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ABSTRACT 
The technological advancement of computers and 
cameras over the past few years has given us the ability to 
control objects without touching them. There have 
already been a number of attempts at producing gesture 
based applications, but many of them have usability 
issues. This paper proposes a model that reflects the 
usability of a gesture based interface, in order to evaluate 
and improve a gesture-controlled system. The model 
defines four levels of abstraction, with the higher levels 
based on the lower ones. The levels of the model allow us 
to propose quantitative notions for 1) the parameters 
affecting the quality of individual gestures, 2) the overall 
quality of a gesture, 3) the quality of particular 
functionalities, or use cases, in a system, and 4) the 
overall quality of a system. The model was evaluated 
using an existing gesture-based interface for a popular 
media center application. 
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INTRODUCTION 
Imagine a world twenty years from now where home 
appliances can be controlled with just a single wave of 
the hand, without touching anything. The idea of using 
hand gestures to control objects and systems has been 
around for a long time, but never really took off due to 
equipment cost and technological limitations. However, 
consumer-level hardware such as the Xbox Kinect is now 
available to support such an endeavour. All that is lacking 
is the software that harnesses this technology’s potential. 

One of the most obvious applications for the Kinect is to 
control a television or a media centre. In the scenario of a 
media centre, instead of using a remote control, the user’s 
body can be used instead. There would be no more 
searching for the remote as the remote is always at hand - 
quite literally. Using the user’s own body to control 
computer systems has been described as more intuitive 
and direct (Stern et al., 2006). Furthermore, there are 
many situations that require the use of computer systems 

where it is difficult to use a computer, possibly due to 
dirty hands, or distance between the user and the input 
peripherals. The ultimate goal of gesture based systems is 
to allow for contactless input, thereby overcoming these 
problems. This could help integrate computer systems 
further into day-to-day living. 

There have already been a number of attempts at 
producing gesture based applications, but many of them 
have usability issues. One question that requires further 
investigation is what factors contribute to the quality of a 
gesture based interface. If these factors could be 
identified, the quality of a gesture based interface could 
potentially be measured. In this paper we are 
investigating the following questions: 

1. Which factors determine the quality of a 
gesture? 

2. How can we create a quantitative model that 
reflects the usability of a gesture based 
interface? 

3. How can such a model be used to identify 
usability issues? 

To answer question one, we performed a literature review 
to see what factors were suggested by other researchers. 
Based on these suggestions, some more factors were 
identified from our own observations during an empirical 
study. To answer question two, we investigated various 
functionalities, or use cases, of an existing gesture based 
interface, KinEmote, which allows users to control the 
popular XBMC media center with the Kinect. Starting 
with one of the functionalities, playing a video, we 
constructed a state based model that describes the 
transitions in the system that are caused by the gestures of 
the user. This modeling approach was refined by 
modeling two more functionalities of the media centre: 
viewing images, and playing music. An empirical 
analysis of several hundred gestures recorded on video 
and a questionnaire were used to determine quantitative 
parameters for this model. To answer question three, we 
defined quality measures on different levels of 
abstraction. These measures allow interaction designers to 
analyze the individual parts of a gesture based user 
interface, as well as getting an overall notion of the 
quality of a system. If a system is of poor quality, a 
designer can drill down in the model to identify the issues 
that limit the quality of the overall system. 

The structure of the paper is as follows. The next section 
discusses related work. Following this section, the factors 
that contribute to the quality of a gesture, and how they 
could be measured, are discussed. Then, our quantitative 
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model with its four levels of abstraction is introduced, 
and we discuss how the model can be used to identify 
“bottlenecks”, i.e. parts of an interface that need 
improvement. After this, evaluation results from a 
gesture-based application to control a media centre, 
KinEmote, are presented. 

 

RELATED WORK 
In order to identify the factors determining the quality of 
a gesture and gesture based interfaces in general, related 
work about the factors involved in gesture interaction 
were analyzed. According to Lenman et. al (2002) hand 
gestures serve three functional roles:  

1. Semiotic: The ability to communicate information  
2. Ergotic: The ability to manipulate objects in the real 

world  
3. Epistemic: Allows learning from the environment 

through tactile experience  
They also categorize design factors for gestural 
commands into 3 dimensions: cognitive aspects, 
articulatory aspects, and technological aspects. Cognitive 
aspects refer to how easy a command can be learnt and 
recalled. Articulatory aspects determine how easy it is for 
a user to perform gestures. For example, gestures 
involving complicated hand or finger poses should be 
avoided because for some people they might be 
impossible to perform.  

According to Baudel and Lafon (Baudel et al., 1993; 
Fukumoto et al., 1992) gestures should provide fast and 
reversible actions and not require much precision, in 
order to avoid fatigue. Stern, Wachs, and Edan (Stern et 
al., 2006; Stern et al., 2004) explored if there was a way 
of guessing if a gesture is intuitive and comfortable to the 
user beforehand without testing. From the results there is 
only evidence that gestures which relate to the function 
they invoke in a system are likely to be considered natural 
and intuitive. Freeman and Weissman (1995) 
experimented with the idea of using hand tracking as a 
buttonless mouse to select objects, so that the familiar 
point-and-click semantics of the mouse can be used.  

The main advantage to gestures is the natural interaction 
between the user and the computer, by eliminating the 
need for the intermediate devices. This can lower the 
cognitive aspect of the user, and potentially makes the 
system easier to learn. Gesture control also allows for a 
more powerful interaction, where a single gesture can 
define both a command and its parameters. The main 
disadvantage is the problem of inputting unintentional 
commands, by accidently performing a gesture. One 
solution to this problem is having locks on gesture 
recognition, to prevent unintentional input of commands. 
Another disadvantage is that gesture based interfaces by 
nature require the users to recall rather than recognize the 
gestures. This problem can be mitigated by having a good 
choice of gestures that relate to the tasks that can be 
performed in the system. 

In the study of North et al. (2009) a comparison of mouse 
and touch interfaces was made.  A number of similar 
tasks were performed using both types of interactions, 

and the task completion time was recorded. The tasks 
were, for example, clicking and selecting a file, or 
clicking and moving a file. The result obtained by North 
et al. was that by using the touch interfaces, the tasks 
were being completed faster than using a mouse, but 
slower than physical interaction. 

Forlines et al. (2007) compared  the speed and accuracy 
of performing unimanual and bi-manual tasks when using 
touch interactions. In their experiments, a single-touch 
display or a single mouse was used for unimanual tasks. 
For bimanual tasks, two mice or two fingers on a multi-
touch display were used. The results indicated that for 
unimanual tasks, the mouse was faster overall, whereas 
for bimanual tasks the dual touch was better and 
preferred. 

Nielson et al. (2003) identified two different approaches 
for measuring intuitiveness: a bottom up approach and a 
top down approach. The bottom up approach gets the 
participants to match each gesture to a function, and the 
top down approach matches each function to the correct 
gesture. From the matching results a measure for 
intuitiveness is calculated. 

DETERMINING GESTURE QUALITY FACTORS 
In order to successfully construct a usable model, the 
factors that contribute to the level of quality of an 
arbitrary gesture need to be determined. With the help of 
related work about gesture based interfaces and the 
addition of our own observations, a set of factors was 
decided upon. 

Fatigue 
Fatigue seems to be one of the most important factors 
when it comes to measuring the quality of a gesture. The 
level of fatigue affects the usability of a gesture by 
decreasing its appeal to the user. If a user finds a 
particular gesture to be taxing, they will not enjoy the 
experience of using the gesture, and therefore be inclined 
to discontinue the use of the gesture, or even the system if 
the gesture is essential. 

Unfortunately, it is difficult to measure fatigue, as it is a 
subjective variable. However, there are measurement 
instruments from sport science that are used to measure 
physical exertion. In sport science, the exertion to be 
measured is typically a lot higher than one would 
encounter for a gesture, but the methods can be adapted. 
A common empirical method is to monitor a user’s heart 
rate, and compare the resting heart rate with the heart rate 
right after a task. We would measure a participant’s heart 
rate, then ask the participant to perform a given gesture a 
set number of times or for a certain duration, and finally 
measure the heart rate again. The duration needs to be 
long enough so that the physical exertion is measurable. 
The relative change in heart rate h after n seconds is 
calculated as follows: 

  (1) 

where  is the heart rate of the user after performing a 
gesture for n number of seconds, and  is the initial heart 
rate of the user before performing the gesture.  
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As a limitation, using the heart rate as a measure may 
pose a threat to internal validity: it is hard to make sure 
that an increase of heart rate is due to the performance of 
the gesture. The change in heart rate for gestures is not as 
significant as it would be for typical sports exercises; 
hence the measurements are more susceptible to 
uncontrolled factors in our case. Heart rate is affected by 
a multitude of factors, e.g. excitement. Furthermore, 
measuring the heart rate can be inconvenient for 
participants as heart rate monitors require electrodes to be 
attached to the skin.  

Another common method for measuring exertion in 
sports science is the Borg CR10 scale (Borg, 1998), 
where the user rates the level of fatigue of a given 
gesture. This scale is a proven instrument where 
participants are asked to rate their exertion on a scale 
from 0 to 10, with standard labels ensuring relatively 
equidistant scale intervals. For our purposes, it is 
necessary to extend the scale slightly by adding additional 
fractional values in the lower range (e.g. 0.5, 1.5, …). The 
exertion caused by gestures, even when repeated a 
number of times, is comparatively low. With these 
adaptations the Borg CR10 scale is a convenient, non-
intrusive tool that was used in our experiments as the 
preferred way of measuring fatigue. 

Naturalness 
The naturalness of a gesture is a great contributing factor 
towards the effectiveness of a gesture, as it directly 
affects the cognitive aspects of the user, and how 
memorable the gesture is (Lenman et al., 2002). If a 
gesture is not sufficiently memorable, more time is spent 
trying to recall it, resulting in less efficient usage of the 
system. Naturalness is often achieved through the use of 
symbols (Stern et al., 2006; Stern et al., 2004), i.e. 
making the shape of scissors for the “cut” function, or 
selecting something with a push movement.  

The naturalness quality attribute influences the time spent 
on remembering the gesture to perform a particular 
function, before actually performing it. However, this 
think time is also influenced by the time spent on 
choosing a function in the user interface. For example, an 
ill-designed user interface may cause long think times due 
to its poor navigational structure, and not due to unnatural 
gestures. This makes it hard to measure naturalness 
purely from user session recordings. 

There are methods that were proposed for measuring the 
intuitiveness of a gesture (Nielson et al., 2003), which 
could be interpreted as a measure for naturalness. 
However, by naturalness we refer not only to the ease of 
recall as is mostly referred to by intuitiveness, but also to 
other subjective factors such as how “natural” a gesture is 
perceived by a user when performing it. Hence, it was 
decided that naturalness would be measured using a 5-
point Likert scale, with 1 being “very natural” and 5 
being “very unnatural” (Stern et al., 2006; Stern et al., 
2004). 

Gesture duration 
The time that is spent performing a gesture also affects 
the quality of the system. The more time is spent 

performing a gesture, the less throughput can be 
achieved, i.e. the less tasks can be completed within a 
certain time. Hence, gesture duration affects the 
efficiency of the overall system. We measured gesture 
duration by recording user sessions and measuring the 
time between the start and the end of a gesture. This is 
done by manually reviewing and taking samples from 
video recordings. 

Accuracy 
The accuracy of a system with regard to a given gesture is 
the probability that the system recognizes the gesture 
correctly. The accuracy of a given gesture is a good 
indicator of both its difficulty, and its uniqueness. If a 
gesture is not unique enough, i.e. similar to another 
gesture, it will be easy to unintentionally carry out the 
wrong gesture, or to cause the system to misinterpret the 
gesture and perform the wrong function. 

To calculate the accuracy of a gesture, recorded user 
sessions are analyzed, and the number of correctly and 
incorrectly recognized gestures is counted. The number of 
correctly recognized gestures is divided by the total 
number of performed gestures of the given type. A 
gesture is only correctly recognized when the correct 
corresponding function is performed by the system in 
response to the user’s intended gestures, i.e. if a system 
performs a function on an unintended gesture then we 
flag that as an incorrect recognition of the user’s gesture. 
In our experiments, we obtained accuracy measurements 
by manually reviewing and taking samples from video 
recordings that included both a screen recording of the 
system and a video recording of the user. 

A QUANTITATIVE MODEL FOR GESTURE BASED 
SYSTEMS 
In order to effectively compare two gesture based 
interfaces, the measurements taken for the 
abovementioned gesture quality factors need to be 
meaningfully combined, taking the navigational structure 
of a system into consideration. To make sense of the 
numbers, it is important to clearly indentify the 
functionalities of a system, and relate quantitative quality 
measures to these functionalities. By functionalities we 
mean groups of functions that are necessary for a 
particular use case. For example, a functionality “playing 
a video” would encompass functions for selecting, 
starting and pausing a video, among others. 

To properly compare two systems, only the 
functionalities that they have in common can be 
compared. If two systems do not have common 
functionalities, then it is impossible to effectively 
compare them. This does not mean that the functionalities 
need to have the same user interface in both applications. 
In fact, it is exactly the differences in the user interfaces 
that we intend to quantify. 

In the case of our gesture based media centre scenario, the 
primary functionalities that have been chosen for analysis 
are: playing a music file, playing a video file, and 
viewing a picture. In order to obtain some actual data, an 
empirical study was carried out, using the methods 
proposed in the previous section. How this raw data is 
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used in our approach to build a model is described in the 
following. 

 

Abstraction 1: Quality factors of a gesture 
Using the data obtained from an empirical study, 
normalized values for each quality factor of each gesture 
are calculated. First, the measurements are aggregated by 
calculating averages. Then, the averages are normalized 
by using standard scores (also known as z-values). 
Standard scores are an established statistical method for 
representing measurements relative to their distribution, 
considering the distribution average and the standard 
deviation. In the following, this will be illustrated for our 
gesture quality factors. 

Fatigue 
 

 

 (2) 

where the fatigue values from the Borg CR10 scale of N 
users are Fat1, Fat2, …, FatN. To normalize the fatigue 
average of a given gesture, we calculate  as the 
inverse z-value of the naturalness average. That is, we 
negate the average due to its inverse proportional 
relationship with quality, and then we relate it to the mean 

 and the standard deviation  of the distribution of 
the fatigue averages of all gestures: 

  

 
 (3) 

 

Naturalness 
  

 

 (4) 

where the naturalness values from the Likert scale of N 
users are Nat1, Nat2, …, NatN. Similar to fatigue, we 
normalize this value by relating the naturalness average  
of a gesture to the distribution of the naturalnesss 
averages of all gestures: 

  

 
 (5) 

where  represents the average of all the gestures’ 
average naturalness values, and  their standard 
deviation. 

 

Duration 
  

 

 (6) 

where the gesture duration values of N observations of 
that gesture are Dur1, Dur2, …, DurN, obtained from 
observing the start and end times of gestures in a video 
recording of participants. Similar to fatigue, the duration 
quality value  uses the inverse due to the inverse 
proportional relationship of duration with quality: 

  

 
 (7) 

where   represents the average of all the gestures’ 
average durations, and  their standard deviation. 

 

Accuracy 
  

 

 (8) 

where  represents the number of times across all 
users that the given gesture is correctly recognized, and 

 the total number of attempts for that gesture. 
Similar to the other factors, this value is normalized using 
standard scores: 

  

 
 (9) 

where  represents the average of all the gestures’ 
accuracy values, and  their standard deviation. 

Abstraction 2: Overall quality of a gesture 
Next, we calculate an overall quality value for each 
gesture. The higher this value is, the higher the quality. 
Firstly, the relationships that each of the quality factors 
from abstraction 1 have with this overall quality value 
must be defined. All the previously defined factors are 
proportional to quality, however, each of these factors 
potentially hold a different importance for the overall 
gesture quality. We express this by describing the overall 
quality as a weighted average of the individual quality 
factors of a gesture. The importance of each factor is 
reflected in its weight. 

We propose to obtain the weights through a 
questionnaire, which asks participants to estimate the 
importance of given factors as percentages. The averages 
of these weightings across all participants is used. Hence, 
the overall quality of a gesture is defined as follows: 

 
  (10) 



35 

 

where  represents the average weight of a quality 
factor . 

Abstraction 3: Quality of a functionality 
For each functionality, a state transition model such as the 
one shown in Figure 1 is constructed in order to gain a 
clearer insight into the interaction a user needs to perform 
a particular use case. This model represents the gesture 
paths necessary for performing particular tasks. Each 
rounded rectangle node in the state transition model 
represents a state of the UI, and each transition represents 
a gesture. Note the state transition model for the locking-
unblocking feature of KinEmote: a special state set 
notation is used to express that locking may occur from 
any of the other states in the model. 

After the construction of this state transition model, a 
typical interaction path for a functionality is identified. 
This is done by observing what users typically do when 
using a functionality such as playing a video, and 
identifying a path in the state transition model that 
reflects this behavior. For example, in the case of playing 
a video, a user needs to navigate from the main menu to 
the video menu, then navigate through files and folders, 
and finally select a video file. The idea is to model the 
average scenario, so ideally the typical path is modeled 
with knowledge about typical users. For example, 
knowledge about the typical file-folder structure and its 
size should be used, or otherwise well-founded 
assumptions need to be made. In our example, the number 
of files and folders influences the number of gesture 
repetitions while browsing for a particular video. 

The typical path is used to quantify the quality of a 
functionality. This quality value is obtained by 
calculating the average quality value for all the gestures 
in the typical path. The following formula represents this 
calculation: 

  

 

 (11) 

where  is the total number of gestures in the typical 
path, and  represents the gesture at 
position  of the typical path. The more often a gesture 
occurs on the typical path, the stronger its influence on 
the quality of the functionality. 

Abstraction 4: Quality of a system 
To obtain an all-encompassing quality value for a system, 
we need to combine the quality values for its 
functionalities in a way that factors in their relative 
importance. This is done by calculating a weighted 
average, with the importance of each functionality 
reflected in its weight. The relative importance of a 
functionality depends on the user; therefore we suggest to 
use a questionnaire that lets users of a particular group 
estimate the relative importance of a functionality in 
percent. In many cases, the relative frequency that a 
functionality is used (compared to other functions) is a 
reasonable estimate for its importance. However, the 
relative frequency can only be measured precisely by 

collecting real usage data, which is harder to do. To sum 
up, the quality of a system can be modeled as 
 

 

 (12) 

where  is the total number of functionalities being 
considered,  is the quality of the th 
function, and  is its relative importance. Note that this 
value can only be used to compare two systems if they are 
equivalent with regard to the considered functionalities, 
i.e. if they can be used to perform the same tasks, 
although with different user interfaces. 

IDENTIFYING BOTTLENECKS – USING THE MODEL 
As one carries out the process that is laid out above, 
information is gradually combined and thus abstracted. 
By looking at the constituents of the quality values, one 
can come to conclusions about the usability bottlenecks in 
a given system. Depending on the level of abstraction an 
interaction designer wants to deal with, they can consult 
the corresponding level of abstraction in the model and 
identify the values that limit the quality of a system. 
Using the abstractions described in the previous section, a 
designer can identify functional paths with high impact 
but low quality value. For functionalities of poor quality, 
they can look at the abstraction below to identify frequent 
gestures in that path with low quality values. To look 
even further into poor quality gestures, the features of 
those gestures that cause them to be of a low quality can 
be identified on the lowest level of abstraction. 

EVALUATION 
In order to evaluate the proposed modeling approach, a 
model for the various functionalities of an existing 
gesture based interface, KinEmote, was created. 
KinEmote allows users to control the popular XBMC 
media center with the Kinect. We chose three 
functionalities (playing a video, viewing images, and 
playing music) and created models for them on all the 
levels of abstraction. We recorded two participants for a 
total duration of 35 minutes, using the functionalities to 
complete typical tasks (such as selecting and playing a 
song). Both the screen, the Kinect input and the whole 
setup (using an external camera) were recorded. 

 
Five different types of gestures were necessary to carry 
out the tasks, which are listed in Table 1. To determine 
the duration of each gesture type, we measured the 
duration of 10 gestures per participant per gesture type 

Gesture Quality value 

Move up (mu) 0.22 

Hold up (hu) 0.17 

Move down (md) 0.91 

Hold down (hd) 0.51 

Select (s) -0.15 

 Table 1. Gesture quality values. 
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using the video recordings. To determine the accuracy, a 
total of 434 gestures were analyzed. The relative 
importance of the gesture quality factors and the 
functionalities were measured using a questionnaire. A 
state transition model was created and the measurements 
were used to calculate the quantitative model parameters. 

Results 
We followed the levels of abstraction that are specified in 
the previous section, using the measurement methods 
proposed in this paper. The results for the first level of 
abstraction, the quality factors for each gesture, are 
shown in the Tables 2-5. For the second level, the quality 
factors were combined according to the average 
weighting obtained from the participants to form an 
overall quality value for each gesture, as shown in the 
Tables 1 and 6. 

Following on to the third abstraction, quality values for 
the functionalities under investigation were calculated. 
This was done by summing up gesture values according 
to a functionality’s typical path, into an overall quality 
value which is shown in Table 7. Lastly, the quality 
values for each functionality were combined according to 
the average weighting assigned by the participants, as 
shown in Table 8.  

 

  

Overall system  
quality value equation: 

(0.2 + 0.5)/2 * m + 0.2 / 
2 * I 

 + (0.5 + 0.6) / 2 * v 

Evaluation: 
0.46 

 Table 8. Overall quality value for the investigated  

parts of the system. 

  Music Pictures Videos 

Total gestures: 30 16 77 

Typical path: 

1mu + 1hu  

+ 5s + 3md  

+ 20hd 

1mu + 2hu  

+ 3s + 2md  

+ 8hd 

3s + 2md  

+ 72hd 

Typical path average 
quality value: 0.42 0.38 0.50 

 Table 7. Functionality quality values. 

Duration 0.1 Accuracy 0.475 

Fatigue 0.2 Naturalness 0.225 

Table 6. Average weightings for the quality factors. 

  Selection Up Down Left Right 

Average 5 3 3 3.5 3.5 

Average fatigue value 3.6 

Variance 0.68 

Standard deviation 0.82 
Normalized fatigue 
quality factor (- z-value) -1.70 0.73 0.73 0.12 0.12 

 Table 3. Fatigue data. 

 

  
Hold  
up 

Move  
up 

Hold  
down 

Move  
down 

Hold  
left 

Move  
left 

Hold  
right 

Move  
right Select 

Number incorrect 54 16 28 3 12 4 18 15 8 

Total 116 34 116 35 35 23 33 20 22 

Accuracy 0.53 0.53 0.76 0.91 0.66 0.83 0.45 0.25 0.64 

Average accuracy value 0.62 

Variance 0.04 

Standard deviation 0.20 
Normalized accuracy 
quality factor (z-value) 

-0.41 -0.44 0.69 1.46 0.19 1.03 -0.80 -1.81 0.09 

 Table 2. Accuracy data. 

 

Move  
down 

Hold  
down 

Move  
up 

Hold 
 up Select 

Average: 0.55 0.60 0.24 0.34 0.44 
Average duration value 
(in seconds) 0.43   

Variance 0.02 

Standard deviation 0.15 
Normalized quality 
factor (z-value) 

-0.76 -1.13 1.31 0.64 -0.05 

 Table 5. Duration data. 

  Selection Up Down Left Right 

Average 2.5 2.5 2.5 1.5 2 

Average naturalness value 2.2 

Variance 0.2 

Standard deviation 0.45 

Normalized naturalness 
quality factor (z-value) 0.67 0.67 0.67 -1.57 -0.45 

 Table 4. Naturalness data. 
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Discussion 
For the purposes of this discussion, only one function will 
be considered, as all investigated functionalities have 
very similar quality values. Since the Videos function has 
the highest weighting value, any improvements on this 
will result in a higher increase on the overall quality 
value.  

Looking at the Videos function in abstraction three, it can 
be seen that the “hold down” gesture is the most 
frequently used one, being 72 out of the 77 gestures of the 
typical path. Therefore, the quality of this gesture would 
affect the quality value of the functionality the most. To 
further assess this gesture, the second level of abstraction 
for the hold down gesture must be examined. 

Looking at abstraction level two, it can be seen that the 
“hold down” gesture is not as good as its “move down” 
counterpart. This further proves the importance of 
improving this gesture, because of its frequency in the 
typical path, and the fact that its quality value is not as 
good as it could be. These two aspects, in collaboration, 
contribute to the poor quality value of the Videos 
functionality. Hence, when improving the quality value 
for Videos, the “hold down” gesture should be the 
primary focus. 

Additionally, we can further focus the improvements by 
identifying the quality factors that cause the “hold down” 
gesture to be of such a low value. We can see from 
looking at the data that two of the quality factors greatly 
affect the quality value of “hold down”. Firstly, the 
naturalness is only 2.5 (normalized to 0.67). This value is 
not particularly good, and so this would have an adverse 
effect on the gesture’s overall quality value. Secondly, the 
duration time is the highest for all the gestures analyzed. 
As the quality factors use standard scores (z-values), 
which are dependent on the overall distribution of values, 
this results in a poor value for duration (-1.13). 

The other functions of the system, and their contained 
gestures, can also be improved with this tool. This is 
achieved in the same fashion as shown above; by iterating 
from the fourth level of abstraction, down the chain of 
abstractions to gradually expose more information 
regarding the causes of poor quality. Based on the quality 
values as the abstractions are traversed, it is possible to 
effectively prioritize where most of the improvements 
should be made. 

Limitations 
Throughout the data collection process, a few problems 
arose, the first of which was the time constraints. Because 
of the lack of time in which to carry out this data analysis, 
we were unable to fully analyze all of the data. Because 
of this constraint, we were forced to take samples of the 
data instead. Unfortunately, this was only realized after a 
fair proportion of the data had been analyzed, and so it 
was decided that the samples we took would be taken 
from this. However in hindsight, this could cause a 
misrepresentation of the participant’s full test run, 
because of the lack of experience early on in the test. This 
could possibly result in a threat to external validity. 

When analyzing our questionnaires, we came across 
unexpected answers regarding the naturalness of different 
gestures. For some gestures we thought they were quite 
natural, however, the participants found them to be 
unnatural. This may mean that our approach for 
measuring naturalness may need to be refined, e.g. by 
improving the instructions and the wording of the 
questionnaire. In the future, we intend to include short 
descriptions of each quality factor in the questionnaire 
rather than just naming them or explaining them verbally, 
to avoid misunderstandings. 

Additionally, when observing the test participants, it was 
realized that the position in which the interface was 
unlocked (with a wave gesture), determined the origin of 
further gestures. This has potentially affected our results 
adversely, as it affected how the quality of the gestures 
was measured, resulting in a threat to internal validity. 

While observing the test participants, it was noticed that 
when a participant was scrolling that they often overshot 
their goal. This could be interpreted as another quality 
factor that has not been considered by us yet, e.g. 
“controllability”. The fact that overshooting was 
generally considered an accuracy problem meant that 
accuracy could potentially be misrepresented, therefore 
possibly resulting in a threat to internal validity. 

In addition to these threats to validity, we were also faced 
with problems associated with our hardware. Firstly, the 
screen capture video software only provided video at a 
rate of 10 frames per second. Because of this, multiple 
gestures would often occur between two frames, making 
it extremely difficult to accurately measure the duration 
of gesture instances. Secondly, our external video camera 
did not have a strong enough microphone, and so we were 
not able to analyze all the comments of the participant 
while they were using the system. 

CONCLUSIONS 
During our study of gesture base interfaces, we identified 
important factors contributing to the quality of a gesture. 
These factors, as well as suggestions of how they can be 
measured, were presented. We proposed a model that 
combines measurements for quality factors into 
meaningful information about a system, taking into 
account the navigational structure of a gesture based 
interface and using four different levels of abstraction. 
This includes a quality measure for individual gestures, 
the functionalities of a system, and a system itself. The 
quantitative model helps us to understand the quality of a 
gesture based system, to identify the causes of low quality 
values, and hence improve the system by addressing 
quality bottlenecks. 

To the best of our knowledge, the proposed quality model 
is the only quantitative model for gesture based user 
interfaces so far. As for all models, it is necessary to 
collect more data about this new approach in order to 
better understand its limitations and benefits. The study 
presented here is a first step in this direction. 
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Figure 1. State transition diagram for the XBMC system with the KinEmote interface. 


