
Mehra, A. Grundy, J.C. and Hosking, J.G. Supporting Collaborative Software Design with a Plug-in, Web Services-based
Architecture, In Proceedings of the ICSE 2004 Workshop on Directions in Software Engineering Environments, May 25 2004,

Edingurgh, Scotland, IEE Press

Supporting Collaborative Software Design with a Plug-in, Web
Services-based Architecture

Akhil Mehra1, John Grundy1, 2 and John Hosking1
Department of Computer Science1, and Department of Electrical and Computer Engineering2

University of Auckland, Auckland, New Zealand
{ameh010,john-g, john}@cs.auckland.ac.nz

Abstract

Collaborative editing enables one or more users to edit
artifacts simultaneously over a network. Collaborative
editing is important in many kinds of editing tools such as
Computer-Aided Design tools, Computer-Aided Software
Engineering (CASE) tools, drawing tools, and document
editors. We describe a new approach for realising
collaborative editing applications using Web Services. We
have added this collaborative editing functionality as a
component-based plug-in to Pounamu, a meta-CASE tool.
We have used this plug-in, web services-based system to
provide collaborative editing for a range of visual design
environments. We describe the architecture of our
approach, key design and implementation issues, and
illustrate the feasibility of our approach by implementing it
as plug-in Pounamu components and evaluating its
effectiveness.

1. Introduction

The emergence of networked computing applications

has led to workers increasingly being geographically
distributed. Geographically distributed teams have fueled
the need for collaborative computing applications [2, 3, 7].
The use of computer based applications for coordination
and cooperation among groups of people who attempt to
perform tasks or solve problems together is the endeavor
of collaborative computing [16]. Collaborative editing is a
major research topic within the collaborative computing
filed. Collaborative editing of artifacts is important in
many kinds of editing tools, including Computer-Aided
Software Engineering (CASE) tools [7, 9, 19].

CASE tool users often desire a range of facilities to
support collaborative editing of shared diagrams [2].
These include a range of facilities to support asynchronous
work, such as version control, configuration management,
merging capabilities, and synchronous collaborative
editing. Synchronous editing capabilities allow users to
closely collaborate while evolving or reviewing system
designs. Editing changes made by one user are shown as
soon as possible in collaborating users’ tools.

There are a large number of CASE tools available that
provide collaborative editing facilities [2, 7, 9]. One of the
major drawbacks of most current collaborative editing
systems is their reliance on proprietary protocols and
technologies, thus restricting a system to a particular
platform and limiting the ability to collaboratively work
with others using different tools [2, 7, 8]. None of the
current collaborative editing systems address the need for
systems to be interoperable across autonomous and
heterogeneous systems [19]. Most lack support for
dynamic incorporation of collaboration facilities at run-
time, forcing environments to have fixed collaboration
support [7].

We have developed a proof-of-concept approach to
support the development of collaborative editing
applications using Web Services-based technology. The
aim of this work is to explore the support provided by web
services to realize a range of collaborative editing
facilities, dynamic plug-in of collaboration support and
ultimately dynamic discovery and integration of
heterogeneous collaborative tools. We have extended the
Pounamu Meta Tool [18] to provide collaborative editing
functionality using Web Services. The main aim of this
was to enable any Pounamu design environment to support
both synchronous and asynchronous collaborative editing.

We first present the motivation for our work and
discuss related research. We then outline our approach of
using Web Services to provide collaborative editing in
Pounamu. We describe key design and implementation
issues and provide an evaluation of our approach. We
conclude with a summary of the contributions of our work
and directions for future research.

2. Motivation

Collaborative editing entails both writing activities and

communication between authors [11]. Co authors may
work concurrently on the same document (synchronous) or
on replicas of the document (asynchronous), or at different
times on the original or copied document. The document
types may include text documents, UML diagrams, graphic
objects, images, etc [7].

Figure 1. (a) Example of Pounamu shape design view and (b) example of UML tool modeller view.

We choose to provide both synchronous and
asynchronous collaboration for the Pounamu Meta Tool
based on findings in our previous work [3]. In
synchronous editing all changes are immediately visible to
all members of the group. Examples of synchronous
editors and toolkits for building such systems are GROVE
[3], Mule [12], TeamRooms [15] and COAST [17].

Asynchronous editing interaction and modification to a
document does not take place in real time. A user may
wish to edit a document while another user wishes to work
elsewhere. The users or collaborators may request changes
made to a document. A user may request or reject changes
made to a document. Duplex is a good example of an
asynchronous editor [11], as are version control tools like
CVS [1]. Some applications support both synchronous and
asynchronous work [2, 7, 9], with the ability to move
between modes as required.

Most collaborative editing tools have fixed
functionality – the collaborative editing support is built in
and unchangeable, whether the user wants to use all of its
features or not [7]. In addition, most use TCP/IP or remote
object technologies like CORBA to achieve data transfer
between multiple user distributed applications [2, 6, 12,
14]. These typically have fixed data formats and remote
object functionality, making building this infrastructure
challenging and difficult to evolve.

We have been developing Pounamu, a new meta-tool to
support the specification of multi-user, multi-view visual
language-oriented software engineering tools [18].
Pounamu allows software engineers to define new meta-
models and meta-views for software tools and to realise
tools based on these specifications. Pounamu then provides
thick client CASE tools to developers in different parts of
software development. Pounamu’s design tools include a

shape and connector designer, meta-model designer,
modelling view designer and event handler designer.
Figure 1 (a) shows an example of specifying a UML class
icon shape in the Pounamu shape design tool. The
Pounamu tool designer specifies a graphical notation for a
new tool based on shapes and shape connectors. Shapes
can be of arbitrary complexity and may be composed of
other sub-shapes.

Figure 1 (b) shows an example diagramming tool
generated by Pounamu, a Unified Modelling Language
(UML) CASE tool, in use. A thick-client interface is
provided for all Pounamu tools, which includes an element
tree (1), pop-up and pull-down (2) menus, drawing canvas
(3), shape property editor, status window (4), and directly-
manipulable shapes (5) and shape elements. Each shape
can be added to one or more modelling views, with each
shape connected to a meta-model entity instance (model
instance). Changes to shape properties in a modelling view
change model instance properties and vice-versa. Each
model instance can associate with shapes in multiple views
at the same time.

Our aim in this work was to provide a plug-in,
component-based facility supporting both synchronous and
asynchronous editing for all visual design tools developed
with Pounamu. Although many collaborative editing
systems exist, these all use proprietary protocols or
technologies and most are static i.e. must be built into a
tool. Our approach was to use web services technology to
implement a collaborative editing system for Pounamu that
could be plugged in at run-time, and could be more easily
extended as new Pounamu tool features were developed.

 Web services specifications are based on existing
Internet standards or specifications that are widely used,
thus facilitating seamless interaction between

heterogeneous and autonomous systems [4, 19, 8]. XML-
based messages and data formats allow flexible extensions
to services, and dynamic discovery and integration support
of services at run time offer the possibility of both plug-in
services and more dynamic, user-specified features. Some
initial research has been carried out using web services to
co-ordinate work [8] and support limited forms of fixed-
feature, synchronous collaborative editing [19]. Software
tool integration and plug-in of collaborative work and
other features via web services are in still in initial phases
of research.

3. Our Approach

We have been investigating a new approach to support

collaborative editing for the Pounamu meta-CASE tool
using Web Services. Our main aims have been to (1)
provide a dynamic plug-in mechanism for collaborative
editing for all Pounamu-developed tools; and (2) to
investigate the viability and suitability of Web Services as
a technology for the development of such collaborative
editing applications.

Pounamu meta-tool

RMI
APIs

Collaborative
Editing

Components

Web Services

Pounamu meta-tool

RMI
APIs Collaborative

Editing
Components

Web Services

User A’s PC

User B’s PC

1

2

3

4

5

User B’s
Modelling Views

User A’s
Modelling Views

Figure 2. Overview of our approach

Web Services has emerged as the technology of choice
when developing remote or distributed components but it
still unclear how suitable the technology is for software
tool infrastructure development. The main reason so far for
Web services success is its ability to be interoperable
between diverse languages and platforms [8]. A Web
service can theoretically be produced by or consume
information from any language/platform and uses standard
internet protocols to exchange information [5]. In
addition, the ability to dynamically discover and integrate
with remote services at run-time has many potential
applications in a wide variety of domains, possibly
including for software tools.

Figure 2 summarizes the way we went about building
our collaborative editing components for Pounamu. We
firstly developed a system that exposes existing, remote
Java RMI Pounamu APIs as web services (1), utilizing the
principles of a Service-Oriented Architecture. This API
allows all Pounamu model and project management and
editing facilities to be accessed via web service messages,
and provides a subscribe-notify structure to handle events.
We then went on to build plug-in collaborative editing
component that uses these exposed services to achieve
collaborative editing in Pounamu (2). This component is
plugged into a Pounamu environment to extend it to
provide collaborative editing facilities. To date these have
included synchronous diagram editing, capture and replay
of diagram edits, request and transmission of edits, and
diagram merging support. When a user edits modeling
views in Pounamu, the collaborative editing component is
informed of the edit events (3). Connecting two or more
Pounamu environments with collaborative editing
components produces a network of peer-to-peer
collaborative editing tools. When an edit occurs to a
modeling view being shared, the collaborative editing
component sends this to the remote Pounamu applications
via their web services APIs (4). Received events are
translated into update operations on the receiving user’s
modeling views.

4. Architecture

The Pounamu meta-CASE environment can be broadly

broken up into two main parts, Pounamu Tool Projects,
and Pounamu Model Projects. The Pounamu Tool Project
lets a user specify their own modelling language by
defining a meta-model made up of entities and
associations. The Pounamu Tool Project enables a user to
define and describe various visual and textual notational
constructs with respect to the tool meta-model. For
example, the user may define an “Actor” meta-model
element, and then may specify a visual icon to create and
view Actors in use case diagrams, and textual property
sheets to be able to view and update each Actor’s
properties. Once a user has created a tool project, they use
this tool specification to create various models based on
the meta-model described by his tool. The Pounamu
Model Projects manage model instances and view shapes
created by users when using the modelling views of a tool.

We required the collaborative editing plug-in to
provide synchronous and asynchronous collaborative
editing support for any Pounamu-specified tool while
needing no code changes to Pounamu itself. We also
required that Pounamu tool users be able to decide if they
needed collaborative editing functionality and choose to
load the plug-in (or not) at run-time. For this to work, each
application must have the same Pounamu tool project
open, enabling them to share the same tool definition

(meta-models, views, shapes, property sheets, event
handlers etc). Collaborative editing is then undertaken by
sending modelling view editing messages between
Pounamu desktop applications running on each user’s PC.
The editing messages are replayed by the target Pounamu
application to effect a change made by another user. This
can be done synchronously – changes sent as they are
generated to other users, or asynchronously – changes are
requested periodically and applied as a group to another
user’s modelling view.

We chose to adopt a peer-to-peer architecture for our
collaboration components. This was based on findings
from our previous research into collaborative editing in
CASE tools [6, 7]. Pounamu being a desktop application
presented an interesting challenge - integration of a
desktop application with a web server in order to
effectively use web services to support peer-to-peer
transmission of editing events.

One of the major decisions taken during the design
process was establishing how various Web Services were
to be hosted. It is envisaged that in the future lightweight
Web Serve components wil be available that will easily
integrate with existing desktop applications and be able to
host Web Services. Currently no such Web Sever exists
thus making it necessary for us to integrate the Pounamu
Meta tool application with a standard web server using
RMI technology. Figure 3 describes the architecture of the
system.

The main components of the system are the Pounamu
Meta Tool, the Collaborative Editing Component, the Web
Server and the RMI Registry. As User A edits modelling
views, their Pounamu tool generates various editing
events. These events are propagated to the collaborative
editing component of User A’s Pounamu tool using
Pounamu’s subscribe/notify event propagation mechanism
(1). User A’s collaborative editing component forwards
the editing events to its peer(s) hosted on other users’ PCs
using remote web service calls (2), in this example to User

B’s web server hosted by User B’s PC. This target Web
Service looks up User B’s collaborative editing component
using a locally hosted RMI registry on User B’s PC (3). It
then forwards the message it receives, containing the
editing events generated by user A’s Pounamu tool, to
User B’s collaborative editing component (4). This in turn
maps the editing events generated by User A into API calls
for User B’s Pounamu tool. These API calls result in
corresponding modelling view updates being achieved in
User B’s Pounamu modelling tool, duplicating the effect of
the edits made by User A on User B’s modelling views (5).
Asynchronous editing is supported by caching of edit
events by the sender (User A) or receiver (User B)
collaborative editing components.

An alternative client-server based architecture is
presented in Figure 4. In this architecture, we have a
central Web Server and RMI Registry used by a number of
Pounamu applications. This has the advantage of not
requiring locally hosted web servers and RMI servers on
each user’s PC, enabling use of a high-end server machine
to host servers, and enabling caching of edits by the
centralised web service. The disadvantage is a loss of
robustness – if a shared server fails all collaborative
editing is halted until it is restarted.

5. Example Usage
In this section we describe an example usage of our

Pounamu plug-in collaborative editing component. To
understand how the collaborative editing component works
consider the following scenario. Two colleagues John and
Mark are working on an ERD (Entity Relationship
Diagram) based model project created in Pounamu from
geographically disparate locations. By enabling
synchronous collaborative editing, they can collaborate in
real time. If they desire, they can choose to use
asynchronous editing and can merge sets of diagram
changes made by others at their own convenience.

Figure 3. Overview of our web services-based collaborative editing system architecture.

Figure 4. A shared web server enterprise scenario system architecture

Consider the scenario of John and Mark deciding to
collaborate in synchronous mode. Figure 6 shows a
sample scenario – all entity (square) or relation (oval)
shapes surrounded by a box-highlight have been remotely
added. The arrow annotation between screen dumps
shows the direction in which messages are being passed.

To start with John is presented with a configuration
dialogue box (Figure 5) that enables him to choose the
users he wishes to collaborate with and the mode of
collaboration (synchronous or asynchronous).

Figure 5 Configuration Dialogue Box

To begin with John adds an entity “book” in his
Pounamu ER modeling view Figure 6 (1). The view edit
events generated by Pounamu are sent to John’s
collaborative editing component and in turn forwarded to
Mark’s collaborative editing component via the web
services infrastructure described in the previous section.
Mark’s collaborative editing tool generates API calls to
Mark’s Pounamu tool which results in ER diagram view
updates that make it appear to Mark as if the new book
entity has been immediately added in his tool.

Now Mark decides to add an attribute author to this
new entity (2). As soon as Mark does so the attribute is
added in John’s environment by the same mechanism as
the creation of the entity in Mark’s Pounamu tool – editing
events are sent back to John’s environment via web
services and immediately actioned to create the new book
attribute. Now finally John decides to add an attribute

publisher and create an association between the Book
entity and attribute Author (3). These changes are
immediately reflected in Marks environment as John
completes each of these diagram edits.

Asynchronous editing can be enabled at any time and
edits are cached either at the sender end or receiver end.
John and Mark can choose when to have changes made by
the other merged with their ER diagram updates. Changes
to an ER diagram component in another view result in the
meta-model instance generating view updates, which are
propagated to other users in the same way as described
above. The entire contents of a modeling view can be sent
to new users on request, being recreated by their Pounamu
tool so they can join the collaborative editing session.
Network failure will default view editing to asynchronous
mode with local edit event caching. Any changes made are
then sent to other users when communication is re-
established. Concurrent synchronous edits by two users on
the same modeling view item are currently inter-leaved by
a simple locking mechanism. A multiple edit multi-user
undo/redo is also supported. Occurrences of conflicts are
resolved by presenting the user with a dialogue box and
prompting the user to take appropriate action.

 John and Mark are able to collaborate quite easily in
the Pounamu software environment using this plug-in
synchronous editing support. Simple synchronous work
co-ordination is achieved by highlighting shapes
temporarily using pre-existing Pounamu diagram facilities.
Further co-ordination can be achieved via the help of a
chat application, audio link or other third-party
communication support tool. The collaborative component
added to Pounamu tools enables both Mark and John to
work simultaneously from anywhere in the world as long
as they have access to the Internet. Since we are using
Web Services there are no problems associated with
firewalls and other network security features to contend
with.

Figure 6. An example of synchronous collaborative editing in Pounamu

6. Design and Implementation

One of our main design objectives was to make

minimum or ideally no changes to existing Pounamu code.
The collaborative editing component has been
implemented as a plug-in [7]. No code associated with any
part of the collaborative editing component has been
embedded in the original Pounamu code, except for some
functionality relating to turning this component on. In our
design, each Pounamu application has to have a
corresponding collaborative editing component to enable it
provide collaborative editing. A Pounamu application will
generate a number of modeling view editing event types.
Our collaborative editing component subscribes to all of
these. Editing events are propagated to the collaborative

editing component to be processed immediately after they
are generated by Pounamu. Once processed the
collaborative editing component calls the appropriate
remote web services on the collaborator’s side.

Two main features of the Pounamu meta-CASE tool
enabled us to design our collaborative editing component
as a plug-in. We ensured during Pounamu’s core
development that it provides extensive subscribe/notify
event handling infrastructure. Pounamu also has a number
of API’s which can be used to execute all of the required
editing commands and data structure queries on the tool
remotely. In addition, we ensured that all editing event
serialisation and deserialisation, remote component
communication and co-ordination control for collaborative
editing is done by the collaborative editing component.

Figure 7. Sequence diagram for a typical interaction in a Collaborative Editing situation

Using web services technology to build this
collaborative editing component design turned out to be
quite straightforward. We developed a set of “mirror” web
service-based APIs for each Pounamu API feature. These
allow a remote Pounamu environment to query the state of
another Pounamu tool and to run editing “Commands” –
objects that encapsulate modelling view change-of-state
instructions, remotely. In addition, Pounamu’s
subscribe/notify event handling was supported by
equivalent web services-based infrastructure using SOAP
messages to encapsulate editing event information. We
developed a set of web service components that call
remote Pounmau APIs via RMI, thus providing a
translation between web service-based messages and RMI
API calls into Pounamu environments. We found this
approach necessary in order to host the web service APIs
in a separate web server to our Pounamu application.

The sequence diagram in Figure 7 describes the
interaction between various objects in a collaborative
editing situation. Typically we have two users
collaborating, User A and User B. If User A issues an add
entity command then User A’s Pounamu meta tool will
generate an event for the entity received which will
propagate to its corresponding Collaborative Editing
object. The event will encompass various details of the
entity that has been added – type, location, initial property
values and so on. User A’s Collaborative Editing
component then calls the Collaborative Editing Web
Services hosted by User B. This informs User B’s
Pounamu tool of the changes made to the shared modelling
view by User A. User B’s Collaborative Editing Web
Service relays the message to User B’s Collaborative

Editing component via an RMI call that an entity has been
added. The entity is subsequently added to UserB tool.

The Pounamu Meta Tool was developed using the Java
platform. This made it straightforward to develop the
Collaborative Editing Component using Java RMI and
Java web services implementation technologies. Our
collaborative editing system includes Web Services and
Remote Method Invocation (RMI), and we used JAX-
RPC (Java API for XML-based Remote Procedure calls)
for building the Web services on the Java platform. JAX-
RPC provides a remote procedure call based on the SOAP
protocol.

7. Discussion
We have used our collaborative editing plug-in

components for Pounamu to provide a basic set of
synchronous and asynchronous editing features for any
Pounamu-specified visual modeling tool. Examples this
has been used on to date include an ER diagramming tool,
UML tool (including use case, class, sequence and
deployment diagrams), and semantic modeling tool.
Synchronous editing currently provides a basic locking
mechanism to inter-leave multiple user concurrent edits.
Asynchronous editing allows caching of edits made by
other users on source or target PCs and selective merging
of changes.

Our approach provides similar capabilities to previous
work we have done with component-based collaborative
editing components for software tools [7, 6]. It has
capabilities similar to a number of other researcher’s
approaches for their frameworks and environments [2, 15,
17]. However, our Pounamu plug-in is more flexible in
that it provides synchronous and asynchronous editing for

any tool that can be defined with the Pounamu meta-tool –
a potentially enormous range of applications. Many
framework-based collaborative editing support approaches
have been developed [2, 15, 17], but nearly all hard-code
the collaborative editing support into applications built
with the framework. This complicates the framework and
incurs overheads for both the tool and user interaction,
even if the collaborative editing support is not desired or
not always required by users [7]. The use of wrapper Web
Services around existing Pounamu API’s demonstrates an
approach that can be easily integrated into any tool
including existing commercial tools. Other alternative
approaches would be to use an application sharing
framework e.g. MS NetMeeting™ for synchronous editing,
and version control tool for asynchronous editing support.
Disadvantages are that moving between the two can be
difficult, diagram-based models are difficult to effectively
version and merge, and knowledge of the application
events, as used in our approach, allows semantic as well as
syntactic consistency management support to be provided
[2, 3, 7]. Web services technology has been used for other
collaborative work systems, but in the main for supporting
workflow-based integration [8]. Our components currently
only provide quite rudimentary group awareness facilities
compared to other frameworks [15, 17].

Key future research includes improving configurability
of the collaborative editing plug-in and supporting
integrated semantic as well as syntactic checking during
asynchronous merging operations. We would like to
develop some group awareness plug-ins that complement
the collaborative editing support currently offered. We are
interested in using web services dynamic discovery and
integration technologies to locate and integrate diverse
collaborative work services. We would also like to apply
this support to our web-based diagramming component for
Pounamu and our zoomable views support, both recently
added to the Pounamu meta-tool. We are interested in
seeing whether disparate software tools can share these
web service-based components i.e. collaborative work
between Pounamu and non-Pounamu tools.

8. Summary

We have built a prototype collaborative editing plug-in

component for Pounamu, a meta-tool for building visual
diagramming applications, using web services technology.
This plug-in allows distributed users to collaboratively edit
diagrams synchronously or to asynchronously edit
diagrams and merge changes. The plug-in uses web
services to encode editing events and diagram content in
XML, exchanging these between users environments. A
plug-in component architecture using web services
technology has proved to be feasible for building such a
collaborative work infrastructure, with a number of
promising future extensions possible.

References
1. Concurrent Versioning System (CVS),

http://www.cvshome.org/.
2. Dewan, P. and Choudhary, R. Coupling the User-Interfaces

of a Multiuser Program, ACM Transactions on Computer
Human Interaction, 2 (1), 1995, 1-39.

3. Ellis, C.A., Gibbs, S.J. and Rein, G.L. Groupware – some
issues and experiences. Communications of the ACM,
34(1):38–58, January 1991.

4. Gisolfi, D. Is Web services the reincarnation of CORBA?,
Web services architect, Part 3, IBM Developer works.

5. Glass, G., The Web services (r)evolution Applying Web
services to applications, IBM Developer Works, Nov 2003.

6. Grundy, J.C., Hosking, J.G., Mugridge, W.B., Apperley,
M.D. A decentralised architecture for software process
modelling and enactment, IEEE Internet Computing, Vol. 2,
No. 5, IEEE CS Press, Sept/Oct, 1998, 53-62.

7. Grundy, J.C. and Hosking, J.G. Engineering Component-
based, User-configurable Collaborative Editing Systems,
Software – Practice & Exp, vol. 32, Wiley, 983-1013, 2002.

8. Kafeza, E., Chiu, D. and Cheung, S.C. Alert-Driven Process
Integration in a Web Services Environment, In Proceedings
of the 1st International Conference on Web Services, Las
Vegas, USA, June 23-26 2003.

9. Kaiser, G.E. Dossick, S.E., Jiang, W., Yang, J.J., Ye, S.X.
WWW-Based Collaboration Environments with Distributed
Tool Services, World Wide Web, vol. 1, no. 1, 1998, 3-25.

10. Newcomer, E. Understanding Web Services: XML, WSDL,
SOAP, and UDDI, Addison-Wesley, June 2002.

11. Pacull, F., Sandoz, A., Schiper, A., Duplex: A Distributed
Collaborative Editing Environment in Large Scale. Proc.
1994 ACM Conference on CSCW, October 1994.

12. Pendergast, M.O. and Vogel, D. Design and implementation
of a PC/LAN-based multi-user text editor, In Proceedings of
IFIP WG 8.4 Conf. on Multi-User Interfaces and
Applications, North-Holland, September 1990, 195–206.

13. Posner, I.R. and Backer, R.M. How people write together,
Proceedings of the 25th Hawaii International Conference on
System Sciences, Vol. IV (January), 1992, 127-138.

14. Reiss, S.P. Connecting Tools Using Message Passing in the
Field Environment, IEEE Software, 7 (7), 1990, 57-66.

15. Roseman, M. and Greenberg, S. 1996. Building Real Time
Groupware with GroupKit, A Groupware Toolkit, ACM
Transactions on Computer-Human Interaction, 3 1, 1-37.

16. Schooler, E.M. Conferencing and Collaborative Computing,
Multimedia Systems, vol. 4, 1996, 210-225.

17. Shuckman, C., Kirchner, L., Schummer, J. and Haake, J.M.
1996. Designing object-oriented synchronous groupware
with COAST, Proceedings of the ACM Conference on
Computer Supported Cooperative Work, ACM Press,
November 1996, pp. 21-29.

18. Stoeckle, H., Grundy, J.C. and Hosking, J.G. Approaches to
Supporting Software Visual Notation Exchange, In Proc. of
the 2003 IEEE Conference on Human-Centric Computing,
Auckland, New Zealand, October 2003, IEEE CS Press.

19. Younas, M. and Iqbal, R. Developing Collaborative Editing
Applications using Web Services , Proc. 5th Int. Workshop
on Collaborative Editing, Helsinki, Finland, Sept 15, 2003.

