

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
TAMODIA’05, September 26–27, 2005, Gdansk, Poland.
Copyright 2005 ACM 1-59593-220-8/00/0000…$5.00.

Appropriateness of User Interfaces to Tasks

Sandrine Balbo
Department of Information

Systems
The University of Melbourne
Parkville VIC 3010, Australia

sandrine@unimelb.edu.au

Dirk Draheim
Institute of Computer Science

Freie Universität Berlin
Takustr.9, 14195 Berlin,

Germany

draheim@acm.org

Christof Lutteroth,
Gerald Weber

Department of Computer
Science

The University of Auckland
38 Princes Street, Auckland

1020, New Zealand

{lutteroth, g.weber}
@cs.auckland.ac.nz

ABSTRACT
In this paper we define the complex relation between task
models and user interfaces in a declarative manner. We do
this by describing how a task model can be transformed
to other functionally equivalent task models, how it can be
mapped to a user interface prototype, and how a user in-
terface can be transformed to other functionally equivalent
user interfaces. We use this relation in order to tackle the
question whether a user interface is appropriate for a task,
which leads us to a conceptual notion of usability. The user
interfaces are modeled with form-oriented analysis.

Keywords
task models, use cases, form-oriented analysis, model-based
user interface development (MB-UID), usability

1. INTRODUCTION
In tool-building approaches like MB-UID, mappings from
task models to user interfaces have been well discussed. A
typical tool is in essence a function, mapping one task model
to one user interface, perhaps with customization options.
For investigations about usability of existing user interfaces,
however, such a forward engineering tool is not enough. For
the question of whether a given user interface is appropriate
for a given task, the relation between both has to be under-
stood on a conceptual level. The main contribution of this
paper is a defined relation between task models and user in-
terfaces, which results in a workable definition of support for
a task. This approach goes beyond tool-building approaches
that deliver by default mainly operational semantics.

Within user interface modeling, task models are employed
as a user centric model of interaction. On top of this we need
a model of the user interface that is on the same level of ab-
straction as task models. If we then have a semantic frame-
work that combines both models, a user interface model and

a task model, then we can align them, compare them and
reengineer them. In this paper we focus on form-oriented
user interfaces since they are widespread in enterprise com-
puting, sufficiently flexible to deal with the business logic,
and there is a well-understood formal description of them
with form-oriented analysis [4].

The relation between task models and user interfaces is not
a simple one-to-one mapping, which explains why it cannot
be captured by a naive tool approach. The reason for the
ambiguity of that mapping lies in the fact that there are
many task models and many user interfaces which are func-
tional equivalent. Many equivalent task models correspond
to many possible user interfaces, as the left part of Fig. 1
illustrates. In order to reduce the complexity of this rela-
tion we first discuss transformations on task models which
preserve functionality in Sect. 2. We describe one possible
mapping from a task model to a prototypical user inter-
face. With this particular one-to-one mapping the sets of
functionally equivalent task models and user interfaces are
linked, and the overall relation between task models and
user interfaces is defined. These transformations define the
set of task models which are all supported by the same set
of user interfaces. Then we describe functionality preserving
transformations of user interfaces in Sect. 4. These, in turn,
define the set of user interfaces which support the same set
of tasks. This is illustrated in the right part of Fig. 1. Even-
tually, we suggest in Sect. 5 how this relation can be utilized
in order to determine whether a task is supported by a user
interface.

2. CONSERVATIVE TRANSFORMATIONS
FOR TASK MODELS

Most task models use a concept of hierarchical decompo-
sition [1], like, for example, the one in Fig. 2, which is a
MAD-like task model [14]. While hierarchical decomposition
allows the modeller to structure a task on different levels of
detail, it does not change the task itself. If we consider, for
example, the task “find the right flight” on the 4th level of
the given task model, it would be possible to eliminate the
level containing its subtasks by substitution. This is possible
because the task order on both levels is sequential, indicated
by the “SEQ” keyword, so that the two task sequences can
be merged. The same is possible with two adjacent levels
of parallel tasks. One of the properties of sequential and

TAMODIA 2005 | PAPERS 26-27 September | Gdansk, Poland

111

Task models User interfaces

TM
1

TM
3

TM
2 UI

3

UI
2

UI
1

Task models User interfaces

TM
1

TM
3

TM
2 UI

3

UI
2

UI
1

TM
4

TM
5

UI
5

UI
6

UI
4

TM
4

TM
5

UI
5

UI
6

UI
4

Figure 1: Direct mapping of task models to user interfaces and indirect mapping via prototype and conserv-

ative transformations.

parallel decomposition is associativity, which means that we
can decompose three sequential or parallel tasks by moving
the first two tasks or the last two tasks onto a subordinate
level with both decompositions being functionally equiva-
lent. The parallel decomposition is commutative, i.e., it is
possible to change the order of the parallel tasks. To sum
up, as long as we do not change the order of tasks in the
model, which we could only if a sequential order is speci-
fied, decomposition of a task model is arbitrary in the sense
that it does not change the functional properties of the task.
Hence, different decompositions of the same task model can
be considered functionally equivalent.

Within a task modeling approach as well as within a user
interface modelling approach we can observe a partial order
of models that fulfil the notion of specialization and gener-
alization. Task model A is a specialization of task model
B if scenarios according to A are also scenarios according
to B. One specialization process is turning parallelism into
sequences, another is the refinement of tasks. Parallelism is
more general than sequence, but an even more general model
can be defined with cardinalities. In task models like MAD,
tasks can get cardinalities indicating repetitions. The most
general decomposition of one task into several subtasks is
the parallel decomposition with 0..* cardinalities.

3. MAPPING TASK MODELS TO USER IN-
TERFACES

This section describes one possibility for mapping a task
model to a form-oriented model. We need this one-to-one
mapping as a link for the relation between task models and
user interfaces in order to connect each set of functionally
equivalent task models with the corresponding set of func-
tionally equivalent user interfaces. We can use any mapping
here as long as a task model is mapped to one of the user
interfaces of the corresponding set. We chose a simple and
straihtforward mapping, which we want to call prototypi-
cal mapping. The user interface mapped to a task model is
called user interface prototype.

In the task model of Fig. 2 we distinguish three different
types of tasks: bubbles represent user tasks, boxes represent
system tasks, and rounded boxes represent interactive tasks,
which involve actions from both the user and the system.

Note that our definition of user task differs from the one in
the MAD model: while in MAD bubbles represent purely
manual tasks, we use the bubbles for any task in which the
user acts without the system passing over into a distinctly
new state. The user may, for example, read data from the
screen, perform some manual activity and then enter data
into the system. The translation of user tasks and system
tasks is straightforward: user tasks are mapped to client
pages, i.e., pages of information that present information
and offer forms to enter data. The page corresponding to a
user task may show some information about the task or offer
the user possibilities to give a feedback. System tasks are
mapped to server actions, i.e., processes happening within
the system. They describe something that the system does
without involvement of the user. In the following we will call
client pages and server actions simply pages and actions. In-
teractive tasks are special because they can be decomposed
into a sequence of user tasks and system tasks and hence
leave the system partly unspecified. Consequently, the map-
ping of interactive tasks into the form-oriented model is not
well-defined. If we do not choose to refine the task model, we
can simply map an interactive task to an action-page-action
sequences, with the first action retrieving the information
that is needed for the user to perform the task, the page
allowing the user to enter the result of his/her part, and the
last action allowing the system to react to whatever input
the user made. Note that an important property of a form-
oriented user interface model is its bipartiteness, meaning
that each page is always followed by an action and each ac-
tion generates a following page. In order to preserve the
bipartiteness, we need to insert an action if we have two
user tasks in a row, which would map to two pages in a
row, and merge actions if we would have two actions in a
row, which could emerge if there are two consecutive system
tasks or interactive tasks in the task model. The additional
action between two pages allows the user to navigate from
one page, representing one user task, to the next. The merg-
ing of consecutive actions does not affect the user interface
at all, since they represent tasks performed solely by the
system.

Figure 3 shows a mapping of the task model in Fig. 2 to the
visualization of a form-oriented user interface model which
we call a formchart. In order to make the illustration of
the mapping easier, we first transformed the task model

TAMODIA 2005 | PAPERS 26-27 September | Gdansk, Poland

112

issue receipt and ticket

display all flights

corresponding to details

update return airport list

with possible flights

SEQ

SEQ

SEQ

PAR

PAR

SEQ

phone team leader

book a hotelbook a hotel

fill out expense reportfill out expense report

enter flight details

select departure and

arrival airport

booking

select departure airport

paypay

Select return airport

choose a flight

book a flight

find the right flight

select other parametersselect other parameters

plan travel

Figure 2: Hierarchicalal task model of a travel planning task.

into a workflow diagram, which is similar to an event-driven
process chain [15]. Part of the mapping is visualized by dot-
ted lines. We see, for example, that parallelism has been
modelled with non-modal interaction, which we will discuss
in the following section. We also see that the user interface
is incomplete, which is due to the fact that there are refer-
ences to submodels in the task model in Fig. 2 which are not
defined in this paper. This is due to space considerations.
The shapes representing submodels have a shadow, and the
parts of the user interface corresponding to these shapes are
missing. The missing parts are not really a problem because
the rules of formchart decomposition allow us to complete
the formchart without having to change the parts that we
already have.

3.1 Modelling Parallelism in the User Inter-
face

For the mapping of parallel tasks there are a number of
different alternatives. We discuss specifically the following
alternatives: sequential realization, todo-list realization and
non-modal realization. In the sequential realization one se-
quence of the parallel tasks is chosen. The transformation
to a sequential model can be done already in the task model.
This operation is based on a specialization property of task
models and we will discuss this specialization property. The
todo-list realization allows the user to pursue the different
parallel tasks and keep track on which tasks are already com-
pleted with the help of a system-given todo-list. This real-
ization motivates to discuss the fact that task models may

describe workload management and personal organizer as-
pects that may not be considered user interface aspects. Fi-
nally, parallel tasks can be translated into a stateless choice
for the user. This is an instance of non-modality and there-
fore this solution is called the non-modal realization. This
solution addresses another fundamental issue and this is the
question whether the user interface is supposed to enforce
sequentiality of the task model.

One of the common features in a task model is the ability
to specify parallelism of tasks. In the form-oriented model,
there is no explicit parallelism, but there are different ways
to deal with the fact that the order in which tasks are per-
formed is not specified. Consider three tasks A, B and C
which are parallelised in the task model. The simplest way
to combine the subdialogues corresponding to A, B and C
respectively is to arrange them in an arbitrary order. This
approach is restrictive since the task model does not impose
any order, but it is valid since if the order was relevant, it
would have been defined in the task model. Another way is
to model A, B and C as a non-modal interaction. This means
that we have a single page from which all the subdialogues
are accessible, and that we do not restrict the order in which
these subdialogues are visited. However, this approach also
does not prevent the user from visiting the same subdia-
logue more than once, which might conflict with the task
model. This can be fixed by imposing dialogue constraints
that make sure that each subdialogue is only visited once.
In this approach, which we call todo-list pattern, the order
in which the subdialogues are visited is still up to the user,

TAMODIA 2005 | PAPERS 26-27 September | Gdansk, Poland

113

phone team leader

select departure airport

update return airport list

with possible flights

select return airport

select other parameters

display all flights

corresponding to details

choose a flight

book a hotel

fill out expense report

pay

issue receipt and ticket

phone team leader

book a hotel

PAR1

to PAR1

to PAR2

PAR2

select other

parameters

to departure

airport list

departure

airport list

select departure airport &

update return airport list

with possible flights

return

airport list

select return airport

display all flights

corresponding to details

choose a flight &

proceed to payment

flight list

issue receipt and ticket

fill out

expense report

Figure 3: Mapping of workflow diagram to formchart.

therefore the todo-list pattern combines the advantages of
an arbitrary sequence and non-modal interaction. Figure 4
shows the sequence approach and the todo-list pattern. The
formchart for non-modal interaction is the same as the one
for the todo-list, only that there are no dialogue constraints.

In the task model in Fig. 2 we used different shapes for
different subtasks depending on the degree of user involve-
ment. User tasks are represented by bubbles, system tasks
by rectangles and interactive tasks by rounded rectangles.
For user tasks and system tasks the mapping to the user
interface is simple: a user task maps to a single page and a
system task to a single action. Interactive tasks, however,
cannot be mapped to a user interface that easy. This is be-
cause they are underspecified, i.e., they can be decomposed
into user tasks and system tasks. Once this decomposition
is done, the mapping is straightforward. Note that it can
sometimes be necessary to insert additional actions or merge
existing ones. If the direct translation yields multiple pages
in a row, we put extra actions between them, so that the
user can navigate them sequentially. If we have multiple ac-
tions in a row, these actions have to be merged into a single
action in order to preserve bipartiteness.

3.2 Conditional System Response and User Re-
action

The mapping described in the previous sections results in a
minimalistic user interface which lacks certain features that
are desirable in a good user interface. This is because the
task models provided for a system are in general only main
streams of system usage, where, for example, error condi-
tions are barely represented [11]. The envisaged user inter-
face should be a natural generalization of the provided task
models, which can be attained, for example, by conjunction
with other models. This section is about two phenomena in
user interfaces, conditional system response and user reac-
tion, which are usually not captured in a task model.

Typical examples for conditional system behaviour are spe-
cial behaviour for error and exception handling. Errors are
usually triggered by erroneous user input, like incorrect pass-
words or missing data, and lead in most cases to a descrip-
tion of the error together with an opportunity to re-enter
the data. Since the user can enter incorrect data an ar-
bitrary number of times, a user interface model describing
this behaviour will usually contain parts of cyclic nature.
Apart from direct user input, many systems also rely on
other sources of data when processing user requests. This
can be, for example, data about the availability of some kind

TAMODIA 2005 | PAPERS 26-27 September | Gdansk, Poland

114

B C

A

E Enabling condition:

since E not along C

Enabling condition:

since E

(along A and along B

and along C)

Enabling condition:

since E not along B

Enabling condition:

since E not along A
A’ B’ C’

…

A” B” C”

B’ A’ C’B” A” C”

C’ B’ A’C” B” A”

Figure 4: Modelling parallelism as arbitrary sequence, todo-list or non-modal interaction.

of resources, like flights, theatre tickets or other commercial
articles. The cases where the resource requested by the user
is unavailable or the request of the user is ambiguous are ex-
ceptions and are handled by the system in separate branches
of the respective single user interface. Such branches can, for
example, suggest possible alternatives or try to resolve ambi-
guities. In a user interface model, conditional system behav-
iour is reflected in the presence of multiple outgoing tran-
sitions on server actions, which handle the different cases
that are distinguished in the system. Consider, for example,
a system for a cinema: if the user tries to buy tickets for a
show that is already sold out, the system will notify the user
and may suggest a list of similar shows to proceed. Note that
it is technically not feasible to always present the user with
an up-to-date list of shows and available tickets, so as to rule
out any unsuccessful ticket purchase attempts. This is due
to the fact that most B2C systems make use of the Internet,
which is a pull medium: when the user requests the most
up-to-date version of available shows, he or she will get it,
but during the interval between the system responding with
an up-to-date version and the user making a choice, tickets
may have been purchased by other customers.

Apart from choosing one of the available tasks given as a
task model, the user often also has to make choices within
the workflow of a single task model as a reaction to system
response. Again, such choices can lead to different branches
in the user interface model. This happens, for example,
if the workflow offers different variants or options, which
the user can choose or not. Another simple example for
this is the error handling done by the user, who is often
given the chance to review and correct the data that he/she
entered, e.g., before a significant transaction. If the user
decides to correct the data, the system will allow the user
to modify it, and since the system then usually lets the user
review the data again, this probably results in a cycle in the
user interface model. A user interface model represents user
reactions as different outgoing arrows on client pages.

4. CONSERVATIVE TRANSFORMATIONS
FOR USER INTERFACES

A task can be supported appropriately by several differ-
ently designed information systems. Therefore, it can be
supported by several different user dialogues as well. Given
a task model, several form-oriented user interface models
may be appropriate. In this section we want to strengthen
this understanding by discussing transformations of form-
oriented user interface models that preserve the suitability
for a given task. By doing so we will reencounter the impor-

tance to distinguish between functional and non-functional
requirements. When asking the question whether two user
interfaces are equally suited to support the user in fulfilling a
particular task, we are interested in functional requirements.
But a transformation can preserve either just the functional
requirements, or also the non-functional ones, i.e., the dia-
logue itself.

We call user interfaces which support the same task task-
similar. To consider the multitude of task-similar user inter-
faces at the level of user interface models has its advantages:
the form-oriented analysis level provides a defined concep-
tual semantics that comprehends facts about the system and
therefore enables to grasp these facts easier. Moreover this
level is technology independent, in particular, it is a level
where issues can be discussed without executable technol-
ogy at hand. For more information on this refer to [4].

Two user interfaces that support the same task might be
different in quality, and these differences might be easily
subject to different opinions. Figs. 5 and 6 depict task-
preserving transformations, i.e., both the original and the
transformed user interface models support the same task,
which is a functional criterion and therefore not subject to
different opinions. We do not make any statement about the
quality of any user interface. The figure uses a part from the
task model in Fig. 2 where the user has to choose a departure
and an arrival airport. It illustrates three different ways for
modelling such a dialogue, which can be transformed to one
another: the first is the wizard pattern, which presents the
user with the different subtasks in a fixed sequential order,
possibly allowing some limited degree of back and forth nav-
igation. The second is the superpage pattern, which unites
the user interface parts necessary to accomplish all subtasks
in a single page. The third one is created by outsourcing
subtasks from the superpage onto their own page.

The transformations depicted in Fig. 6 are not only func-
tionally preserving; they also fulfil a stricter criterion: they
are dialogue-preserving transformations, i.e., both the origi-
nal and the transformed user interface presents the user with
the same dialogue. So the transformation is rather one of
the model than one of the user interface as it is visible to the
user. The example is about how to deal with a failed login
attempt of a user: this exception can either be dealt with
on the original login page, which should be general enough
to allow the optional display of an error message, or on a
new specialized version of the login page.

Note that the transformations described in this section are

TAMODIA 2005 | PAPERS 26-27 September | Gdansk, Poland

115

only examples and present by no means complete account
on task-preserving transformations.

With respect to usability, specialization and generalization
create a paradoxical situation: an interface that is sequen-
tial, like a wizard, can be seen as usable for a task that would
allow for parallelism. This user interface would provide very
little freedom. Vice versa, a user interface that allows to exe-
cute subdialogues in parallel can be seen as usable for a task
that requires sequentiality. The system would provide less
guidance than the task model requires, but the user could
observe the sequentiality for himself. How to reconcile these
seemingly contradictory positions? The method of form-
oriented analysis offers a solution. A typical user interface
pattern of form-oriented analysis offers both, parallel as well
as sequential mode: in the default representation, a menu
is shown for example at one place of the page, for example
the left-hand side. It offers all option in parallel as so-called
menu supported options. In the rest of the page there is
a dialogue that offers page-guided interactions. Following
only the page-guided links would give a sequential dialogue.
Using the menu would support a parallel usage.

5. A DEFINED NOTION OF USABILITY
Usability has many aspects and is therefore hard to define
formally. One of the features of the form-oriented model is
that one can define a notion of usability that states whether
a use case can be performed on a particular user interface.
Since a use case always corresponds to a task, we call this
support or appropriateness for a task. We define usability
by examining the relation between form-oriented use case
models, which can be created by applying the mapping de-
scribed in this paper to a task model, and user interface
models.

In the simplest case, a use case can be modelled as a lin-
ear formchart, i.e., a linear sequence of pages and actions
as illustrated in the upper part of Fig. 7. If there exists a
homomorphism mapping the pages, actions and transitions
of the use case model onto corresponding ones of the user
interface model, then the user interface fulfils the require-
ments that are necessary to perform the use case. If the use
case model was created from a task model, then the user
interface is said to be appropriate to the task.

6. DISCUSSION OF RELATED WORK
An overview of model-based user interface development MB-
UIDE is given in [12]. MB-UIDE targets the developer, not
the end user. Some of the approaches require the learn-
ing of exhaustive visual or textual modelling languages. At
the same time an advanced understanding of a certain, non-
trivial system metaphor is sometimes necessary to fully ex-
ploit the features of the tools in this category. Lightweight
model-based approaches like [2] can be used to generate
throw-away-prototypes for the communication between the
developer and the end-user. However, if the generation of
initial application stubs is the goal, a model-based tool must
be integrated in an overall development framework in order
to take off.

Parts of the community considers classically task models as
the primary models that ensure learned design beyond hack-
ing [17, 16]. The mapping problem addressed here is the

focus of a large and active research community on model-
based user interface design. In [3] the mapping problem
was addressed under special consideration of updates to the
model. The DYNAMO-Aid approach taken there aims at
balancing six different models expressing context-sensitive
aspects. Our approach has a simpler model on the task
modelling side, but adds a fully understood dialogue model
with operational semantics, something that was lacking so
far; the interface side remained informal. In [13] a map-
ping was discussed to Dialogue Graphs, a technique used
in the TADEUS approach. Dialogue graphs represent GUI
interfaces.

The questions of the mapping problem are in close rela-
tion to the usability aspects addressed in the international
standard on ergonomic requirements [7]. In general, map-
ping task models to user interfaces is in the terminology
used there a question of controllability of the application.
The other superficially related topic there, suitability for
the task, is not related to task modelling, but rather to er-
gonomics only.

An important class of tools for the development of IT sys-
tems according to use case models are still CASE tools.
These tools support typically only a single type of task or
use case model, classically following the use-case driven ap-
proach [9]. The creation of user interfaces according to user
task models is primarily solved as an activity in the over-
all development process model that comes with the CASE
tool [8], but there is no defined mapping between the model
itself on the artefact level as it would be desirable. In con-
trast, this latter level of support is offered by our approach.
With current CASE tools, task models and user interfaces
can be constantly updated and hence aligned. This process
is however not directly supported on a higher level. The
only support that is currently given is generator technology,
i.e. the generation of user interfaces from task models. This
is however a very operational solution, and it leads in the
case of redesign to the very technical roundtrip engineering
problem. In contrast our approach aims at a descriptive and
more flexible explicit modelling of the connection. A tech-
nology proposal that could be used in order to transform
task models into user interfaces is model driven architec-
ture [5, 10]. The model driven architecture discusses the
transformation of a platform independent model (PIM) into
a platform specific model (PSM). The task model could take
the role of the platform independent model; but in model
driven architecture the relationship is again a generative one
and hence a purely operational description of the relation-
ship. Another technology that does successfully practise the
transformation of a task modelling notion into a running sys-
tem are workflow systems [6] like IBM lotus workflow. How-
ever, in this process no classical user interface design can be
performed; rather a very standardized user interface is gen-
erated. This approach is only suitable for interfaces that
are used by users experienced with administrative work, the
user interface has no possibilities for enhancing the usability.

7. CONCLUSION
The current discussion of the mapping problem focuses on
mappings between task models and interface descriptions
that are explicitly seen as lower level. This mapping is gen-
erally seen as starting with the task model and progressing

TAMODIA 2005 | PAPERS 26-27 September | Gdansk, Poland

116

choose arrival &

departure airport

arrival &

departure

airports

choose

departure airport

departure

airports

arrival

airports

choose

arrival airport

choose arrival

airport

arrival

airports

departure

airports

to departure

airports

choose

departure airport

Superpage

pattern
Outsourcing

Superpage

patternWizard

pattern

back

Figure 5: Task-preserving transformations.

check login

login

check login

login retry

Page

specialization

Page

generalization

Figure 6: Dialogue preserving transformation.

A F

G

A
1

B C
1

D
1

C
2

D
2

C
3

E F G A
2

D

B C E

Figure 7: Usability as homomorphism between use case and UI model.

TAMODIA 2005 | PAPERS 26-27 September | Gdansk, Poland

117

to the the specification of the lower level models [3]. We
put forward that for validation we want to extend this ap-
proach: for validation we need a predicate on and not a
function between task models and user interfaces, a declar-
ative criterion and not an operational procedure. For this
purpose we have accompanied the task model by a model
that is on the same high abstraction level as task models.
The form-oriented user interface we have employed is plat-
form independent and even presentation independent. Fi-
nally, we have reflected on our declarative definition of the
mapping and have argued that we find here a formal aspect
of usability as support for a task.

8. REFERENCES
[1] S. Balbo, N. Ozkan, and C. Paris. Choosing the right

task modelling notation: A Taxonomy. In D. Diaper
and N. Stanton, editors, The Handbook of Task
Analysis for Human-Computer Interaction. Lawrence
Erlbaum Associates, 2004.

[2] H. Balzert. From OOA to GUIs: The JANUS System.
JOOP, 8(9):43–47, 1996.

[3] T. Clerckx, K. Luyten, and K. Coninx. The mapping
problem back and forth: customizing dynamic models
while preserving consistency. In TAMODIA ’04:
Proceedings of the 3rd annual conference on Task
models and diagrams, pages 33–42. ACM Press, 2004.

[4] D. Draheim and G. Weber. Form-Oriented Analysis -
A New Methodology to Model Form-Based
Applications. Springer, October 2004.

[5] D. Frankel. Model Driven Architecture: Applying MDA
to Enterprise Computing. OMG Press, January 2003.

[6] D. Hollingsworth. The Workflow Reference Model.
Technical Report Document Number TC00-1003,
Workflow Management Coalition, January 1995.

[7] International Organization for Standardization.
Ergonomic Requirements for Office Work with Visual
Display Terminals (VDT) – Part 10: Dialogue
Prinicples. ISO 9241-10, 1996.

[8] I. Jacobson, G. Booch, and J. Rumbaugh. The Unified
Software Development Process. Addison-Wesley, 1999.

[9] I. Jacobson, W. Christerson, P. Jonsson, and

G. Övergaard. Object-Oriented Software Engineering –
a Use Case Driven Approach. Addison-Wesley, 1992.

[10] J. Miller and J. Mukerji. MDA Guide Version 1.0.1.
Technical Report omg/2003-06-01, Object Managment
Group, 2003.

[11] F. Paternò and C. Santoro. Preventing user errors by
systematic analysis of deviations from the system task
model. Int. J. Hum.-Comput. Stud., 56(2):225–245,
2002.

[12] P. Pinheiro da Silva. User Interface Declarative
Models and Development Environments: A Survey.
Lecture Notes in Computer Science, 1946:207–226.

[13] D. Reichart, P. Forbrig, and A. Dittmar. Task models
as basis for requirements engineering and software
execution. In TAMODIA ’04: Proceedings of the 3rd
annual conference on Task models and diagrams,
pages 51–58. ACM Press, 2004.

[14] D. Scapin and C. Pierret-Golbreich. Toward a Method
for Task Description: MAD. Work with Display Units,
(89), 1990.

[15] A.-W. Scheer. Aris: Business Process Modeling.
Springer, 2000.

[16] S. Wilson and P. Johnson. Bridging the generation
gap: From work tasks to user interface designs. In
J. Vanderdonckt, editor, Proceedings of CADUI’96 –
Computer-Aided Design of User Interfaces, pages
77–94. Presses Universitaires de Namur, 1996.

[17] S. Wilson, P. Johnson, C. Kelly, J. Cunningham, and
P. Markopoulos. Beyond hacking: a model based
approach to user interface design. In J. L. Alty,
D. Diaper, and S. Guest, editors, People and
Computers VIII, British Computer Society Conference
Series, pages 217–231. Cambridge University Press,
1993.

TAMODIA 2005 | PAPERS 26-27 September | Gdansk, Poland

118

