
OAuthHub — A Service for Consolidating
Authentication Services

Xuzong Chen∗, Gareth Sime∗, Christof Lutteroth†, Gerald Weber†
∗Department of Electrical and Computer Engineering, †Department of Computer Science

The University of Auckland
Auckland, New Zealand

{xche985,gsim760}@aucklanduni.ac.nz, {christof,gerald}@cs.auckland.ac.nz

Abstract—OAuth has become a widespread authorization pro-
tocol to allow inter-enterprise sharing of user preferences and
data: a Consumer that wants access to a user’s protected
resources held by a Service Provider can use OAuth to ask for
the user’s authorization for access to these resources. However,
it can be tedious for a Consumer to use OAuth as a way to
organise user identities, since doing so requires supporting all
Service Providers that the Consumer would recognise as users’
“identity providers”. Each Service Provider added requires extra
work; at the very least, registration at that Service Provider.
Different Service Providers may differ slightly in the API they
offer, their authentication/authorisation process or even their
supported version of OAuth. The use of different OAuth Service
Providers also creates privacy, security and integration problems.
Therefore OAuth is an ideal candidate for Software as a Service,
while posing interesting challenges at the same time.

We use conceptual modelling to derive new high-level models
and provide an analysis of the solution space. We address the
aforementioned problems by introducing a trusted intermediary
– OAuthHub – into this relationship and contrast it with a
variant, OAuthProxy. Instead of having to support and control
different OAuth providers, Consumers can use OAuthHub as
a single trusted intermediary to take care of managing and
controlling how authentication is done and what data is shared.
OAuthHub eases development and integration issues by providing
a consolidated API for a range of services. We describe how a
trusted intermediary such as OAuthHub can fit into the overall
OAuth architecture and discuss how it can satisfy demands on
security, reliability and usability.

I. INTRODUCTION

The digital native of today has a variety of online ac-
counts. Each account has resources and data associated with
it. Password fatigue is a known phenomenon with users and
it extends to fatigue in providing personal data, such as
addresses, repeatedly. Therefore many users allow a service
(the Consumer) to access their protected resources on another
service (the Service Provider). These protected resources are
usually artefacts such as personal information, photos or com-
munication mechanisms. In such a scenario, people’s private
data should be respected and kept safe. For example, if a user
(Resource Owner) wanted their music service (Consumer) to
be able to post updates on their social media page (Service
Provider) about the music they currently listen to, then they
may not want the music service to also access their photo
albums.

The current industry standard for authorization (and au-
thentication) between Consumers and Service Providers is

OAuth [1]. However, although the OAuth protocol successfully
standardizes the handshake between a Consumer and different
Service Providers, the APIs that these Service Providers offer
are inconsistent and also naturally heterogeneous. This means
that developers of Consumers need to integrate with new APIs
for every new Service Provider they want to support. Vice
versa, new Service Providers have a difficult stand in gaining
traction. The presence of such different APIs also makes it
more difficult to make authentication and sharing of data
secure for end users.

Currently there are many Consumers that allow their users
to “log in” using their accounts with various Service Providers
via OAuth. Examples of such Consumers include news sites
such as The New York Times, education sites such as Duolingo,
service/utility sites such as BitBucket, and media apps such as
Spotify. Most of these web services very rarely access pro-
tected resources specific to certain OAuth Service Providers,
such as “adding a new person into one of your Google+
Circles” or “checking your Facebook messages”. They use
OAuth mostly as a means to identify users, i.e. as an identity
management and authentication mechanism, and most users
seem happy to let Consumers make use of OAuth in this way.
However, the development cost of interfacing and integrating
with multiple OAuth Service Providers and the potential for
problems in security (e.g. Consumers accessing data they
should not need access to) are high.

In order to interface with any given OAuth server, the Con-
sumer developer needs to study the specification of that server.
In the best case in terms of interoperability, the Consumer
developer needs to register their Consumer application at the
server, and obtain a set of matching Consumer key and secret
(a.k.a. “client credentials”) [1]. In a worse case, the Consumer
may need to handle different OAuth 2.0 “Authorization Grant”
types, which couples the Consumer to particular servers. In
contrast to version 1, OAuth 2.0 is not just simply a protocol
but rather a framework [2] with a significant potential for
server-specific complexity.

This work makes three contributions:

1) We provide a formal analysis of the OAuth protocol
(focusing on OAuth 1.0), using techniques from model-
driven architecture and conceptual modelling such as
interaction diagrams.



2) We define a system, OAuthHub1, that can provide easy
access for Consumers to the benefits of OAuth, and
contrast it with a variant called OAuthProxy.

The motivation for OAuthHub is to ease the burden on
developers of Consumer applications with regard to OAuth
authentication and resource sharing, with a focus on security.
OAuthHub offers solutions that are simple and easily adopt-
able by Consumer developers, without involving protocols
other than OAuth, so not to make a system more complex
and vulnerable. For Consumer developers with OAuth exper-
tise, the solution does not change its developers’ workflow.
However, it should help developers create Consumers that can
use a variety of OAuth providers without additional security
risks.

We cover some of the basics and contemporary issues
of OAuth in Section III. Section IV outlines the proposed
solution, Section V describes some of its properties and
Section VI discusses some of its limitations. Section VII pro-
vides a comparison of OAuthHub with a variant, OAuthProxy.
Section VIII concludes the paper.

II. RELATED WORK

Managing user identities has long been an area of research.
There are different categories of Single-Sign On (SSO) sys-
tems [3] that try to handle this task. OpenID, despite it perhaps
not receiving as much attention in the developer community
as OAuth, is supported by many large websites including
Google, Yahoo etc. There were over 1 billion OpenID enabled
accounts at the end of 2009 [4]. Bellamy-McIntyre, Lutteroth,
and Weber [5] discussed how formal models could be used to
identify the risks of using OpenID.

During recent years, as OAuth became a popular autho-
rization protocol in the industry, usages of OAuth as an
identity management tool appeared. OAuth.io [6], produced
by WebShell [7], is an example of what we call an OAuth-
Proxy. OAuth.io provides, as a whole, both Identity Provider
consolidation and service-request (usually REST interfaces)
consolidation, via OAuth.io’s own servers and SDKs. This
solution addresses the same problem that OAuthHub does in a
somewhat similar manner. However, there are some significant
differences between the two solutions that are discussed in
detail in Section VII.

III. OAUTH

OAuth is primarily designed for secure delegated access [1],
which means Consumers can request that users grant them
permission to use the users’ protected resources on a Service
Provider. Without secure delegated access, users would need to
be asked to give away their user name and password to allow
a Consumer to access resources on a Service Provider. If this
was permitted at all, it would pose a significant security threat
and meant surrendering full control over a user’s account.

However, often OAuth is used by Consumers just as a Single
Sign-On (SSO) protocol. The first motivation for Consumers

1http://github.com/oauthhub/

to use SSO is to avoid managing their own credential system.
There are numerous concerns that need to be addressed for a
password system to be secure, e.g. allowed password length,
password content, expiry time, handling consecutive failed
sign-in attempts, password storage methods etc. [8].

Another motivation for Consumers to use SSO is to deal
with users’ password fatigue [9]. SSO allow users to reuse
identities already established at Service Providers. SSO also
helps when the user does not trust the Consumer application,
e.g. for temporary logins at Internet cafés or public terminals
[3].

Each Consumer is known to the Service Provider and can
ask for a set of permissions when a user attempts to set up
authorization between the two entities. This set of permissions
is presented to the user so that they can make educated
decisions on whether or not to approve this Consumer. Users
can revoke the Consumer’s permissions at any time.

The end result of setting up an OAuth connection between
Consumer and Service Provider is that the Consumer will have
token credentials which the Service Provider recognizes. Every
time the Consumer tries to access the Service Provider in the
future, the Consumer will provide the token credentials. An
interaction diagram describing the OAuth dialogue is given in
Figure 5, which will be described in more detail later on.

A. Terminology

In a typical OAuth authorization process, there are three
parties involved. In different documents, they are referred to
by different terms. In this article, we will mainly use the terms
defined in the “community” version, OAuth Core 1.0 Revision
A [10]. It is worth pointing out the correspondence between
those terms and the terms in the RFC version, RFC 5849: The
OAuth 1.0 protocol [1], because in many articles, the terms
are used interchangeably. In studies related to user identity
management, such as those regarding OpenID [11], there are
also commonly used terms that refer to concepts analogous to
the ones that OAuth is concerned with. The correspondences
between the different terminologies are shown in Table I.
In this article, we chose to use the “community” version
terminology to avoid ambiguity due to the terms “client” and
“server” being overloaded to mean different things (e.g. HTTP
clients vs. OAuth clients).

TABLE I
CORRESPONDENCES BETWEEN COMMON TERMINOLOGIES

RFC Community OpenID

Server Service Provider Identity Provider
Client Consumer Relying Party

Resource Owner User End User
Client credentials Consumer key and secret -
Token credentials Access token and secret -

B. OAuth 1.0 and 2.0

There are currently two OAuth standards that are recog-
nized, the OAuth 1.0 protocol and the OAuth 2.0 framework. It

http://github.com/oauthhub/


was intended that 2.0 would replace 1.0 [2] but there has been
much controversy surrounding the topic [12]. There have been
formal verifications of OAuth 2.0 [13], but in practice there
are still serious security issues [14]. As such, there are many
providers who do not support OAuth 2.0. Possible solutions
would likely have to support both standards, as the market is
so divided.

C. Different OAuth APIs

Each Service Provider can have a different API for ac-
cessing protected resources. This can make development of
new Consumers difficult as code using the new API must
be implemented for each Service Provider. For example,
Table II shows the different resource locations required to
retrieve a user’s first name in popular OAuth Service Providers.
Their implementations of OAuth are fairly heterogeneous, e.g.
Facebook and Google+ use OAuth 2.0, whereas Twitter uses
both 1.0 and 2.0.

IV. OAUTHHUB

To address the aforementioned problems with supporting
different OAuth Service Providers, our proposed solution
introduces a fourth party – a trusted intermediary – into the
traditionally-three-partied OAuth (1.0) setup. The inspiration
for this solution boils down to a well-known saying: “all
problems in computer science can be solved by another level
of indirection” [15]. Such an approach of introducing an
intermediary is also seen in the design of other solutions, e.g.
systems involving identity federation [16]. In particular, there
indeed already exist services that act as OAuth intermediaries
that make use of this approach; OAuthProxy, being one such
example, is discussed below in Section VII.

In this section, we first give a description of our solution,
called “OAuthHub”. Then we briefly describe a few points of
interest regarding OAuthHub, all of which are discussed in
detail in Sections V (Properties) and VI (Limitations).

A. Solution Description

We will call a web service that meets the following descrip-
tion an “OAuthHub”. Hence we provide here a specification
for a Software as a Service (SaaS) system that may be
implemented in different ways.

As seen in Figure 1, OAuthHub is registered beforehand
with each Service Provider as an OAuth Consumer; later, each
Consumer application is then registered with OAuthHub as
an OAuth Consumer. The only party that plays more than
one type of role is OAuthHub, which is an OAuth Consumer
when interfacing with the Service Provider, and an OAuth
Service Provider when interfacing with a Consumer. Figure 2
demonstrates this setup of two sets of 3-parties: one among
the user, the Consumer, and the OAuthHub; another among
the user, the OAuthHub and the Service Provider. OAuthHub
has the elegant property that the two connections that are
used between the Consumer and the Service Provider are both
OAuth connections.

Fig. 1. Registering a new Consumer with OAuthHub

Fig. 2. Overview of the 4-party OAuthHub setup, compared to the traditional
3-party OAuth setup

The purpose of OAuthHub is to reduce development cost of
Consumer applications. Instead of having to directly support
and control different OAuth Service Providers, Consumers can
use OAuthHub as a single trusted intermediary to take care
of managing and controlling how authentication is done and
what data is shared. Each new Consumer only has to integrate
with OAuthHub to gain the benefits of integrating with many
different Service Providers.

All requests from the Consumers for access to end-user
resources held by OAuth Service Providers go through the
OAuthHub. This concept is shown in Figure 3. A Consumer
makes a request to OAuthHub, which subsequently makes
a request to the Service Provider. This figure demonstrates
OAuthHub performing a conversion between the unified API
and the Service Provider’s API.

Fig. 3. A Consumer Making a Request Through OAuthHub

This is an interesting case study in service composition.
We are investigating here the “recursiveness” of the OAuth
protocol, a desirable property of protocol ceteris paribus. The
result of our investigation is that this architecture is possible;
it has clearly defined advantages and no fatal disadvantages.



TABLE II
RESOURCE LOCATIONS FOR RETRIEVING A USER’S FIRST NAME ON DIFFERENT SERVICE PROVIDERS

OAuth Service Provider Resource Location Field Name

Facebook https://graph.facebook.com/v2.3/{user-id} first_name
Twitter https://api.twitter.com/1.1/account/verify_credentials.json name
Google+ https://www.googleapis.com/plus/v1/people/{user-id} displayName

B. Characteristics of OAuthHub regarding Consumer Keys

One advantage that will become clearer later is a clean
separation of different sets of Consumer keys and secrets. This
is in contrast to OAuthProxy, which requires Consumers to
hand over their Consumer keys and secrets to OAuthProxy.
As Figure 1 already demonstrated, each party has their own
Consumer token and secret and there is no sharing of any
credentials among any two parties. Initially the difference
between OAuthHub and OAuthProxy seemed to have a sub-
stantial impact on privacy considerations since they affect
the way sets of Consumer keys and secrets are handled. An
interesting finding of our analysis is, however, that in central
questions of privacy the difference does only have a limited
effect; the main privacy concern rests with the question of a
multitenancy design (Section VI-A).

There is no ambiguity as to which entity is making each
request. However, it means that from the perspective of each
Service Provider, the only Consumer application that exists
(that delegates over all end Consumer applications integrated
over OAuthHub) is OAuthHub, and all requests are coming
directly from there. This can be expressed as an “n + 1”
relationship from the perspective of the Service Provider; we
say “n + 1” because there are n Consumers per OAuthHub,
and 1 Consumer, namely OAuthHub, per Service Provider.

OAuthHub definitely offers an advantage for new Service
Providers. By just communicating with OAuthHub and invit-
ing OAuthHub to become a Consumer, they can in turn reach
all Consumers of OAuthHub.

C. Scalability Considerations

The scalability of the “n + 1” option could be a potential
issue. Because all of the requests are made through OAu-
thHub’s account with the Service Provider, there would be
increased traffic through that account. Details are given in
Section VI-E. Some Service Providers enforce rate limits on
Consumers [17], [18], hence if many Consumers are added
that all access the same Service Provider, the rate limit must
be distributed to individual Consumers. This could potentially
be solved by having “Consumer Pools”; the OAuthHub could
have a large set of Consumer keys and secrets and the load
could be balanced between them. In this case, there would
be “n + m” sets of Consumer keys and secrets, where there
are n Consumers per OAuthHub as before (in “n + 1”) and
m Consumers – all of which are controlled by the same
OAuthHub – per Service Provider. The “n+m” setup is shown
in Figure 4.

S

Client

n + m Client Credentials

Client Credentials

OAuthHub Server

Client

Client

Fig. 4. OAuthHub with n + m Consumer keys and secrets

D. The OAuthHub Log-In Process

The setup of OAuthHub as two sets of three parties moti-
vates a natural protocol for the communication between the
end user, which is the Resource Owner, and the other three
parties. In that process, all four parties have to communicate
in a non-trivial protocol that is specified in Figure 5. When
the Consumer wants to log Resource Owners in, the Consumer
initiates the standard OAuth protocol with OAuthHub as the
Service Provider.

Figure 5 shows the interaction involved in authorizing an
end Consumer on OAuthHub. The interaction between the
services begins when the user taps “Sign in via OAuthHub”.
The end Consumer makes a request to OAuthHub using its
consumer token and secret. OAuthHub responds with a request
token and secret. The browser is given the request token and
redirected to the OAuthHub website. If the user is already
logged into OAuthHub, then the interaction in the box Alt 1
can be skipped and the user can immediately authorize the
end Consumer. The user will then be redirected back to the
end Consumer’s service. The OAuth authorization is complete
when the end Consumer exchanges the request token and the
OAuth verifier for an access token and secret.

A user might not have established an identity at the OAu-
thHub yet. The box Alt 1 in the figure demonstrates this case.
The good thing is that even in this case the user does not
have to separately register with OAuthHub but instead signs in
with their preferred Service Provider. OAuthHub accomplishes
this by acting as an OAuth Consumer, and interacts with an
existing, traditional OAuth Service Provider where the user
has already established an identity. Box Alt 2 describes the
scenario in which the user has an identity at the Service
Provider but is not currently logged into it.

E. Requesting Permission

We must decide which permissions are requested when a
user adds a new Service Provider to their OAuthHub account.
If OAuthHub requests all of the available permissions, then
new Consumers can be added without having to request

https://graph.facebook.com/v2.3/{user-id}
https://api.twitter.com/1.1/account/verify_credentials.json
https://www.googleapis.com/plus/v1/people/{user-id}


more permissions from the end Service Provider. However,
this means that OAuthHub may be granted access to more
resources than it actually needs. An alternative to this would be
to request new permissions incrementally, as required by each
new Consumer. The downside to this approach is that there
may be cases in which users must grant OAuthHub access to
more resources on the Service Provider as well as granting the
Consumer access to OAuthHub.

F. Privacy Control

In SaaS, there is the general question how the usage of
data by the service can be ring-fenced; in principle, OAuth-
Hub always represents one unit. This raises the question of
multitenancy in OAuthHub. Specifically, data should only be
available to Consumers with the correct authorization. The
fundamental requirement of multitenancy of OAuthHub is
independent from the question of which variant (“n + 1” or
“n+m”) is used. OAuthHub must guarantee to ring-fence the
data obtained on behalf of different Consumers in all variants.
However, strictly speaking the requirement on OAuthHub is
not different from the requirement on any Service Provider
to enforce the end-user’s choices on limiting authorization for
different Consumers. Multitenancy in software is not a new
concept and has been well studied [19] [20].

Apart from the question of multitenancy, OAuthHub offers
more interaction options for the user and therefore better
features to protect their privacy [21].

G. Usability Considerations

One of the peculiarities of OAuthHub is that end users will
– and will need to – become aware of OAuthHub. If users
revoke OAuthHub’s access to a Service Provider, the implicit,
indirect access to that Service Provider held by all Consumers
using OAuthHub will effectively be revoked in a cascading
manner. Users should do this only if they distrust OAuthHub
itself as an intermediary.

To revoke a specific Consumer’s (implicit, indirect) access
to their resources at end Service Providers, users should go
through OAuthHub. As a consequence, OAuthHub has to
provide users with an interface to manage the permissions
between their (Consumers, Service Providers) pairs. This char-
acteristic of OAuthHub from the point-of-views of users could
be beneficial to users trying to manage their accounts, but it
does introduce some complexity and could be detrimental to
the experience for average users.

H. Interface Consolidation

When needing to access end-user’s information or resources,
Consumer applications that integrate with OAuthHub would
forward the request through OAuthHub, without knowing
which Service Provider the request would eventually be served
by. This raises the question of “What is included in the scope
of the resources that are available via OAuthHub for the
Consumer?” If we consider that each Service Provider can
provide a set of resources, then OAuthHub could offer either
the intersection or the union of all sets of resources across all

Service Providers. Providing the intersection gives Consumers
a stronger guarantee, whereas providing the union gives more
possibilities. Details are discussed in Section VI-C.

By combining these two ideas, OAuthHub can expose an
API that offers a guarantee for some resources (the intersec-
tion) and offers the possibility of others (the union). Ultimately
the choice of authorizing OAuthHub to a Service Provider
is up to the user, and the user can decide to revoke any
access at any time. The counter to this, from the perspec-
tive of the Consumers, is that Consumers can ask users to
sign in using a certain service, as a condition of using that
Consumer’s service. In the considerations on consolidation of
service-requests, OAuthHub and OAuthProxy face the same
challenges.

I. Knowledge Curation and Maintenance

Service Provider APIs can change. New APIs can break
existing apps and there is no guarantee that the new API
will have the same capabilities that the old API did. This
is a particularly troubling concern when supporting multiple
Service Providers.

Currently it is up to the Consumer developers to keep
track of API updates and ensure that everything continues
to function as intended. Using our solution it would be
OAuthHub’s responsibility to respond to changes in Service
Provider APIs. This is another reason that OAuthHub could
be useful to Consumer developers.

J. Implementation Notes

OAuthHub, having an interface consolidation role, needs
to keep up to date with the APIs of the whole range of sup-
ported Service Providers. Implementers could consider storing
the API information either in the form of code (different
implementations of the same adapter interface), or stored in
a database in some form. If choosing the adapter approach,
the implementer may consider existing consolidation studies
and efforts, e.g. the Unified Service-Representation Model
mentioned in ServiceBase [22]. If choosing the database
storage approach, one could store a description of the API of
a particular Service Provider for a given consolidated resource
that is exposed to the Consumers; however, this may not be
straightforward if the consolidation is more than just plain
translation. For example, a consolidated API may need to be
built from multiple underlying APIs, such as consolidating a
“first name” and a “last name” resource into a consolidated
resource “name” (reusing the example in Figure 3).

OAuthHub needs to provide a user interface to manage the
access to different Service Providers that the user grants to
different Consumers. Now that there is no explicit (OAuth)
authorization for Consumers to access Protected Resources at
Service Providers, OAuthHub is responsible for ensuring that
each Consumer is not given more access than the amount the
user specifies via the OAuthHub user interface.



V. PROPERTIES

In this section we discuss the properties of OAuthHub,
namely the above mentioned setup involving “n + 1” sets of
Consumer keys and secrets.

A. The OAuthHub setup does not violate the OAuth 1.0
protocol specification.

The specification states that, “The way in which the server
handles the authorization request [. . . ] is beyond the scope
of this specification. However, the server MUST first verify
the identity of the Resource Owner” [1, Section 2.2]. Indeed,
if the user does not have an active cookie session with an
OAuth Service Provider, when the user gets redirected to the
authorisation URL (at the OAuth Service Provider), he would
need to perform an ordinary username-password authentica-
tion. OAuth is capable of replacing this authentication process,
by essentially off-loading it to some other Service Provider.

B. If using an OAuthHub, Consumer developers no longer
need to interface with multiple OAuth Service Providers in-
dividually.

This is the most desirable property of the OAuthHub setup.
If an OAuthHub allows users to log on using all the OAuth
Service Providers which the Consumer developer would have
supported manually, the Consumer developer will only need
to interface with this OAuthHub in order to allow users to
use existing identities established at various OAuth Service
Providers. This would significantly lower the development cost
of Consumer applications in the identity management aspect.

C. OAuthHub is non-exclusive to other OAuth Service
Providers for the same Consumer.

OAuthHub is just another OAuth Service Provider from the
perspective of Consumer applications’ implementation. Just as
a Consumer application can interface with both Twitter and
Google, it can also interface with OAuthHub and Google.
Choosing to use an OAuthHub still allows a Consumer ap-
plication to interact with other OAuth Service Providers.

D. Consumer applications that switch to using an OAuthHub
are required to make very little workflow changes.

This is also because “OAuthHub is just another OAuth Ser-
vice Provider”. The amount of work required for a Consumer
application to start using an OAuthHub is exactly the same as
the amount needed to start providing support for a new OAuth
Service Provider, e.g. the amount when a new social network
service becomes popular and Consumers starts to support it.

E. The Consumer is not authorized to (directly) access pro-
tected resources on the Service Provider.

This is a direct conclusion from the observation that at
no point did the user authorize the Consumer to access
protected resources at the Service Provider. In practice, of
course some information flows from the Service Provider to the
Consumer via the OAuthHub, e.g. the user’s identity. However,
since the OAuthHub re-wraps information from the Service

Provider into the form of protected resources, the OAuthHub
is completely in control of what to expose to the Consumer
(see Section IV-F).

F. If a user wants to distrust a Consumer, revocation needs to
be lodged to the OAuthHub involved.

What the user can revoke at the (end) OAuth Service
Provider is the OAuthHub’s access. This is a direct corollary
from the previous property (Section V-E). Note that for the
same OAuthHub, the user not only may revoke access from
multiple Consumers to it, but may also revoke its access to
multiple Service Providers.

G. (Compartmentalisation) The Consumer will not reliably
know which OAuth Service Provider is the one where the
existing identity that the user chose to use was established.

An OAuthHub, from the perspective of the Consumer and
its developers, has just the same interface as any other OAuth
Service Provider. There would not be any difference in the
build-time interface this OAuthHub exposes, for different
choices of OAuth Service Providers made by the user at run-
time.

Indeed, an OAuthHub may expose an interface to state “at
which OAuth Service Provider did this user establish their
identity”, but since the OAuthHub is free (or “capable”) to
provide inaccurate information, even though the Consumer
may know the user’s choice, it will not reliably know.

H. Any OAuthHub would be playing the role of an identity
provider.

Once the user has authorized an OAuthHub to access
protected resources held by a Service Provider, when the user
comes across another Consumer that offers sign-in via the
same OAuthHub, the user does not need to authorize that
OAuthHub to the Service Provider again, but only need to
authorize the new Consumer to that same OAuthHub. In effect,
that OAuthHub has become an identity provider, analogous to
OpenID’s “Identity Provider” [5].

I. OAuthHub works independent of the version of OAuth (1.0
or 2.0).

OAuthHub is primarily designed with OAuth 1.0 in mind.
However, regardless of whether OAuth 1.0 or OAuth 2.0 is
used for its implementation, OAuthHub maintains the proper-
ties discuss above, and the challenges and limitations discussed
below. Similarly, OAuthProxy also works with both OAuth
versions.

VI. CHALLENGES AND LIMITATIONS

There are also challenges and limitations with the OAuth-
Hub approach, which are discussed in the following.



A. The 4-party OAuthHub setup is prone to the “confused
deputy” problem.

This problem arises due to the multitenant nature of OAu-
thHub. The user may authorize an OAuthHub to access pro-
tected resources held by multiple OAuth Service Providers.
If the user also authorizes multiple Consumers to access that
OAuthHub, that OAuthHub would need to properly keep track
of which Consumer should be allowed to access resources at
which Service Providers. An example could be that when the
Consumer asks the OAuthHub for the user’s human-readable
name, the OAuthHub returns the name the user is known by at
a different OAuth Service Provider from the appropriate one.

OAuthHub must also keep track of the level of authorization
for each Consumer. For example, if a user’s social media
service provided both read and write permissions. One could
imagine a situation in which a user would like their music
service to be able to both read and write to their social media
service but their calendar should only have read access.

In addition to the previous two issues, OAuthHub must
ensure that Consumers are only accessing resources that
belong to the user that authorized them. For example, if one
user authorizes their music service to access their social media
service then the music service should not be allowed to also
access another user’s social media service.

If the OAuthHub makes a mistake on this association,
Consumers may end up accessing resources at a Service
Provider which they are not supposed to be able to access —
despite never reliably knowing which exact Service Provider
the information is from due to compartmentalization (Sec-
tion V-G).

B. Any OAuthHub would be an ideal target for attack.

Given that OAuthHubs are essentially identity providers
(Section V-H), any OAuthHub would, after some amount
of user usage, be authorized to access a vast amount of
protected resources held by various OAuth Service Providers.
If an attacker gains privilege to control resources held by an
OAuthHub, they would be able to access resources owned by
various resources owners, at various OAuth Service Providers.

C. (Consolidation) There is only a small amount of informa-
tion that an OAuthHub can guarantee to provide (although
there is a large amount of information that the same OAuthHub
may provide).

An OAuthHub would need to define its own interface for
OAuth Consumers to access users’ information. There is only
one such interface, but multiple potential data sources (namely
the multiple OAuth Service Providers) providing information
through this interface.

Consider any set S of OAuth Service Providers that a given
OAuthHub supports, such as S = {Google, Twitter, Facebook,
. . . }. Let R be a function that maps an OAuth Service
Provider to the set of protected resources provided by that
Service Provider. The set of resources that any OAuthHub can
guarantee to provide is

∩
s∈S R(s) – which can be very small,

because even if we ignore the syntactic, interface differences

across different OAuth Service Providers, the semantic content
of the resources can be quite different. For example, you
cannot post a tweet by only interacting with Google. However,
the set of resources that any OAuthHub may be able to provide
is

∪
s∈S R(s), which may be very large and diverse, for the

same reason.
This means from a practical point of view the following may

happen. A Consumer may want to retrieve a resource, e.g. a
“profile photo” of a user, via OAuthHub. However, OAuthHub
may refuse (in fact, be incapable) to provide an interface to
get a “profile photo”, because some of the OAuth Service
Providers the user has logged on with may not have the notion
of a “profile photo”.

D. The 4-party OAuthHub authorization interaction sequence
would seem confusing to the end-user.

From a user experience point of view, it may be overly
confusing for the user to need to make more than one
“authorization”. Seeing that when the end OAuth Service
Provider asks the user to grant access to the OAuthHub, the
UI would not (and could not) say anything about the end
Consumer, hence the user might be confused as to what exactly
he/she is authorizing. Because there are two different types
of revocation that may be done (Section V-F), when the user
wishes to revoke access of one Consumer to their information,
they may end up revoking the entire OAuthHub’s access to the
identity-providing OAuth Service Provider. This may lead to
unintended implicit revocation of other Consumers that makes
use of the same OAuthHub.

E. The OAuthHub setup faces inherent scalability issues.

Most OAuth Service Providers pose a rate limit on their
OAuth or REST API endpoints [17], [18], [23]. This highlights
a scalability problem OAuthHub faces.

Consider an OAuthHub H that is authorized by the user
to access a set S of Service Providers and to be accessed
by a set C of Consumers. Let L (“Load”) be a function
that maps a (Consumer, Service Provider) pair (c, s) to the
number of users who own some information that flows from
the Service Provider s to the Consumer c. Then for all Service
Providers s in the set S, the OAuthHub’s load on s is:
L(H, s) =

∑
c∈C L(c, s).

This could lead to the following scenario. Let us assume
for a given OAuthHub, a new Consumer that recently started
using this OAuthHub has a very large number of users who
prefer using Twitter identities. Then this OAuthHub’s usage
load on Twitter’s APIs may significantly increase. This may
in turn lead to Twitter blocking the OAuthHub’s access.

F. Consumers may be unsatisfied by the (small) variety of
resources available at any given OAuthHub.

This directly follows from the consolidation limitations
discussed in Section VI-C that an OAuthHub can only provide
the intersection of the resource-sets of the multiple Service
Providers. If a Consumer application’s business logic requires
functionality as specific as, for example, “reading the user’s



Facebook wall”, this Consumer would be disappointed, be-
cause it is unlikely that any OAuthHub would provide Service
Provider-specific interfaces like this.

It would be reasonable for developers of such Consumers to
interface with “Facebook” (in this example) directly, instead of
using a solution like OAuthHub. OAuthHub as a solution only
attempts to be helpful in cases where the Consumer application
is using OAuth mainly (if not entirely) for the purpose of
identifying users, as mentioned before.

VII. COMPARISON WITH OAUTHPROXY

A. Description of OAuthProxy

In this variant of the OAuth trusted intermediary each
Consumer generates their own Consumer key and secret with
each Service Provider. We will call this variant “OAuthProxy”
in the following. When Consumers register with OAuthProxy,
they provide their Consumer key and secret for use in com-
munication between OAuthProxy and each Service Provider.
Each Consumer is given a new set of Consumer key and secret
by OAuthProxy for all future requests between them and the
OAuthProxy.

One property and potential benefit of OAuthProxy is that
the Service Providers are aware of the Consumer and all
requests are made under the Consumer’s name. Thus, from
the perspective of the Service Providers, OAuthProxy does
not exist. This could be beneficial as users could then revoke
permissions from Consumers through the Service Provider.
The critical step that warrants scrutiny here is the passing on
of credentials from the Consumer to OAuthProxy. This stands
in contrast to OAuthHub where there would be no problematic
sharing of Consumer keys and secrets.

Interesting questions around this scenario are about the
general concept of SaaS and the implications for agreements
with third parties, the Service Provider in this case. If we take
a bold stand on SaaS, then OAuthProxy is deemed permissible
and unquestionable, because OAuthProxy acts as part of the
Consumer application IT, i.e. it is SaaS used by the Consumer.
If we deem this as problematic then there are fundamental and
hitherto unexplored limitations to the very notion of SaaS. The
OAuthProxy concept surely highlights questions about SaaS
that do not go away easily.

There is an existing solution in the market called “OAuth.io”
[6], which plays a very similar role as OAuthProxy among
the user, Consumer developers, and OAuth Service Providers.
OAuth.io requires Consumer developers to directly self-
register at all desired end OAuth Service Providers as Con-
sumers, and then hand the Consumer key and secret to
OAuth.io. OAuth.io indeed describes itself as “an OAuth
backend-as-a-service for your applications” [24].

We discuss now some of the differences between OAuth-
Proxy and OAuthHub.

B. OAuthProxy addresses some of OAuthHub’s usability lim-
itations from Section VI-D.

Now the end OAuth Service Provider would know which
end Consumer intends to access resources, so it can present an

authorization UI that informs the user of the Consumer. Note
that this isn’t possible with OAuthHub, due to there being only
one OAuthHub, but multiple Consumers (Section VI-E). There
would also be only one — rather than two — authorization
prompt, which is good in a usability perspective. Similarly,
“two different revocations” (Section V-F) no longer exist,
which also reduces confusion.

C. OAuthProxy addresses scalability issues from Section VI-E.

This is because now that in the end OAuth Service
Provider’s perspective, for the same set of end Consumer
applications, there are more registered OAuth Consumers
(rather than just one, namely the OAuthHub), each Consumer
application takes their own load, rather than affecting the
overall performance of the intermediary.

D. OAuthProxy is less desirable in privacy or information
compartmentalization aspects.

Consumers will know exactly which end OAuth Service
Provider the user chose to use (Section V-G). However, the
positive side to this is that Consumers will not face the
problem of not being able to access resources they want due
to consolidation limits as stated in Section VI-C.

E. OAuthProxy demands more trust from Consumers; OAuth-
Hub demands more trust from users.

In both OAuthHub and OAuthProxy, the users must trust
the Consumers not to abuse their resources.

In the case of OAuthProxy, when a user authorises a new
Consumer, OAuthProxy will act on behalf of the Consumer.
The user would also authorise each Consumer directly at
whichever Service Provider is used. This means that Con-
sumers must trust OAuthProxy to act responsibly as all re-
quests will be under their name, but the users can directly
revoke individual Consumers’ access at the corresponding
Service Provider.

In the case of OAuthHub, When a user authorises OAu-
thHub access to a Service Provider, the user must trust
OAuthHub to act responsibly, since OAuthHub may demand
a wide range of permissions in order to potentially expose
resources to downstream Consumers. This could be an issue if
on one hand, a Consumer offers OAuthHub but not traditional
Service Providers as recognised identity providers for log-in,
but on the other hand, users do not trust OAuthHub to have
such power.

VIII. CONCLUSION

In this paper we have summarized the motivations for
OAuth and the complications of different Service Providers
having different APIs. We have proposed a solution to these
complications, namely we have introduced a new party, OAu-
thHub, to the interaction in order to consolidate a vast array
of APIs into one. All requests from the Consumer are passed
through OAuthHub before being processed and sent to the
Service Provider.



Furthermore, we have provided an analysis on various
aspects of OAuthHub, including security, usability, cost, scala-
bility, and compared it with a variant, OAuthProxy. OAuthHub
shows desirable properties regarding development cost, com-
patibility with existing workflow, and information compart-
mentalization, while it may have potential problems regarding
security, usability, and functionality.

The difference between OAuthHub and OAuthProxy in-
cludes where trust is placed and how it is managed. OAuthHub
(Section IV-A) is not only an assistance to developers, but can
also be a tool for users to manage their authorisations between
many (Consumer, Service Provider) pairs. OAuthProxy (Sec-
tion VII-A) is purely a service to handle the consolidation over
various APIs or authentication procedures; it is only used (or
known) by developers of Consumer applications rather than
also by users.

Future research directions include the implications of the
practice of using OAuth as an identity management solu-
tion where OAuth Service Providers are treated as identity
providers.

REFERENCES

[1] E. Hammer-Lahav, “RFC 5849: The OAuth 1.0 protocol,” Internet
Engineering Task Force (IETF), 4 2010.

[12] E. Hammer-Lahav, “OAuth 2.0 and the road to hell,” 2009,
http://hueniverse.com/2012/07/26/oauth-2-0-and-the-road-to-hell/ [On-
line; Accessed May 10, 2015].

[13] S. Pai, Y. Sharma, S. Kumar, R. M. Pai, and S. Singh, “Formal
verification of OAuth 2.0 using Alloy framework,” in Proceedings of
the International Conference on Communication Systems and Network
Technologies. IEEE, 2011, pp. 655–659.

[14] S.-T. Sun and K. Beznosov, “The devil is in the (implementation) details:
An empirical analysis of OAuth SSO systems,” in Proceedings of the
ACM Conference on Computer and Communications Security (CCS).
ACM, 2012, pp. 378–390.

[15] D. Spinellis, “Another level of indirection,” in Beautiful Code: Leading
Programmers Explain How They Think, A. Oram and G. Wilson, Eds.
O’Reilly, 2007, ch. 17, pp. 279–291.

[16] W. Bin, H. H. Yuan, L. X. Xi, and X. J. Min, “Open identity management
framework for SaaS ecosystem,” in Proceedings of the IEEE Interna-
tional Conference on e-Business Engineering (ICEBE), Oct 2009, pp.
512–517.

[2] D. Hardt, “RFC 6749: The OAuth 2.0 authorization framework,” Internet
Engineering Task Force (IETF), 10 2012.

[3] A. Pashalidis and C. Mitchell, “A taxonomy of single sign-on systems,”
in Information Security and Privacy, ser. Lecture Notes in Computer
Science, R. Safavi-Naini and J. Seberry, Eds. Springer, 2003, vol.
2727, pp. 249–264.

[4] B. Kissel, “OpenID 2009 year in review,” OpenId. [Online]. Available:
http://openid.net/2009/12/16/openid-2009-year-in-review/

[5] J. Bellamy-McIntyre, C. Lutteroth, and G. Weber, “OpenID and the
enterprise: A model-based analysis of single sign-on authentication,”
in Proceedings of the 15th IEEE International Enterprise Distributed
Object Computing Conference (EDOC). IEEE, 2011, pp. 129–138.

[6] “OAuth that just works.” [Online]. Available: https://oauth.io/
[7] “Webshell.io: building the web operating system,” http://webshell.io/

blog, [Online; accessed 26-July-2015].
[8] C. C. Wood, “Effective information system security with password

controls,” Computers & Security, vol. 2, no. 1, pp. 5 – 10, 1983.
[9] R. Dhamija and L. Dusseault, “The seven flaws of identity management:

Usability and security challenges,” Security & Privacy, IEEE, vol. 6,
no. 2, pp. 24–29, 2008.

[10] M. Atwood et al., “OAuth core 1.0 revision a,” 6 2009. [Online].
Available: http://oauth.net/core/1.0a/

[11] D. Recordon and D. Reed, “OpenID 2.0: A platform for user-centric
identity management,” in Proceedings of the Second ACM Workshop on
Digital Identity Management (DIM). ACM, 2006, pp. 11–16.

[17] Twitter, “API rate limits.” [Online]. Available: https://dev.twitter.com/
rest/public/rate-limiting

[18] GitHub, “GitHub API v3.” [Online]. Available: https://developer.github.
com/v3/#rate-limiting

[19] T. Takahashi, G. Blanc, Y. Kadobayashi, D. Fall, H. Hazeyama, and
S. Matsuo, “Enabling secure multitenancy in cloud computing: Chal-
lenges and approaches,” in Proceedings of the 2nd Baltic Congress on
Future Internet Communications (BCFIC). IEEE, 2012, pp. 72–79.

[20] W. J. Brown, V. Anderson, and Q. Tan, “Multitenancy-security risks and
countermeasures,” in Proceedings of the 15th International Conference
on Network-Based Information Systems (NBiS). IEEE, 2012, pp. 7–13.

[21] G. Costantino, F. Martinelli, and D. Sgandurra, “How to grant less
permissions to facebook applications,” in Proceedings of the 9th In-
ternational Conference on Information Assurance and Security (IAS),
Dec 2013, pp. 55–60.

[22] M. C. Barukh and B. Benatallah, “Servicebase: A programming
knowledge-base for service oriented development,” in Database Systems
for Advanced Applications. Springer, 2013, pp. 123–138.

[23] Google, “Usage limits - Gmail REST API.” [Online]. Available:
https://developers.google.com/gmail/api/v1/reference/quota

[24] “OAuth.io frequently asked questions.” [Online]. Available: https:
//oauth.io/faq

http://hueniverse.com/2012/07/26/oauth-2-0-and-the-road-to-hell/
http://openid.net/2009/12/16/openid-2009-year-in-review/
https://oauth.io/
http://webshell.io/blog
http://webshell.io/blog
http://oauth.net/core/1.0a/
https://dev.twitter.com/rest/public/rate-limiting
https://dev.twitter.com/rest/public/rate-limiting
https://developer.github.com/v3/#rate-limiting
https://developer.github.com/v3/#rate-limiting
https://developers.google.com/gmail/api/v1/reference/quota
https://oauth.io/faq
https://oauth.io/faq


Fig. 5. Interaction diagram for OAuth protocol when logging in using OAuthHub


	Introduction
	Related Work
	OAuth
	Terminology
	OAuth 1.0 and 2.0
	Different OAuth APIs

	OAuthHub
	Solution Description
	Characteristics of OAuthHub regarding Consumer Keys
	Scalability Considerations
	The OAuthHub Log-In Process
	Requesting Permission
	Privacy Control
	Usability Considerations
	Interface Consolidation
	Knowledge Curation and Maintenance
	Implementation Notes

	Properties
	The OAuthHub setup does not violate the OAuth 1.0 protocol specification.
	If using an OAuthHub, Consumer developers no longer need to interface with multiple OAuth Service Providers individually.
	OAuthHub is non-exclusive to other OAuth Service Providers for the same Consumer.
	Consumer applications that switch to using an OAuthHub are required to make very little workflow changes.
	The Consumer is not authorized to (directly) access protected resources on the Service Provider.
	If a user wants to distrust a Consumer, revocation needs to be lodged to the OAuthHub involved.
	(Compartmentalisation) The Consumer will not reliably know which OAuth Service Provider is the one where the existing identity that the user chose to use was established.
	Any OAuthHub would be playing the role of an identity provider.
	OAuthHub works independent of the version of OAuth (1.0 or 2.0).

	Challenges and Limitations
	The 4-party OAuthHub setup is prone to the ``confused deputy" problem.
	Any OAuthHub would be an ideal target for attack.
	(Consolidation) There is only a small amount of information that an OAuthHub can guarantee to provide (although there is a large amount of information that the same OAuthHub may provide).
	The 4-party OAuthHub authorization interaction sequence would seem confusing to the end-user.
	The OAuthHub setup faces inherent scalability issues.
	Consumers may be unsatisfied by the (small) variety of resources available at any given OAuthHub.

	Comparison with OAuthProxy
	Description of OAuthProxy
	OAuthProxy addresses some of OAuthHub's usability limitations from Section VI-D.
	OAuthProxy addresses scalability issues from Section VI-E.
	OAuthProxy is less desirable in privacy or information compartmentalization aspects.
	OAuthProxy demands more trust from Consumers; OAuthHub demands more trust from users.

	Conclusion
	References

