
62

Rewriting History: More Power to Creative People
Carlo Bueno, Sarah Crossland

School of Engineering
University of Auckland

 {cbue001, scro089}@aucklanduni.ac.nz

Christof Lutteroth, Gerald Weber
Department of Computer Science

University of Auckland
 {christof, gerald}@cs.auckland.ac.nz

ABSTRACT
Trying out different alternatives is a natural part of
creative work, resulting in several versions that are hard
to manage. With the tools available today, we often end
up having to manually redo changes that worked in one
version on other versions. We propose a new approach
for supporting creative work: an artifact is described as
the history of the operations that created it. We show that
by allowing users to change this history, the common use
cases of merging, generalizing and specializing can be
supported efficiently. This rewriting history approach is
based on a formal specification of the operations offered
by a tool, leads to a new theory of operations, and enables
exciting new ways to share and combine creative work. It
is complementary to state-based version control, and
offers the user a new understanding of merging. The
approach was implemented for a collaborative drawing
tool, and evaluated in a user study. The study shows that
users understand the approach and would like to use it in
their own creative work.

Author Keywords
Interaction framework, creative work, collaboration

ACM Classification Keywords
H5.m. Information interfaces and presentation (e.g.,
HCI): Miscellaneous.

INTRODUCTION
Creating artifacts such as diagrams is an essential part of
many people's work. As the work on such artifacts
progresses, many versions are created. This can happen in
the process of creating a single deliverable version, or if
artifacts are reused on many different occasions, requiring
slight modifications. For example, people may use
presentation slides for different talks, changing some of
them each time. These situations lead to inefficiencies,
since useful work on one of the versions cannot be reused
in other versions in a straightforward manner. The
following simple story highlights the problem:

Ann and Bob are designing a new company logo. They
start off with a simple circle. Ann makes a copy for
herself so that she can work independently of Bob on the
color scheme. In market research she finds out that
“green is the new black” and changes the circle’s fill

Figure 1. Collaborative editing of a simple diagram

color to green. Meanwhile Bob resizes the circle into an
ellipse so that it matches retro designs currently in vogue.
The history of their changes and result of their work can
be seen in Figure 1.

Ann and Bob are convinced that they did hard work on
their versions of the logo and do not want to redo
anything. Hence they want to merge their versions into a
single version of the logo using a tool. Both are
disappointed to find that none of their drawing tools can
do the merge. Ann says, “I should have done the change
of the color after you did your changes.” Bob replies
“but then we wouldn’t be done by now either.” Ann and
Bob now face the prospect of merging the diagrams by
hand, which is tricky and time consuming because it
means that one of them has to redo all work on the other's
version.

The story illustrates a common limitation of creative
tools: once a user has performed a sequence of operations
on an artifact such as a logo or a diagram, the information
about that sequence – the history – is mostly lost. Many
editors have undo and redo functions that allow users to
go back and forth between previous states of the artifact.
But the fact remains: such functions only allow users to
access states of the artifact, but not information about the
operations that make up its history. Some problems such
as the merging problem in the story could be solved if the
history of an artifact could be changed. For example,
Ann’s wish to perform her changes after Bob’s could be
granted in retrospect.

In this paper, we propose history rewriting as an approach
that can be used to satisfy common use cases of creative
work. As we can see from the story, being able to edit the
history of an artifact in retrospect would give users more
freedom in their design. Decisions which were made
earlier on in the creative process would be no longer
painful and time consuming to change. This leads to a
new theory of history rewriting for creative work, and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
OZCHI '11, Nov 28 – Dec 2, 2011, Canberra, Australia
Copyright © 2011 ACM 978-1-4503-1090-1/11/11... $10.00

	

63

gives rise to questions about how the approach can be
made useful for end-users.

This paper is structured as follows: first, we look at the
motivation for the rewriting history method, and then at
related work. Afterwards we explain the concepts of
writing and rewriting history. The theory behind some of
these ideas is explained next, followed by an evaluation
that investigates how easily the rewriting history
approach can be applied and understood. The paper
concludes with an overview of future work and a
summary of important contributions.

USE CASES
The history of an artifact consists of all the operations
that were performed on it. In the rewriting history
approach, this history can be edited in hindsight, resulting
in a counterfactual history and generally a different
artifact. Common use cases that can be addressed with
history rewriting occur in the creative process if we have
found the right operations, but not applied them on all the
right objects. Without history rewriting, this would mean
that we have to redo work. This can happen in any of the
following three use cases:

Merging means that we have different versions A and B
of the same objects. We want to have only one version
that combines the operations that we applied to create
versions A and B. An example of this is the story in the
introduction.

Generalizing means that changes need to be applied
more generally, i.e. to a superset of the objects to which
they were applied originally. For example, after changing
the color of one of the circles in a diagram, we may want
to change all the circles in the diagram to the same color.
Merging can be reduced to generalization.

Specializing means that changes need to be applied more
specifically, i.e. to just a subset of the objects to which
they were applied originally. For example, after setting
the color of all circles in a diagram to red, we may decide
that only some of the circles should have that color.
Specializing is the inverse of generalizing.

These use cases can already occur if a single user works
on a single document that evolves over time and is used
in different contexts in slightly different versions.
Presentation slide sets are a typical example. However,
these use cases can also occur during collaborations. The
more people are involved, the greater is the integration
effort required at the end when the individual
contributions are given their place in the overall work.

If the above use cases are not supported by a tool, the
amount of work that needs to be redone grows with the
size of the creative work. There are tasks that require
several modifications without history rewriting, but only
one modification with history rewriting. For example,
imagine a shape was copied several times and the copies
arranged in a pattern. If we wanted to change the color of
all the copies without history rewriting, we would have to
change them individually. With history rewriting, we
could simply change the color of the original shape before
it was copied.

RELATED WORK
Most applications for creative work record the factual
history of an artifact, i.e. they keep track of artifact
operations. The factual history is mostly used for undoing
and redoing, and typically only the most recent operations
can be undone or redone. The history operations that can
be used to create a counterfactual history are very limited.

Extensive research has been done on the visualization of
operation histories (Nakamura et al., 2008), and the
possibility of using it for documentation and learning
(Grossman et al., 2010). Branching has been considered
as well, but only as a way to remember operations that
have been undone (Heer et al., 2008), and not as a tool to
manage variations of artifacts. The possibility of editing
the operation history has been proposed (Kurlander et al.,
1988), but its semantics, use cases and benefits have not
been explored. In particular, the implications of
reordering and its uses have not been considered before.

On the surface, the rewriting history approach looks
similar to version control systems (VCS) such as SVN,
Git and Hg. Such VCSs offer powerful functions for
managing and merging different versions of files, offering
support for similar use cases. However, there are
significant differences:

1) The abovementioned VCSs are state-based, as
opposed to our approach, which is operation-based. That
is, they do not record artifact operations but merely
compare two states of an artifact. The differences are
recorded on a lower level of abstraction, as insertions and
deletions on the raw artifact data. There are operation-
based VCSs that are integrated with editors, but they are
highly domain specific and do not support history
rewriting (Koegel et al., 2010).

2) The abovementioned VCS are unstructured, i.e. they
are not aware of the syntax of an artifact, but merely
consider changes between states on a lexical level. For
example, they are not aware that the color of an object
was changed, but merely see that one string was replaced
by another. This leads to merging conflicts (Mens, 2002)
that can only be avoided with syntactic merging, i.e. by
taking into account the syntax of an artifact (Conradi et
al., 1998). Structured VCSs have knowledge about the
artifact syntax. However, they are typically state-based
and consider only the syntax of the artifacts themselves,
but not the syntax of their history operations. For
example, the Pounamu diagram editor (Mehra et al.,
2005) has a structured model of diagrams, and can
compare and merge diagrams according to this model.
But it has no knowledge of the history of a diagram, as
this is not part of the model. Similar state-based syntactic
merge tools exist for source code of various programming
languages (Hashimoto et al., 2008; Apiwattenapong et al.,
2007), and graph-like object structures in general
(Zündorf et al., 2009).

3) VCSs such as Git allow power users some rewriting of
the version history, but this is difficult and situated on a
lower level of abstraction, as described in the previous
points. It also creates problems for collaboration: if
changes have already been pushed to a central server and

64

are then rewritten and pushed again, this creates an
alternate version of those changes on the central server
(Scott, 2009). Collaborators will be confused as it
becomes unclear which version they should base their
own work on.

In summary, VCSs are no substitute for the rewriting
history approach, but are complementary: a structured
VCS could be used on a lower level to manage the
complete history that includes artifact operations as well
as history operations. This would make it possible, for
example, to undo and redo history operations.

Operational transformation (OT) (Ellis et al., 1989;
Agustina et al., 2008) is a popular technique for managing
concurrency in systems for synchronous collaborative
work, by exchanging and transforming the history of user
operations. If operations are executed concurrently by
different collaborators, they are transformed upon
reception so that each collaborator sees the same
consistent state. However, the approach is orthogonal to
our approach: our approach provides added value even
for a single user, while OT is only needed for
synchronous collaboration. In OT the history of the
operations cannot be changed by the collaborators. It may
be discarded once a state of consistency has been reached.

Although some of the previous work has addressed some
of the issues discussed here, there is no previous
publication that does all of the following: developing an
algebraic model of rewriting a history of operations,
applying this model to common use cases in creative
work, presenting a streamlined tool that implements this
model, and performing a user study that evaluates
whether the model is understandable.

WRITING HISTORY
Traditionally, a document stores only the result of
creative work, and not its history. In our approach, a
document describing a creative artifact contains primarily
a history of artifact operations. An artifact is defined
through re-execution of the history because all artifact
operations are deterministic. In an almost literal
translation of this view, a tool implementing our approach
has two presentation panes: the history pane and the
artifact pane. An example of this is shown in Figure 1.

A tool keeps track of all artifact operations executed by
the user and stores them in a list. In this article we focus
exclusively on a drawing application for the sake of
brevity, but the approach can be applied to a large number
of WYSIWYG tools. Each operation has an object that it
applies to and an arbitrary number of parameters, for
example x-y coordinates from point-and-click operations.
Initially the operations are ordered by their execution
time.

REWRITING HISTORY
Since the history is stored in the data model, it is now
possible to change the history using new kinds of
operations, history operations. It is possible to change the
artifact by rewriting the history. The set of history
operations needed is very small: first, a swap of two
consecutive artifact operations; secondly, a deletion of

artifact operations in the current version of the history. As
a result of many swaps, the order of the history can be
arbitrarily changed. History operations are invoked in the
history pane of the user interface.

Many operations in classic drawing applications can have
different semantics. The different semantics have
different consequences with regard to swapping. For
example, a move of an object can be interpreted as a
move to an absolute position, or alternatively as a move
to a position relative to the old position. With respect to
swapping, semantics which are commutative behave
differently than semantics that are non-commutative. An
absolute move overwrites the object position and is
therefore a non-commutative operation, i.e. swapping two
absolute moves may change the artifact. A relative move
can be defined as an addition of an offset, and is a
commutative operation due to the commutativity of
vector addition. Hence, swapping two relative moves
does not change the artifact. In general, swapping
commutative operations does not change the artifact,
while swapping non-commutative operations may change
the artifact.

An important non-commutative history operation that
requires special attention is copy. Semantically, on the
low level of object identities, the copy operation is
asymmetric: the original object is kept unchanged, and a
distinct clone is created. For the original, the copy is
semantically a skip (a non-operation), but not for the
clone. This has to be taken into account in swaps that
involve a copy operation. There are two such swaps.

First, let us consider a swap that moves an operation e
after the copy to the position before the copy. We
consider two cases. If e is an operation on the original,
then the swap has no consequence for the original. But for
the clone the swap has the effect that e is now also
applied to the clone. This is the case with the resize
operation in Figure 2, which shows how Bob’s wish from
the motivation section can be fulfilled by moving the
copy after the resize. This operation can solve the use
case of generalizing, and therefore we use this term for
such a swap.

Figure 2. History of merged versions

If e is an operation on the clone, then e is at first
undefined before the copy because the clone does not
exist yet. Therefore we extend the semantics of swap: if
the operation e on the clone is moved before the copy

65

operation, then e is applied to the original (i.e. its
ancestor) instead of to the clone.

The second kind of swap involves moving an operation e
to a position after a copy. If e is invoked on the object
that is copied, then the user can interactively specify
whether the operation should be applied to the original
object or to the clone. This operation can solve the use
case of specializing. As mentioned before, specializing is
the inverse of generalizing. Consequently, the
corresponding changes on the history are also inverse to
one another (moving operations up or down).

Merging of different versions with a common ancestor,
as in the second example of Ann and Bob, is a
combination of several generalizing operations. The
operations that were invoked on the copies are moved to
positions before the copy operations. This is illustrated in
Figure 2.

The other history operation is the delete operation. This
operation allows the user to remove an artifact operation
from the history. There exist dependencies between
operations. Some operations are responsible for creating
new artifacts and every operation which then works on
that artifact is then said to be dependent upon the
operation which created it. When this creation operation
is deleted, each dependent operation is deleted as well.
This is because the dependent operations are now
unnecessary, as they no longer affect any shape in the
diagram. This feature is called cascading delete.

The name cascading delete comes from the fact that this
delete is propagated down the history, i.e. forward in
time. As with the swap operation, the copy operation
presents a special case. We cannot just delete all the
dependent copy operations. We also need to delete all
other operations which are dependent upon that copy
operation. This effect means that it is possible to clear all
artifacts, and all operations, from the history by deleting
just one operation, if the whole history is dependent upon
that one operation.

THEORY
In order to give precise semantics to the history
operations, we also have to give precise semantics to the
artifact operations. We use an algebraic model for the
editor and its artifact operations. Operations are modeled
as functions on the artifact. Executing operations m1, c2
after each other is therefore mapped to function
concatenation m1·c2, and this is known to be the
fundamental associative operation in set theory. This
model is the primary justification, why histories are just
sequences and not expression trees: A history (m1 c2)(c3
m4) is the same as m1(c2(c3 m4)) and is always just (m1
c2 c3 m4). Given that all artifact operations are
associative, the question arises if they are commutative.

If they would all be commutative, our history rewriting
approach would make no difference. Artifact operations
are sometimes commutative and sometimes not. Note that
commutativity is only defined on neighboring artifact
operations. In our tool, we have decided to offer the swap
operation by two buttons. It is natural that the user always

selects operations in the history. For a selected operation,
there are two natural swap operations, up and down. Each
of them has its own button. Distinguishing commutative
and non-commutative operations enables us to offer an
important advanced feature of the history panel, namely
skipping of commutative operations, which we will
explain now.

Commutativity and its uses
If two neighboring artifact operations are commutative,
swapping them does not make a difference. This allows
us to create a powerful feature. Pressing the swap button
for one artifact operation in one direction will cause that
operation to jump a whole set of neighboring artifact
operations. One artifact operation will be swapped to the
next position where it will produce a change on the
diagram. This simplifies the process of changing history.

For understanding if two operations are commutative we
first need to look at how an operation is defined.
Generally, an operation consists of three parts: a type, a
shape, and additional parameters. The type identifies what
kind of operation was performed, for example a move or
color operation. The shape is the one the operation is
applied on. Additional parameters provide information
that is specific for the type, such as a new color for color
operations. The copy operation is special in that it has a
second shape as parameter, which is the new shape
produced by the operation.

Commutativity for shape-disjointness
If two operations do not refer to the same shapes, we call
them shape disjoint. If two operations are shape disjoint,
then they are commutative.

All artifact operations are defined to only affect the
shapes they refer to. This is no arbitrary choice but is
necessary in order to avoid a gulf of execution: if an
operation would have effects on shapes it does not
explicitly refer to, this would confuse the user as to how
the operation could only be applied to the shapes the
operation actually refers to. It would also create a gulf of
evaluation: the other affected shapes are not listed in the
history panel. If two operations apply to different shapes,
then their order of execution makes no difference to the
final product.

For example, a copy operation would be non-
commutative with another operation if that operation
acted upon the shape that is copied or the produced new
shape. In both cases, the two operations would not be
shape disjoint. The same is true for operations that refer
only to one shape.

Commutativity for type-disjointness
If two operations have different types, we call them type
disjoint. For the types of operations that our tool supports,
except the copy operation, the following holds: if two
operations are type disjoint then they are commutative.
We have defined the operations in our tool so that each
operation type affects a different property of a shape, with
no overlap between them. Because properties are
independent of one another, the order in which different

66

properties of a shape are changed does not affect the
outcome.
The copy operation is again a special case. If the copy
operation is type disjoint with another operation, they are
not necessarily commutative. Swapping them may cause
specialization or generalization, as described before. For
example, imagine if we had a circle c1 and a copy
operation producing a second circle c2. Now we change
the color of the first circle, c1 as shown in Figure 3. If we
look at the history of operations, we see that we have two
operations which are of different types, but they are
actually not commutative as the lemmas above would
lead us to believe. This is because initially the color
operation only affects c1, but if we move it above the
copy operation it also affects c2.

Figure 3. Commutative operations

Commutative neighborhoods
We have now described how to determine if two
operations are commutative with one other. However, we
would like to expand this to create commutative
neighborhoods, where several neighboring operations are
commutative. It would be helpful if we could identify any
property of commutative operations that make it easier to
find commutative neighborhoods.

Transitivity is a common mathematical property of
relations. In the context of commutativity, transitivity
would mean that if an operation A is commutative with
operation B and operation B is commutative with C then
operation A is also commutative with C. This would be a
useful property since it would make the definition and
identification of commutative neighborhoods much
easier. However, this property does not hold, as proven
by the following example. If we have an operation
coloring a circle c1 and a second operation moving a
second circle c2, then these two operations are
commutative. Similarly, the second operation would be
commutative with a third operation which is also coloring
c1. So both the first and second, and second and third
operations are commutative, but we can see that the first
and third operations are not commutative since they have
neither different types nor different shapes. Swapping
them results indeed in a different color. This proves that
commutativity of operations is not transitive.

It should be noted that we assume that all artifact
operations except copy are defined in a form that is called
idempotent: Executing them twice has the same effect as
executing them once, as in the case with coloring.

Similarly, resizing is defined in an idempotent manner,
i.e. by defining an absolute resulting size, not a relative
size change. Extending the theory to the corresponding
relative operations is a further interesting project.

One question when partitioning the history into
commutative neighborhoods is: where does a particular
commutative neighborhood end? The lack of transitivity
has the following consequence: For a given history, one
cannot partition the operations into disjoint commutative
neighborhoods. Instead, using a different artifact
operation as a starting point produces in general a
different commutative neighborhood. An example of this
is given below.

Assume we have the history shown in Figure 4. We have
two new() operations and two other operations referring
to the same shape as the first new operation. For the first
new() operation, only the two new() operations together
are the commutative neighborhood. For the second new()
operation, all four operations comprise the commutative
neighborhood.

Figure 4. Defining commutative sets

Hence commutative neighborhood should be defined as a
function mapping one artifact operation to a set of artifact
operations, its neighborhood. This fits well to the aim of
defining commutative operations: we want to define
commutative neighborhoods in such a way that when we
move an operation in the history, we move it to the next
position in either direction which would make a change to
the artifacts displayed, in effect skipping over the
commutative neighborhood. Therefore the selected
operation is the starting point for defining the
neighborhood, which then stretches both upwards and
downwards.

Cascading delete
Cascading delete works on the principle of dependencies.
If we delete an operation, all other operations which are
dependent upon it are also deleted. This makes sure that
only operations affecting the diagram are listed in the
history.

To put this into practice, we need a definition of which
operations are dependent on which other operations. We
look at the shapes referred to in each operation:
operations are dependent upon the operation which
created the shape they are referring to, which is either a
new operation or a copy operation.

67

Figure 5. Cascading delete

For example, assume we have three operations, o1, o2
and o3. o1 is a new operation creating a circle, o2 is a
color operation on that circle, and o3 is a move operation
on that circle, as shown in Figure 5. In this example both
o2 and o3 are dependent upon o1, but they are not
dependent upon one another.

As we have seen before, the copy operation acts slightly
differently from all other operations. Due to the
generalizing and specializing features, dependencies on
copy operations are not as strong as they are on new
operations. If an operation depends on a copy operation,
we call this a soft dependency. It is soft because the
operation is able to be swapped above the copy operation,
and as a result become dependent upon the shape which is
being cloned in the copy, the original. If an operation
depends on a new operation, we call this a hard
dependency. The operation cannot be moved above the
new operation.

For example, consider three operations, o4, o5 and o6,
where o4 is a new operation creating a new circle, o5 is a
copy operation on this circle, and o6 is a color on this
copy object, as shown in Figure 5. Initially, o6 has a soft
dependency on o5, and o5 has a hard dependency on o4.
However, if we now swap the ordering of o5 and o6 we

have a different set of dependencies. Now we get both o5
and o6 having hard dependencies on o4.

IMPLEMENTATION
To understand the possibilities that are offered by the
concept of rewriting history, we translated our history
model one-to-one into a tool. The tool stores its model in
a lightweight database system that supports event
notification. The event mechanism is used for view
maintenance and multi-user support. The implementation
supports synchronous collaboration between different
users, i.e. changes of one user become immediately
visible to other users. However, the aspects of distributed
synchronous collaboration are not the main thrust of the
theoretical and practical work presented here, but a
welcome added benefit. A screenshot of our prototype is
shown in Figure 6.

In terms of the model-view-controller pattern, the history
and artifact pane are views of the same data model, i.e.
the counterfactual history. The two important parts of the
tool are the presentation function for view maintenance,
and the input control function for model updates. The
presentation function can be implemented in a single
global refresh routine that simply re-executes the whole
history. Using caching this approach can be optimized so
that it scales to long histories.

EVALUATION
After the creation of our prototype we performed a
usability study. The evaluation itself was not performed
on the prototype but as a test of theoretical understanding:
The aim of the study was to assess how easily a user
could understand and subsequently apply the concept of
rewriting history, assuming that the user is familiar with
office tools but unfamiliar with our history editor.

68

Figure 6. Screenshot for questions about generalization

Figure 7. Screenshot for questions 1, 2 and 10

Figure 8. Screenshot for questions 8 and 9

Figure 9. Screenshot for questions 2 and 10

Question (issue evaluated) Figure Results

1. How would you change the color of Rec_2 to be the same color as Rec_1?
(applying generalization for non-repetitive case)

7 8/11 used history

2. How would you undo the previous change, i.e. make Rec_1 blue and Rec_2 red?
(applying specialization for non-repetitive case)

9 8/11 used history

3. How would you resize all three rectangles to have a width of 250 and a height of
70? (applying generalization for repetitive case)

Similar
to 6

10/11 used history

4. What would happen if you move the Color operation up in the history panel by 1
step? (understanding generalization)

6 11/11 correct

5. What would happen if you move the Color operation up in the history panel by 2
steps? (understanding generalization)

6 11/11 correct

6. What would happen if you move the Color operation up in the history panel by 1
step? (understanding generalization)

Variation
of 6

11/11 correct

7. What would happen if you move the Color operation up in the history panel by 2
steps? (understanding generalization)

Variation
of 6

11/11 correct

8. Assume the default color for a rectangle is red. What would happen if you delete
the first Color operation (blue)? (understanding history)

8 10/11 correct

9. Assuming the default color for a rectangle is red. What would happen if you
delete the second Color operation (green)? (understanding history)

8 9/11 correct

10. Which operations would be deleted if you delete the New operation?
(understanding cascading delete)

9 11/11 correct

Table 1. Evaluation questions and results

69

Questions Figure History

1 7 New(Rec_1),
Copy(Rec_1, Rec_2),
Color(Rec_1, blue)

2, 10 9 New(Rec_1),
Color(Rec_1, blue),
Copy(Rec_1, Rec_2)

3-5 6 New(Rec_1),
Copy(Rec_1, Rec_2),
Copy(Rec_1, Rec_3),
Color(Rec_1, blue)

6, 7 Variation
of 6

New(Rec_1),
Copy(Rec_1, Rec_2),
Copy(Rec_2, Rec_3),
Color(Rec_1, blue)

8, 9 8 New(Rec_1),
Color(Rec_1, blue),
Copy(Rec_1, Rec_2),
Color(Rec_1, green)

Table 2. Histories given in the evaluation questions

There were 11 participants, who were primarily
undergraduate software engineers in their fourth year of
study. For each participant, the evaluation started with a
short tutorial, followed by a questionnaire. The tutorial
familiarized the participants with the drawing application
by getting the participants to perform various step-by-step
tasks, which involved generalizing, specializing and
cascading delete history operations. This tutorial was
necessary since the concepts we were trying to evaluate
are novel, and it is highly unlikely that users would have
come across them before.

The questionnaire began with 10 open-ended questions,
which are given in Table 1. Each question refers to a
screenshot that was given to the participants on paper. For
space reasons, not all the screenshots are shown here, but
it is indicated in the table which figure in this paper is
similar to the screenshot shown in the questionnaire. The
histories given for the questions, which are too small in
the figures to read, are listed in Table 2. For the questions
6 and 7, the screenshot used in the study varies from
Figure 6 in the way the rectangles are created by copying.
In Figure 6, both red rectangles are copied from the blue
rectangle, while in the variation, the last rectangle is
copied from the first copy. For the questions 2 and 10, the
example from Figure 7 is used, but in a later stage,
namely after applying the change in Question 1. This
means both rectangles have the same color.

The open-ended questions fell into two main categories.
The first category (3 questions) had the purpose of
finding out if participants would prefer to use history
editing in situations where the task could be completed by
either using the history rewriting method or the traditional
way of using just artifact operations. For example, when
using the history rewriting method, a correct answer for
question 3 would be: “By resizing any of the rectangles
and moving the resize operation above all copy

operations.” Using the traditional method, a correct
answer for question 3 would be: “By resizing the
rectangles Rec_1, Rec_2 and Rec_3 accordingly.”

The second category (7 questions) assessed how well
each participant understood the concept of history
operations, i.e. whether or not they could describe what
happened to a diagram when operations were moved or
deleted. For example, for question 4 the correct answer is
“Rec_3 would become blue”, and for question 5 the
correct answer is “Rec_2 and Rec_3 would become blue”.

We tried to keep the tasks in the tutorial and
questionnaire straightforward. The tasks are similar to
common tasks that users are faced with while using a
diagram editor. For example, creating multiple copies of a
shape, and then editing all shapes in the same way is a
scenario where history operations can be beneficial. We
aimed to keep questions simple and concise with no
ambiguity. Diagrams used in conjunction with the
questions were simple with only relevant shapes shown.

Before running this evaluation we first tried to determine
what the likely outcomes to questions would be. We
expected that all testers would understand how to use
history editing and would be able to answer almost all of
the questions in the first category. We also realized that
while the users might understand history operations and
their benefits, they may still prefer more traditional ways
of carrying out tasks.

The open-ended questions were followed by two Likert-
scale questions. The following statements were rated on a
5-point standard scale ranging from “strongly disagree” to
“strongly agree”:

1. I find editing the history of operations a useful
feature.

2. I would use this feature if it was included in a
drawing application.

The Likert-scale questions were followed by four more
open-ended questions:

1. In which situations could you imagine using this
feature?

2. What did you like / find most useful about this
feature?

3. What did you not like about this feature?

4. What recommendations would you give to
improve this feature?

Since the evaluation contained open-ended questions and
questions about the user’s preferences, we did not
measure the time taken by each user to complete the
evaluation.

Results
According to the results in Table 1, all questions were
answered correctly by a large majority of the participants.
To analyze how likely users in the sampled population are
to use history rewriting or answer questions about it
correctly, we calculated the 95% binomial proportion
central confidence interval. For the questions 1 and 2, the

70

confidence interval is [0.43, 0.90], which means that it is
statistically not clear whether a majority of the sampled
population would apply history operations in these cases.
This does not come as a surprise, since for these
questions history rewriting did not reduce the amount of
work as compared to using artifact operations. For
Question 3, where history rewriting was more work
efficient, the confidence interval is [0.62, 0.98]. This
means that with 95% confidence a majority would use
history rewriting in this case.

Questions 4-7 were designed to investigate whether users
understand the concept of generalization in simple cases.
The confidence interval for the proportion of the sampled
population who can answer these questions correctly is
[0.74, 1]. Hence, we can be sure that a majority
understands generalization in such cases.

Questions 8 and 9 investigate another aspect of history,
namely the effect of the delete operation. The confidence
intervals are [.62, 0.98] for Question 8 and [.52, 0.94] for
Question 9, meaning that again a majority understands
this concept, although the result is barely significant for
Question 9. Finally, Question 10 addresses a more
advanced concept, namely cascading delete. This concept
is clearly understood by a majority, with a confidence
interval of [0.74, 1].

The two Likert-scale questions aimed at finding out how
useful the participants found history operations and if
they would use them if they were available in their usual
diagram application. For the first question, which
evaluated usefulness, 91% of the participants indicated
that they thought the concepts were either useful or very
useful. Similarly, for the second question, 91% of the
participants said they would be likely or very likely to use
these features if they were available in their usual
drawing application. For both questions the 99% binomial
proportion central confidence interval for a positive
answer is upwards of 0.5. This means that with 99%
confidence a majority of the sampled population
considers history rewriting useful and would use it.

Discussion
The 11 participants did mostly have a software
engineering background, or at least very good computing
skills. This and the small sample size are clear limitations
of the study. Future studies should include participants
with a wider range of computing skills to see how they
cope with the ideas of history rewriting.

The category 1 questions asked in the evaluation did not
make any suggestions to the participant on how each task
should be completed, save for the fact that the
participants completed the tutorial immediately before the
questionnaire. This meant it was up to the participants’
own judgment which method they would use to
accomplish the tasks. We discovered that for simple 1-
step tasks, i.e. changing the color of one rectangle,
participants were only slightly more inclined to use
generalization and specialization compared to traditional
methods. However, for more repetitive tasks that required
the user to apply the same operation to many objects, i.e.
coloring three rectangles blue, a greater number of

participants preferred history operations over the
alternative of performing artifact operations repetitively.

For the questions 4-7, all participants provided the correct
answers, indicating that they understood the basic idea of
generalization. However, for the more complex example
in the questions 8 and 9, some participants answered
incorrectly. The short tutorial carried out by the
participants before the questionnaire did not include such
more complex examples. This raises the question how
well history rewriting is understood for longer and more
complex histories, as they are likely to occur in real
applications. This questions needs to be addressed in
future studies.

The last 4 open-ended questions stimulated an unexpected
creativity in the participants. The prototype inspired all
participants to answer them in great detail, and the
amount of time and effort they put into the answers
surprised us. This indicates that the ideas we presented in
the study were of interest and value to the participants.
The participants suggested several of the extensions that
we were currently working on or that are planned as
future work, although we had not mentioned them. This
gave us confidence that the project was heading in the
right direction. For example, many participants
recognized that besides ordering the artifact operations by
time, other views of the history would be useful, such as
grouping operations by shape. Many participants
suggested visualizing the history using some kind of
hierarchical structure such as a tree. This is one of the
major extensions of the history view that is currently
planned. The prototype used in the evaluation did not
support jumping of commutative operations. However,
some participants anticipated this feature by mentioning
that it would be useful if a swap history operation always
resulted in a visible change of the artifact.

There were many suggestions that we did not yet think
about, and future research may look into them. Examples
of such suggestions are: dragging and dropping
operations in the history panel to reorder them, the ability
to edit parameters of an existing operation, and the ability
to create macros (sets of operations which could be
applied to objects).

FUTURE WORK
One thing which became apparent from the usability
study was that a simple textual operation history, like the
one which is currently employed, is cumbersome for
histories of significant length. Therefore plans are in
place to research and revise the current visualization.
Some options which have already been discussed include
scene graphs, collapsible sections of history, and multiple
history visualizations such as grouping operations by
object. As a first step, the prototype has recently been
extended to include a visualization of commutative and
dependent operations. Selecting an operation in the
history panel causes all dependent operations to be
highlighted.

Furthermore, there is a large number of small or rather
technical improvements. For example, copying should be
supported for groups of objects, so that complete artifacts

71

such as a blank letterhead can be copied as a whole.
Symbolic layers could help to group objects and structure
an artifact on a level above that of individual objects.

We will also introduce a second cursor in the history
view, called display cursor. It allows users to mark a
point in the history, and the artifact pane will display the
state of the artifact at that point in time. The display
cursor could also be used to insert new operations at an
earlier point in time directly. With this feature, we can
even reduce the delete operation to the swap operation in
the following way: deletion means swapping an operation
to the future, beyond the current display cursor. This
might, however, be more of theoretical than practical
interest.

CONCLUSION
The rewriting history approach, in particular the
reordering of operations, satisfies important use cases and
enables exciting new ways to share and combine creative
work. The natural correspondence between user actions
and the recorded history may help users to understand the
approach intuitively, and make use of its many
possibilities.

We single out three key findings of our analysis. First of
all, we found that only two history operations are required
for history rewriting: swapping and deleting. Secondly,
swapping alone can solve all the three use cases of
generalizing, specializing and merging. This particular
finding has a theoretical as well as a practical
consequence. Theoretically it gives us a precise way to
describe the semantics of an operation such as a merge.
Practically it allows us to build more straightforward
tools that support powerful history rewriting features.
Thirdly, the rewriting history approach cannot be reduced
to common version control approaches, but can be
usefully complemented by them.

Preliminary results from a user study indicate that users
are excited about the idea of history operations. Users
were able to understand and leverage history operations
to their advantage after only a short tutorial. This
indicates a gentle learning curve, and could mean that
history operations are an intuitive concept.

REFERENCES
1. Agustina, A., Liu, F., Xia, S., Shen, H. and Sun, C.

CoMaya: incorporating advanced collaboration capabilities
into 3d digital media design tools. Proceedings of the ACM
Conference on Computer Supported Cooperative Work,
2008.

2. Apiwattanapong, T., Orso, A., and Harrold, M. J. JDiff: a
differencing technique and tool for object-oriented
programs. Automated Software Eng. 14(1), March 2007.

3. Conradi, R. and Westfechtel, B. Version models for
software configuration management. ACM Comput. Surv.
30, 2 (1998), pp. 232-282.

4. Ellis, C. A. and Gibbs, S. J. Concurrency control in
groupware systems. Proceedings of the SIGMOD
International Conference on Management of Data, 1989.

5. Grossman, T., Matejka, J. and Fitzmaurice, G. Chronicle:
capture, exploration, and playback of document workflow
histories. Proceedings of ACM UIST, 2010.

6. Hashimoto, M. and Mori, A. Diff/TS: a tool for fine-grained
structural change analysis. Proceedings of the 15th Working
Conference on Reverse Engineering, pp. 279-288, 2008.

7. Heer, J., Mackinlay, J., Stolte, C. and Agrawala, M.
Graphical histories for visualization: supporting analysis,
communication, and evaluation. IEEE Transactions on
Visualization and Computer Graphics, pp. 1189-1196,
November/December 2008.

8. Koegel, M., Herrmannsdoerfer, M., Li, Y., Helming, J. and
David, J. Comparing state- and operation-based change
tracking on models. Proceedings of the 14th Enterprise
Distributed Object Computing Conference, IEEE, 2010.

9. Kurlander, D. and Feiner, S. Editable graphical histories.
Proceedings of the IEEE Workshop on Visual Languages,
1988.

10. Mehra, A., Grundy, J. and Hosking, J. A generic approach
to supporting diagram differencing and merging for
collaborative design. Proceedings of the 20th IEEE/ACM
International Conference on Automated Software
Engineering, ACM, 2005.

11. Mens, T. A State-of-the-art survey on software merging.
IEEE Transactions on Software Engineering, pp. 449-462,
May 2002.

12. Nakamura, T. and Igarashi, T. An application-independent
system for visualizing user operation history. Proceedings of
ACM UIST, 2008.

13. Scott Chacon. Rewriting history. In: Pro Git. Apress,
August 2009.

14. Zündorf, A., Wadsack, J.P. and Rockel, I. Merging graph-
like object structures. Proceedings of the 10th Workshop on
Software Configuration Management, 2001.

