CHINZ 2009

Usability

AlMHelp: Generating Help for GUI Applications
Automatically

Yashasvi Appilla Chakravarthi, Christof Lutteroth, Gerald Weber
Department of Computer Science
The University of Auckland
38 Princes Street
Auckland 1020, New Zealand
yapp001@aucklanduni.ac.nz, {lutteroth, g.weber}@cs.auckland.ac.nz

ABSTRACT

Help systems are a requirement in most modern applica-
tions. However, current mainstream help systems can be
improved to provide information that is more relevant and
accurate. This paper introduces a new approach for help
systems — AIMHelp — that can generate help information
from a running application. Instead of developers having
to supply all help information a-priori, a lot of informa-
tion can be retrieved by monitoring the state of the GUI
and the interaction between the user and different system
components. This has the advantage that generated help
information is consistent with the actual application, unlike
pre-defined help information that can easily get outdated as
an application evolves.

Categories and Subject Descriptors
H.5.2 [Information interfaces and presentation (e.g.
HCI): User Interfaces]: GUI

Keywords
Automated help, context-sensitive help, dynamic help, re-
flection, explanation strategies

1. INTRODUCTION

Help systems are a requirement for state-of-the-art software
applications. However, we assume general agreement that
extant help systems can be improved.

In this paper we focus on GUI-based applications. There
are several reasonably widespread concepts of dynamic help.
We consider dynamic help to cover every help system that
is more than a static user manual, e.g. help systems that
change with time or context. Applications often use tool-
tips to provide verbal descriptions of a specific widget or
component in the software. A quick check of major office
suites on different major platforms shows that these tool-tips
regularly do not provide the user with an access to the help

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CHINZ’ 09, July 6-7, 2009, Auckland, New Zealand.

Copyright 2009 ACM 978-1-60558-574-1/06/0004...35.00

21

system or the information required within the help system.
Context-sensitive help is a feature which typically provides
information about a specific feature of the application. It is
not offered any more by several major office suites, although
this was a novelty in help systems some years ago. In the
Eclipse platform, the F1 function key can be used to obtain
a context sensitive help for the current focus, see Figure 1.
Help indexes are a common part of software applications
as well. These indexes are typically offering alphabetical,
hierarchical and search-based access.

In all current help systems, creating the help documentation
is a manual task. As a consequence, completeness of help
systems is not guaranteed, not monitored and not main-
tained. We present a system that delivers certain guarantees
of availability of help. We report on an ongoing project, and
we present the proposed final system as well as the current
state of the implementation. Methodologically, the contri-
butions are first a theoretical definition of two different no-
tions of guaranteed help. This theoretical notion is posi-
tioned on the abstraction level that is typically referred to
as analysis or specification in various software methodolo-
gies. The second contribution is a design for both notions of
guaranteed help. This design is platform independent and
we present it in the context of the Auckland User Interface
model. Thirdly we report on the current prototypical imple-
mentation on the open source operating system Haiku, and
further implementation steps.

For purposes of the presentation of our approach, we assume
two use cases for the help systems in a software product.
The first use case is to find out how to perform a particular
task if the users know what they want to do with the sys-
tem. The second use case is to find out what a component
that the user stumbles upon is doing. With our proposed
help system, we address both use cases and ensure that the
help system provides relevant information to the users. Our
theoretical notions of guaranteed help contribute to the un-
derstanding of service orientation of software. Service ori-
entation is often discussed in a way that regards the actual
users of a system only very indirectly as stakeholders of the
service oriented architecture, if they are considered at all [7].
In our concept of guaranteed help, it becomes clear that end-
user needs should be considered more prominently in service
definitions, and this has direct consequences for the usability
of a system.



CHINZ 2009
= Java - PDStore/src/pdstore/PDCache java - Eclipse Pﬁ_

File Edit Navigate Project Run Window Help

[ESSTE=c)

512k Ju i HFrOQ- B 35 Debug [§TJava |
E# - erorio
[E] Task 52 . [2 Prob| @ Java| [, Decl | Bl Con | = O |/ Help 52 ¥ =0 -
049 ¥ - @ 7| . Related Topics i
Find: P AL P Activate.. -
i_"’) ~ About Task List

4 [ Uncategorized

] New Task Each workbench window contains one

or more perspectives, which are made
up of various views and editors.

Edit Task Working Sets...

il

See also:
Bl Workbench |
| [ Perspectives
B Customizing the Workbench |

~ Dynamic Help
Search results:

B Create a query from
bugs.eclipse.org

21 Vea Tark.Eariras A LT
GoTo:

All Topics &7 Search [Jl Bookmarks
[ Index

B

Figure 1: An example of the context-sensitive
in the Eclipse platform.

help

In Section 2, requirements for help systems as they are given
in the literature are reviewed. Section 3 gives a comprehen-
sive overview of help systems research. Section 4 introduces
our novel approach to dynamic help, and Section 5 gives a
brief overview of the technologies that it is built on. Section
6 presents a prototype implementation of the AIMHelp sys-
tem, and Section 7 discusses advantages and challenges of
our approach. Section 8 concludes the paper.

2. HELP SYSTEM REQUIREMENTS

Previous research has identified a number of criteria that a
help system should meet. Some of the qualities that the help
system should provide are consistency, navigability, com-
pleteness, relevance, conciseness, coherence, fidelity and re-
use [2].

The help system needs to be able to provide information to
the users in the simplest manner. Thus, the users will be
able to follow the information quickly and understand what
it implies. There are a number of explanation strategies
that a help system can use to converse with the users [4].
The help system can display the information as animations
or videos which provide the users with a visual demonstra-
tion of the information. Another explanation strategy is to
display the information in a textual format, where each in-
struction is displayed as a set of rules. A third strategy is to
provide a dialog based instruction set, where the user can in-
teract with the dialogs to navigate through the help system.
In these strategies, the help system needs to be able to con-
vert a set of rules into human readable language. Examples
are troubleshooting wizards, e.g. for network connections.

The help system also needs to provide information that is
relevant to the user. Thus, the system needs to keep track
of the state of the application, the user’s actions and the
history of other inputs such as number of errors, frequency
of command usage etc. [15, 3]. Based on the collected data,
the system needs to be able to analyze what the user wants
to do and provide relevant information to the user. Thus, the

22

Usability

help systems need to meet these criteria in order to provide
efficient help to the users of a software application.

3. STATE OF THE ART HELP SYSTEMS

There has been research on a number of dynamic help sys-
tem designs which have been implemented as prototypes.
Each of these designs has a unique underlying concept. These
state-of-the-art designs only address the second use case for a
help system as described in 1. This section discusses several
of these designs and analyzes the advantages and disadvan-
tages of each approach.

3.1 The Two Module Approach

HelpTalk is a dynamic help generator in UIDE (User In-
terface Design Environment) [15]. It clearly separates the
help access and help generation as two different mechanisms.
UIDE separates its application into two separate models -
the application and the interface models. The application
model can have a number of interface models linked to it.
Each of these models consists of their respective actions and
objects. These actions and objects are linked to one another
through action-object mappings. These models are repre-
sented by their respective blackboards during the runtime
of the UIDE. It also consists of a User Interface Controller
(UIC) which processes the user’s interactions, invokes the
application action and displays dialogues in order. HelpTalk
has access to the UIDE’s entire knowledge base and pro-
duces its comments using the state that the blackboards are
in. Once the help is generated, it displays an animation
of how to perform the specific task. Using the knowledge
base, HelpTalk generates the textual help by explaining the
reasons why the interface is in that particular state. The rea-
sons are phrased based on the models present in the UIDE’s
knowledge base. Then, it generates an animation that dis-
plays the procedures required to complete the textual help
displayed.

This approach has a number of advantages. One of the ad-
vantages is that the separation of the models i.e. the applica-
tion and the interface models allows the distinction between
the different actions and objects and the mappings between
them. Another advantage of this approach is that it en-
ables the help system to display the instructions from the
knowledge base in textual or animated format. However,
one of the drawbacks to this approach is that all the ac-
tions need to be divided between the application model and
the interface model. This is both time-consuming as well
as redundant in certain applications. Another example of a
framework that uses the two module approach is the Crystal
framework which is similar to the HelpTalk framework [3].

3.2 The Snippets Approach

CogentHelp is a prototype tool that generates dynamic help
for user interfaces built using Java Abstract Windowing Tool-
kit [2]. It uses a different mechanism for creating help docu-
ments using snippets and servers. CogentHelp accepts a set
of ’human-written’ snippets as an input and attaches these
snippets to their respective widgets in the user interface.
When the help information for a specific widget is generated,
the snippets for the specific widget are linked together. The
help system consists of different views including a thumbnail
and a tree view. The help topics are delivered through an



CHINZ 2009

HTTP server via a Java Servlet API. When a help request is
made, the help server is loaded through a particular URL.
This URL encodes the current state of the system, some
parameters and attributes as well as the ’snippets’ for the
corresponding widgets. The generated HTML forms can be
used by the program authors to edit snippets using ’frames’
which allow the authors to add in missing keywords in the
snippets. The help authors generate exemplars which are
frameworks that support different text generation method-
ologies. These exemplars follow object-oriented design and
can inherit from one another. They have been implemented
in the system to make use of Java’s object-oriented design
and to help the authors. Once the exemplars are prepared,
the help documents are generated by the server.

One of the potential advantages of CogentHelp is the use
of ’snippets’ or phrases for each widget. This allows the
dynamic help system to create help information based on
the user’s actions and the state of the system. Moreover,
this approach also allows the use of different text generation
methodologies making the system more flexible. A limita-
tion of this approach is that it does not account for the user’s
experience level and needs to be used with an efficient text
generator.

3.3 Triggering the required action

SmartAide is another help system which takes the auto-
mated help generation to the next level [12]. Apart from
displaying step-by-step textual instructions to the user, it
also executes the action sequence of the task being described
and changes the state of the interface. When a user requests
help, an AI planning system generates an action sequence
which is designed to execute within the user’s workspace.
It changes the state of the user interface and completes the
task that the user is presumed to work on.

This approach has a number of advantages over the other
help generation methods. First, the action sequences are
executed by changing the state of the system and the help
authors do not have to worry about the intermediate states.
Also, the action sequences that are executed can be tailored
to suit the user’s preferences. There are a few drawbacks
with this concept. First, all the action sequences are ex-
ecuted even when the user has no intention of performing
them. Second, the help system does not provide the user
with a learning experience as it executes all the necessary
tasks required. Thus, the user does not learn the steps re-
quired to perform a specific task.

3.4 Animated Help

In the earlier versions of dynamic help systems, the help
instructions were prompted in a textual format. However,
most of the modern software applications use graphical in-
terfaces. Thus, textual help does not relay the information
needed to navigate through a graphical interface accurately.

The new versions of dynamic help systems introduced a new
mechanism where the help instructions were animated. The
instructions were listed as a sequence of animated steps,
where each animation displayed the process of executing a
particular task.

23

Usability

3.4.1 DirectoryTree

Directory Tree is a simple application in UNIX which per-
forms some basic functions with directories and their struc-
tures [14, 13]. It consists of a dynamic help system which
is based on the animated help mechanism. Preconditions
and preferences are set in the DirectoryTree application [6].
These preconditions are attached to a set of animated in-
structions. When these preconditions and preferences are
triggered, the corresponding set of animation instructions
is generated. These help scenarios are sequences of actions
that need to be performed. The animated help system uses
an application context tool to process specific application
environments. Once the environment variables are set, the
system uses application semantics to understand more about
the application mechanism.

This approach has a number of benefits to the user. First, it
displays the help scenarios as animated instructions. These
instructions are much better at describing graphical inter-
faces than the textual equivalent of the help system. Sec-
ond, the help scenarios that are demonstrated are relevant to
the user’s requirements as a result of the application of the
preconditions and preferences in the DirectoryTree program.
However, one of the major drawbacks to this approach is the
need to store a library of animated videos for each specific
scenario. This is not possible for all the help systems im-
plemented in various applications. The second drawback is
that different scenarios are created each time the user needs
some help. This can lead to confusion among the users.

3.4.2 EdgeWrite

Another application that uses animated help is the EdgeWri-
te software application [11]. It is a program specifically
designed for the disabled to learn how to write characters
within a bounded box. The characters are represented by
movements to the different corners of a bounded box. The
common form of input to the program is the Logitech game
pad. EdgeWrite allows the users to be able to write charac-
ters by moving a cursor to different corners of the bounded
box in the application. Each character is represented by a
unique sequence of movements to a corner and hence, helps
the user learn how a character is drawn. The dynamic help
system in EdgeWrite analyzes the movements of the user and
displays the corner that the user needs to follow in order to
draw a specific character. It displays an animation that in-
dicates the direction to the corner for a specific character.
Thus, the help system helps the user follow the animation
and learn the path of the characters quickly.

An evaluation was conducted which compared the results of
static help to the animated dynamic help in EdgeWrite [11].
The static help only provided a list of characters at each cor-
responding corner. 24 students between the age of 20 and 26
participated in the evaluation. The participants were asked
to use the static help system first, and then the dynamic
help system. The results showed that there was an increase
in the number of words entered per minute with the dynamic
help. Also, the error rate, effort and entry time were smaller
for the dynamic help system as compared to the static help
system. These evaluation results showed that the dynamic
help system was much more useful to the user and helped
them learn the system more efficiently than the static help
system.



CHINZ 2009

3.5 The User Experience Level Approach
Most of the dynamic help systems generated a list of in-
structions based on the history of the user’s actions as well
as the state of the system. However, they did not take the
user’s experience level into account. Thus, the same set of
instructions was displayed to both novice as well as expert
users.

HelpDesk uses a dialog-based help system which takes the
experience level of the user into account [10]. It identifies
the user’s experience level and provides a set of instructions
(goals and sub-goals) based on the experience level. The
HelpDesk system architecture consists of a number of mod-
ules which are used to analyze the user’s input, calculate
their experience level and generate the necessary help in-
structions. When the user provides an input through the
mouse or the keyboard, the 'Level Adjusting Agent’ module
calculates the current experience level of the user and ad-
justs the user level. The experience level is calculated based
on some of the input parameters such as the time taken
to perform a specific task, the complexity of the task that
was completed and the number of steps taken to reach the
goal. Once the experience level of the user is calculated, the
"Utility Updating Agent’ and the ’Action Planner’ track the
user’s actions and analyze the intended action by the user.
Finally, the ’Content Selection’ module divides the action
into a number of goals and sub-goals based on the user’s
calculated experience level. The ’Content Realization’ mod-
ule provides a set of instructions based on the goals and
sub-goals that were chosen by the previous modules.

The HelpDesk system is advantageous as it provides a list of
instructions based on the user level. Thus, the appropriate
set of instructions is presented to the user and makes the
application more convenient to use. However, this approach
does not display the entire information available to all the
users. Thus, some of the information is hidden from the
expert users. This is not beneficial to the users as the help
system can hide information after placing a specific user in
the wrong experience level.

4. AIMHELP - A NOVEL HELP SYSTEM

The previously presented help systems provide a variety of
new features. However, they do not guarantee completeness
of the help system.

In this section we define two notions of guaranteed help,
and we specify features of a new help system that achieves
both notions, called AIMHelp (Auckland Interface Manager
Help). In the latter sections we report on the design and
implementation of AIMHelp on top of the AIM (Auckland
Interface Manager). The current implementation project is
based on the AIM branch for the Haiku Operating System.
Thus, a help system is available for every application with-
out manual provision of the help information.

The notions of guaranteed help address firstly the require-
ment of completeness, but this requirement is of course a
crosscutting requirement that works together with require-
ments such as navigability. If we accept navigability as a
requirement for us, then completeness means that naviga-
bility must be provided everywhere.

24

Usability

The first notion of guaranteed help is called guaranteed help
listing. It requires that every user interface element has to
be listed in the help index with its textual name. The second
notion of guaranteed help is called guaranteed help content.
This means that a specified class of effects should be fully
documented under those features that trigger these effects.

For guaranteed help listing we use the fact that AIM follows
the document-oriented approach. This means, that all user
interface elements in AIM are specified in documents. The
AIMHelp system traverses all user interface documents and
enters all the interface elements into the help index.

For the second notion of guaranteed help content, we have
to make assumptions about the way the functionality is pro-
vided within the application program. As indicated earlier,
this feature will require a very clear system design as envis-
aged in approaches such as service-oriented architectures.
The Haiku operating system, one of the platforms that AIM
is provided on, is service-oriented. Therefore we have chosen
it for the initial implementation of AIMHelp. In the ’Causes’
feature below we will discuss guaranteed help content for an
email function as an example. The process in which the
service-oriented structure of the Haiku system can be ex-
ploited for guaranteed help content will be discussed in the
next section.

In general, the degree of guaranteed help content is as much
experimental as the vision of service orientation is currently
still experimental. However, the guarantee claim of this sec-
ond notion is not with respect to all things that could possi-
bly be said about a certain feature, but with respect to that
what can be obtained by an automatic program.

The AIMHelp system consists of a number of features such
as an automated help index, an event log, analysis of causes
and analysis of effects. These features will be explained in
the following.

4.1 Automated Help Index

The automated help index realizes guaranteed help and pro-
vides the user with an index containing all widgets in the
user interface, as well as all types of events that can be cre-
ated in this application. If several widgets have the same
name, a disambiguation is performed based on different ac-
cess paths. For example in a PDF viewer, there might be
two widgets called "two-page” one in the print dialogue, ac-
tually triggering a two-paged print, and in the View menu,
toggling a presentation of two pages at a time.

For all user interface elements, shortcuts from the help sys-
tem to the user interface element can be provided. The help
index gives access to all help information available for a cer-
tain keyword. The different types of help information that
are generated by AIMHelp are listed as separate features
below. The concept of context-sensitive help is firmly built
into AIMHelp and is just a function of the Automated Help
Index, providing access from each element to the help entry.
The information for each keyword can be augmented with
manual information as well.



CHINZ 2009
4.2 Event Log

The event log allows the user to browse through the history
of past events that have already been generated. It also
provides the user with information about the event such as
the timestamp, the widget causing the information and the
state of the system. It is a user-based feature and allows
the user to only access the past events of the same user.
This feature also allows the user to replay the event in order
to view what has happened (the Triggering the Required
Action approach).

4.3 Causes

The ’Causes’ feature displays the information related to the
cause of a specific event. This feature realizes guaranteed
help content, and it is well defined for every distinct service
in the system. As an example we consider a case where the
user wants to send a document by email. Users expect office
applications to be able to send documents directly as emails.
In AIMHelp, every system service such as email is listed in
the help system. If the user goes to the AIMHelp index of
the document editor, the user will find an entry on email. If
the user goes to this entry and refers to the 'Causes’ feature
there, the user will find a list of all user interface elements in
the document editor that trigger an email to be sent. This
will be a toolbar-button, a menu entry in the File menu, and
a hot-key. This help information is generated completely
automatically in AIMHelp. The user can choose to either
invoke these features outside of the help dialogue, or to use
the direct link in the help function.

4.4 Effects

The ’Effects’ feature displays the information related to the
effect of a specific selected widget does. In AIMHelp, it is
guaranteed that the help entry for the email function states
that the email service will be called.

S. TECHNOLOGIES BEHIND AIMHELP

AIMHelp is based on a number of technologies such as reflec-
tion, message-based interaction and the Auckland Interface
Manager. These technologies are described in the following.

5.1 Reflection

Reflection allows a program to observe and/or modify it-
self during run-time by using meta-computations and meta-
data [5]. Reflection as a concept has spread from the pro-
gramming field to the area of user interfaces [9]. On the
level of the user interface, reflection can be used to provide
insight into an application or customize it. Based on the
type of runtime mechanism, there are two common types of
reflection: structural and behavioral reflection.

In structural reflection, programs can access their own struc-
ture during runtime, e.g. the structure of their code and their
data. On the level of the user interface, this can enable
users to adapt an applications data structures and functions
to their own needs. Behavioral reflection enables access to
behavior of a program and its runtime environment during
runtime. A program can read information about its current
state and modify its own behavior. In the user interface,
this can be used to gain insight into the program behavior
or adjust the way the system interacts with the user. Both
types of reflection provide useful mechanisms for adapting

25

Usability

programs during runtime, and providing a dynamic user in-
terface.

Generally, reflection operations fall into the following two
categories: introspection and intercession. Introspection al-
lows a program to read information about a specific agent
or itself based on the type of reflection that takes place. For
example, structural introspection allows the user interface
to present application data along with their data structure,
while behavioral introspection allows the user interface to
acquire information on how the system interacts with the
user. Intercession allows a program to modify a specific as-
pect of it, thereby allowing the user interface access to either
the structure or the behavior of the program depending on
the type of reflection. Especially introspection can be a pow-
erful tool for dynamic help systems as it enables a system
to retrieve help information directly from a program.

5.2 Haiku

Haiku [8] is an open-source operating system with a strong
focus on end-user desktop computing. Due to its modular,
message-based design it lends itself particularly well to re-
flection on the level of the user interface. Many of Haiku’s
functions are implemented as servers that communicate with
application through messages. For example, the input server
manages device drivers for input devices and passes input
events to programs that need to process them. The appli-
cation server provides windowing system functionality: it
manages application windows on the screen and passes in-
put events from the input server down to the right appli-
cation. Applications, in turn, send drawing commands to
the application server, which updates the screen content of
the application windows accordingly. These drawing com-
mands are typically sent by the widget toolkit used by the
application to draw the widgets of a GUIL. Other servers offer
functionality for network access, printing, storage and media
playback and processing.

Messages are not only used for the communication between
an application and the various servers, but also for the com-
munication within the application itself. Widgets do not di-
rectly invoke application callbacks when they are activated,
but send command messages to the application. Each win-
dow has a message loop that processes the command mes-
sages send by its widgets and invokes the application logic.
This makes it possible to “script” any GUI, i.e. to generate
command messages automatically to control and applica-
tion. It also makes it possible to analyze the events happen-
ing within an application during runtime, without changing
it.

Messages can be intercepted and analyzed. They are clearly
structured, and their structure can be introspected. It is eas-
ily possible to capture all the messages generated by a GUIL.
Through the pervasive use of messages in Haiku, Haiku can
be said to be a highly service-oriented system. Consequently,
Haiku provides an ideal environment for AIMHelp to reflect
on program behavior during runtime and generate pertinent
help instructions for a given context.

5.3 AIM - Auckland Interface Manager
The AIM is a platform independent library for GUI specifi-
cation and layout. It manages the elements of a GUI using



CHINZ 2009

cross-platform high-level specification languages. AIM pro-
vides functions for loading, saving, transforming and editing
GUIs, but it is up to the GUI developer in how far this func-
tionality is used. Through the layout management function-
ality, AIM has access to the widgets of an application. This
means that it can observe and change the state of an applica-
tion during runtime, i.e. perform structural introspection on
the data represented in the GUI. This makes AIM an ideal
place for a dynamic help system. AIMHelp is implemented
as part of AIM, which means that it can leverage structural
(through the widgets) as well as behavioral (through the
messages) reflection to generate help information. As a part
of AIM, AIMHelp can provide automated dynamic help to
many applications.

6. AIMHELP IMPLEMENTATION

The AIMHelp system is used with the Auckland Interface
Manager and is implemented on the Haiku operating system.
Figure 2 gives an overview of the AIMHelp system architec-
ture. In Haiku, when the user interacts with the widgets in
an interface, input messages are sent from the application
server to the application. The widgets in the application
receive and process the input messages, and send their own
messages in response to the underlying application. These
application messages trigger the application logic. In the
Haiku OS, arbitrary information can be passed through the
messages. However, typical message based systems at least
provide information such as the message target, the widget
sending the message, the type of the message, a timestamp
and more. Changes in the application state, in turn, usually
trigger changes in the GUI. This means that the application
sends drawing commands back to the application server.

G_U| . Messages and everhts
Application : Application
, ’ Server
L N i ;
R i :
Capturingéthe
AIM “messages |
N v \'«
Database .
Haiku
oS
AlMHelp

Figure 2: The system architecture of AIMHelp.

AIMHelp can capture all these messages. This is done by
attaching message filters to a window or view. As part of
AIM, AIMHelp has access to the widgets of an application
and can attach message filters to them. Once a message is
caught, the information in the messages is stored in a central
database. This includes the sender of the message, the tar-
get, the current state of the system and the previous state of
the system, as retrieved from the widgets that are accessi-
ble through AIM. These messages are stored throughout the

26

Usability

operational lifecycle of the AIMHelp system across multiple
sessions, so a historical message warehouse is built over time
that can be used to analyze the message flow caused by an
application. The storage of messages is easily done in Haiku
as messages are inherently serializable.

The AIMHelp system is in the development stage and we still
need to explore further the possibilities of message analysis
in the Haiku OS. Furthermore, we are exploring how the
message data can be usefully presented to the end-user.

[l AMHelp 1]
File
Index Effects

Event Log Causes

Search [buttonl
buttonl

buttonz

button3

button4

buttons

buttong
checkedListBoxl
textBoxl

listviewl

textBox2
rirhTawvtBowl

View Help Topic

Figure 3: The automated help index tab of
AIMHelp.
[l AMHelp ]

File

Index | Event Log | Causes Effects

Key down('A') at 16:36:08 in textBoxl

Key up('A’) at 16:36:09 in textBoxl i

Mouse down &t 16:36:14 in buttonl

Mouse up at 16:36:14 in buttonl

Replay Event

Figure 4: The event log tab of AIMHelp.

Figures 3, 4 and 5 show the AIMHelp window, which is
structured in four tabs that reflect its main features. Figure
3 shows the automated help index, which contains the names
of all the widgets in the test application. These names are
extracted automatically.

Figure 4 shows AIMHelp’s event log. It contains a list of
recent messages (in this case keyboard and mouse events)
that were caused by the user. The user can select events
and replay them by clicking the button below the list of
events. Replaying of events is possible because each event



CHINZ 2009

[ AIMHelp
File
Causes | Effects

Index  Event Log

Text entered in textboxl
Mouse clicked on button2

S

Figure 5: The cause analysis tab of AIMHelp.

entry contains all the necessary information, such as the
message target.

Figure 5 shows the tab displaying the results of a simple
cause analysis. Once a widget has been selected from the
index, this tab lists all messages that, over the recorded his-
tory of the system, are frequently observed directly before
the selected widget is changed. Since the system distin-
guishes only a limited number of event types, it is possible
to generate a simple textual description for each event type,
e.g. “Mouse clicked on widget X”.

7. DISCUSSION

In AIMHelp, the notion of guaranteed help listing can al-
ready be fully achieved just by virtue of using the underly-
ing technology AIM. The full implementation of guaranteed
help listing alone offers already several highly desirable help
features. The integration into AIM means that every appli-
cation with a user interface based on AIM has a help index
that fulfills one reasonable completeness criterion, has con-
text sensitive help everywhere, and supports direct shortcuts
from the help system to the system functions.

The notion of guaranteed help content is more challenging,
because the notion of help content is an informal one. We
analyze three major subproblems. First, how to obtain a
reasonably complete lists of functionality, secondly how to
make obtained information human readable, thirdly how to
single out functionalities that can be transformed into end-
user-readable information. For the first subproblem we use
a central database of system usages, and since this database
is considered to include the usage of the system during the
testing phase, we assume complete coverage of the system.
Hence our solution for that problem is at least as good as
the coverage approach chosen for the testing phase. If this
goes not through as a solution of the subproblem, then it is
at least a reduction of the subproblem to a different known
problem in testing which is usually regarded as a rather solv-
able problem. For the second problem we currently focus on
creating just information lists, by doing this at places where
the user would not expect more than such a list anyway. One
example is the complete index, another example is the list

27

Usability

of user interface elements that can trigger a certain action.
The user might want to expect other information besides
that list, but under the heading "list of widgets that allow
the sending of email” the user only expects a list. In later
versions we consider the use of structured English genera-
tors. For the third subproblem there are feasible solutions
in our implementation project based on the AIM branch for
the Haiku Operating System we can create a green list of
services that are defined by the system and which have a
human readable explanation.

To provide users with a larger collection of messages from
which help information can be generated, a central online
database can be used. Such a database can collect the his-
tory of all the messages and events that have been triggered
by many users. There are privacy issues when collecting
user session data in such a database, which can be addressed
with statistical database techniques [1]. Nevertheless, not all
users will want to provide such data, hence participation in
such a database must be voluntary. This is work in progress.

In our presentation we use three different concept pairs,
each of them with a slightly different focus. Firstly, we con-
sider two use cases of help, namely the how-to-do vs. the
what-does use case. Then we have defined two notions of
guaranteed help, the guaranteed help listing vs. the guar-
anteed help content notion. Finally we employ two differ-
ent design and implementation strategies, namely analysis
of document-oriented GUI specification vs. data mining of
service-oriented message interaction. These two strategies
are not mutually exclusive, but can and will be combined in
the final systems.

The three concepts are each well motivated and foster the
understanding of the desired features and the feasibility of
their implementation. That they are not mutually identi-
cal, but overlapping, is at first glance a possible reason for
critique, but we consider it as a mere fact of our subject of
research, and hence discussing all three concept pairs helps
to understand a very real aspect of complexity of the un-
derlying problem. The two use cases do not match with the
two guarantee notions because both use cases profit to some
extent from both guarantee notions. Equally both use cases
can profit from both implementation strategies. Finally the
guarantee notions and the implementation strategies have
an overlap; for example, without the data mining compo-
nent, the guaranteed help listing would only cover the user
interface elements and the access to the functionality from
the help entry, but many functions that the application can
actually invoke would be missing. There can be functions
of the system which are not directly represented by widgets,
and they are entered into the help index by the data mining
component.

8. CONCLUSION

In order to deal with the increasing complexity of the soft-
ware systems, dynamic help systems have been defined to
display help information to the user based on their actions
and the state of the system. However, most of the dynamic
help systems use a pre-defined list of data in order to gen-
erate the information for the users. AIMHelp is a dynamic
help system that is different from other dynamic help sys-
tems in that it focuses on automatic content generation and



CHINZ 2009

alms at guaranteeing the availability of help content. It is
integrated into Auckland Interface Model (AIM), and the
current implementation project is based on the AIM branch
for the Haiku Operating System.

Messages are generated when the user interacts with the
widgets in the Haiku OS. The AIMHelp catches these mes-
sages and stores the data in a central database. When the
user requests help information, it analyzes the messages from
the database and displays information about causes and ef-
fects of messages. In conclusion, AIMHelp is different from
the other dynamic help systems as it can generate help in-
formation automatically.

9. REFERENCES

[1] N. R. Adam and J. C. Worthmann. Security-control
methods for statistical databases: a comparative
study. ACM Comput. Surv., 21(4):515-556, 1989.
D. Caldwell and M. White. Cogenthelp: a tool for
authoring dynamically generated help for java guis. In
SIGDOC’97: Proceedings of the 15th annual
international conference on Computer documentation,
pages 1722, New York, USA, 1997. ACM.
D. Chau, A. Ko, B. Myers, and D. Weitzman.
Answering why and why not questions in user
interfaces. In CHI’06: Proceedings of the SIGCHI
conference of human factors in computing systems.
ACM, 2006.
R. Cullingford, M. Rueger, M. Selfridge, and
M. Bienkowski. Automated explanations as a
component of a computer-aided design system. In
IEEE’82: IEEE Transactions on Systems, Man and
Cybernetics, volume 12, pages 168—181, 1982.
F. Demers and J. Malenfant. Reflection in logic,
functional and object-oriented programming: a short
comparative study. In Proceedings of the IJCAI’'95
Workshop on Reflection and Metalevel Architectures
and their Applications in Al 1995.
J. Foley and D. Gieskens. Controlling user interface
objects through pre- and post conditions. In
SIGCHI’92: Proceedings of the SIGCHI conference on
Human factors in computing systems, Monterey,
California, 1992. ACM.
N. Gold, C. Knight, A. Mohan, and M. Munro.
Understanding service-oriented software. I[EEE
software, 21(2):71-77, 2004.
Haiku Inc. The Haiku Operating System, 2008.
http://www.haiku-os.org/.
C. Lutteroth and G. Weber. Reflection as a principle
for better usability. In ASWEC 2007: Proceedings of
the 18th Australian Software Engineering Conference.
IEEE Press, 2007.
P. Maloor and J. Chai. Dynamic user level and utility
measurement for adaptive dialog in a help-desk
system. In SIGDIAL’00: Proceedings of the 1st
SIGDial Workshop on Discourse and Dialogue, pages
94-101, 2000.
B. Martin and P. Isokoski. Edgewrite with integrated
corner sequence help. In SIGCHI’08: Proceeding of the
26th annual SIGCHI confenrence on Human factors in
computing system, pages 583-592, 1990.
[12] A. Ramachandran and R. Young. Providing intelligent

2]

28

(13]

(14]

(15]

Usability

help across applications in dynamic user and
environment contexts. In IUI’05: Proceedings of the
10th international conference on Intelligent User
Interfaces. ACM, 2005.

P. Sukavirirya and J. Foley. Coupling a ui framework
with automatic generation of context-sensitive
animated help. In SIGGRAPH’90: Proceedings of the
3rd annual ACM SIGGRAPH symposium on User
Interface Software and Technology, pages 152—166,
1990.

P. Sukaviriya. Dynamic contruction of animated help
from application context. In SIGGRAPH’88:
Proceedings of the 1st annual ACM SIGGRAPH
symposium on User Interface software, pages 190-202,
1988.

P. Sukaviriya, J. Muthukumarasamy, A. Spaans, and
H. Graaff. Automatic generation of textual, audio and
animated help in uide: the user interface design. In
AVI’94: Proceedings of the workshop on Advanced
visual interfaces, pages 44-52. ACM, 1994.



