-ins. In the new version v1.9 it
will also include an Atlassian Crowd plug-in and an LDAP
plug-in. The application was built to utilise plug-ins also for
the core functionality. In the future, the community will be
able to develop additional plug-ins of their own to extend
Enterprise Tester.

VIII. EVALUATION

Enterprise Tester is now used in seven countries by
organizations of varying types and sizes. Enterprise Tester
has Enterprise, Corporate, Professional and Personal licenses
available for sale, which cover different implementation
sizes. To date all license types have been sold. Typical users
are test analysts, and we have installations in legal, health,
scientific and software development verticals, to name a few.

All users utilize the tool to manage their testing process,
while a number also take advantage of the integration
with Sparx Systems Enterprise Architect. All of them have
plans to move towards full end-to-end integration using



Figure 6. Enterprise Tester testing overview.

Enterprise Architect, Enterprise Tester and JIRA. Project
team sizes and usage patterns vary with the customers using
Enterprise Tester. One customer has over 20 projects running
concurrently, while another has a single testing team running
a single project. The tool scales well, and being web based,
organizations that have offices around the globe are typically
drawn to it.

Since the release in March 2009, we are constantly receiv-
ing feedback from customers, and aim to cultivate a com-
munity around the tool. We have recently released a forum
to allow users to ask questions and discuss usage patterns.
We have implemented requested fixes and enhancements
typically within a couple of months from when we received
a request. Only larger and more complex enhancements
are scheduled as part of our product roadmap for future
releases. In February we will be releasing version 1.9 of
the tool, with each previous release including a mix of new
features, enhancements and bug fixes. All of these previous
releases have improved the tool, and we aim to continue this
monthly incremental improvement in the foreseeable future.
We currently have monthly releases planned through until
mid 2011.

Enterprise Tester up to this point has not been customized
for individual customers. We allow values for pick lists to
be configured, but any feature or enhancement developed
is included in the application as a whole. In addition to
pick list customization, we have developed the application
in such a way that it utilizes a plug-in framework. The
application has core functionality, and additional plug-ins
can be installed to extend the application features. Currently

we have not released a Software Development Kit (SDK)
for Enterprise Tester, but anyone is able to develop their
own extensions to it, and the team at Catch are keen to
assist. We believe the community will start to develop plug-
ins in the future, initially to allow migration from current
test management tools to Enterprise Tester, and then maybe
hooks to automated testing tools.

Typically customers pick up the tool fairly quickly if they
are used to using Enterprise Architect. If they are not, then
in most cases a single one hour demonstration is enough
to show them through the basics of the application, and get
them started on how to use it. One of the team’s aims was
to make the application so simple to use that anyone would
be able to use it without training.

We have had a number of encouraging customer com-
ments around the tool, typically along the lines of “En-
terprise Tester has more functionality than other tools we
have seen”, “the team are really excited about implementing
Enterprise Tester, they cant wait to get their hands on it” or
“we really like the user interface”. Most of the improvements
refer to enhancement requests around specific items that a
customer would like to have implemented, which we add to
the roadmap for future implmentation.

On the whole, the outcome of the development has been
extremely positive, with the team seeing a decrease in test
script creation time at a minimum of 25% and up to 75%,
depending on the detail added to the analysis model by the
analyst. This range of outcomes, while positive, is also one
of the issues faced. Enterprise Tester integrates with Sparx
Systems’ Enterprise Architect, which is a leading UML tool.



However, like others in the field it implements UML, but
does not guide the user as to what methodology to use. We
expect that with the release of Enterprise Architect version
8.0, which includes structured use cases, this will improve
to approximately 80%.

The approach Catch has taken allows users to implement
the tool in many different ways to suit their custom SDLC
process. But conversely, these different implementations do
not allow a consistent outcome to be achieved, and hence
consistent analysis results. A structured approach to analysis,
especially use cases and their associated scenarios, would
allow consistent high quality analysis to be performed, and
consistent reduction in test script time to be achieved across
projects and organizations. Catch has been working with
Sparx Systems to implement the functionality required for
this and it is due in version 8.0 of Enterprise Architect.

IX. FUTURE DIRECTIONS

Over the foreseeable future, the team plans to extend the
tool to include advanced functionality, in order to make
it one of the top Test Management Tools globally. These
features include version control and automated testing. Full
round-trip synchronization of use cases and test cases be-
tween Enterprise Architect and Enterprise Tester are also
planned. There are a number of other enhancements, such as
the SDK release and custom fields, that will be implemented
over the next 12 months. We will be directed by customer
feedback as to the priority of some of these enhancements
and will look to customers for feedback on the implemen-
tation of features requested prior to their full public release.

Version Control would allow customers to take baselines
of test cases, and version them as part of a package that
includes code, test cases and their UML models. This will
allow customers to roll forward and backward between
different baselines. A number of customers have requested
this enhancement, with Scotia Bank in Canada requesting
it prior to April 2010 and the team aims to implement this
in March 2010. The integration with tools for automated
testing would allow automated test scripts to be executed
from within Enterprise Tester, and the results passed back,
to be collated with the manual results within the tool.

X. CONCLUSION

In summary, Enterprise Tester has been successfully de-
veloped and released on the global stage. Its ability to
integrate with both Sparx Systems’ Enterprise Architect
and Atlassian’s JIRA to provide an end-to-end solution
is a world’s first. The aligned pricing philosophy of all
three organizations, i.e. Sparx, Atlassian and Catch, brings
Enterprise Tester in reach of all small, medium and large
organizations.

Enterprise Tester utilizes the requirements, use cases, and
scenario information from UML models to auto generate
test cases, saving the test analyst an estimated minimum of

25% of their time and equates to a minimum of 4% of the
total project cost. It also enables tracing from issues and test
cases back to requirements, thus helping to guide software
development efforts. The aim is to continue to improve the
time savings with the monthly releases of new versions of
Enterprise Tester, and give smaller organisations the ability
to implement an end-to-end solution that rivals the current
market leaders at a much lower cost.

REFERENCES

[1] Object Management Group, “Business Process Modeling Nota-
tion Specification,” OMG Final Adopted Specification, Febru-
ary 2006.

[2] The Open Group, “TOGAF Version 9 - The Open Group
Architecture Framework,” Document G091, 2009.

[3] Deloitte, “Deloitte/unlimited fast 50 index,” 2008, available
from: http://www.deloitte.com/.

[4] Sparx Systems, “Enterprise Architect,”
http://www.sparxsystems.com/products/ea/.

[5] Atlassian, “JIRA Issue Tracking Tool,”
http://www.atlassian.com/software/jira/.

[6] Object Management Group, “UML Testing Profile Version
1.0,” July 2005.

[7] P. Baker, Z. Dai, J. Grabowski, O. Haugen, I. Schieferdecker,
and C. Williams, Model-driven testing: Using the UML testing
profile. Springer, 2007.


