

Experiences Developing an E-whiteboard-based Circuit Designer

Ray Liu, Lisa Wong and John Grundy

Department of Electrical and Electronic Engineering, University of Auckland

Private Bag 92019, Auckland, New Zealand
john-g@cs.auckland.ac.nz

Abstract

E-whiteboards - large image display surfaces (LIDS) that
support data input with pen-based sketching - have
become more readily available in recent times. We
describe a prototype environment making use of this new
user interface technology aimed at the teaching of digital
circuit design and behaviour. In this paper we focus on
some of the key user interface design and implementation
challenges we faced when developing a prototype of this
system. We also discuss results from usability evaluation
of the prototype and directions for future research based
on these results.

Keywords: user interfaces, human-computer interaction,
pen-based user input, large screen displays, CAD tools

1. Introduction

Typical approaches to electronic circuit design are

very similar to those of CASE (Computer-Aided Software
Engineering) and UI (User Interface) construction tools
for software design: users interact with a desktop
application performing direct manipulation and dialogue-
based data input and output operations. In recent years an
alternative interface technology for supporting interactive,
visual language-based design has been developed: the
pen-based input, large image display surface “E-
whiteboard” [1, 2, 10]. This paper describes our research
exploring the use of such a user interface technology for
an interactive circuit designer. This simple designer was
aimed at teaching elementary circuit design principles in
Electrical Engineering, but its primary purpose was to
investigate some of the key issues in adopting E-
whiteboard-based approaches to design applications in
general.

Sketching-based interfaces have been tried in a variety
of application areas, both with and without large image
display technologies. SILK [5, 6] provides a sketching
based design environment for user interfaces where users
sketch an interface and then transform it into a lower-
level, formalised and computer-drawn interface

specification. Amulet [8] provides a single-stoke input
mechanism for rapid icon specification, using Rubine’s
algorithm [9]. A similar approach using a large image
display with pen-based input has also been developed,
integrated with the Visual Basic development tool [2].
Control of presentations and annotation of presentation
slides via pen-based input on an E-whiteboard has been
explored [1, 10]. Knight [3] provides a sketching-based
interface for UML diagramming, creating computer-
drawn UML icons from pen input guestures. Denim [7]
provides a sketching-based interface for web user
interface construction.

We describe the motivation for our work: the design
and prototyping of a circuit designer using pen-based
input on a large image display surface output device. We
illustrate the user interface of our tool both for circuit
design and animation of designs to illustrate circuit
behaviour and briefly discuss our main implementation
approaches. We discuss some user interface issues
presented when designing our prototype tool and outline
further areas for research and application of this user
interface technology to other design environments.

2. Motivation

When designing circuits in a tutorial situation teachers

typically use a whiteboard and sketch AND, OR, NOT
gates and connector wires, explaining the rationale for
decisions. Often they then highlight the state of inputs,
outputs, gates and wires when the circuit is “run” i.e. has
power supplied to its inputs. We wanted to explore the use
of a large image display surface with pen-based input to
provide teachers with an “E-whiteboard” circuit designer.
The hardware set-up we used is illustrated in Figure 1. A
picture of this E-whiteboard, or Large Image Display
Surface, is shown in Figure 2.

The technology used is straightforward and aimed at
providing a low-cost environment for pen-based sketching
and large image display [1]. A large mounted opaque
glass screen has a data projector behind it, projecting the
screen of a PC onto the surface. A mimio pen-based data
capture device allows the PC to capture pen movement,

which is translated by software into digital images
projected onto the “drawing” surface by the data
projector. As the user moves their pen, a digitised set of
curves appear in real-time. The user can also interact with
menus, pop-ups and other UI features by tapping on them
with the mimio pen input device. The mimio device also
provides audio capture, transmission and playback,
though this has not been used in this project.

M
IM

IO
 S

en
so

r

MIMIO Stylus

Display Screen
and Frame

Projector

Computer

Serial Link

Back-projected
image

Projector behind
screen

Figure 1. Hardware used for Large Screen interface.

Figure 2. Example of LIDS circuit designer in use.

In this sample LIDS design application we wanted to

provide a simple E-whiteboard-based circuit design tool
for tutorial teachers, giving them the ability to sketch
circuit elements (AND, OR, NOT, input and output gates,
connector wires) with the pen, capturing this evolving
circuit design digitally. We wanted to have circuit
elements computer-drawn, but possibly to preserve hand-
sketched circuit elements if desired. As the user draws the
various elements of a circuit we wanted the designer to
recognise them as particular circuit elements and build up
an internal data structure to capture the circuit design
specified by sketching. The user could, however, over-
ride the design tools recognition algorithm if it made

mistakes via a pop-up menu. Users should be allowed to
move and delete circuit elements as required via direct
manipulation with the input pen. A circuit design should
be able to be “animated” (i.e. user specify input values to
connector wires) to show the resultant output values (1 or
0) produced by the simulated digital circuit. Circuit
designs must be able to be saved and reloaded and printed
out.

In future design environment applications, we wanted
to explore the use of the LIDS technology for CASE-style
diagramming, as in Knight [3], user interface design, as in
SILK [5] and [2], and building design. However, in
contrast to this work we wanted to further explore issues
of computer-drawn components vs sketched, and the use
of the LIDS technology for collaborative, co-located vs
remote-located work. The circuit designer prototype
described in the following sections is being generalised to
support both computer-drawn and sketched elements and
remote-located collaboration to explore these issues.

3. Interface Design

We chose to provide users with a reasonably standard

Windows-based user interface for our circuit designer.
This is illustrated in Figure 3.

Menu
Items

Symbol
insert

buttons

Modal
function
buttons

Workspace

Figure 3. Interface of the circuit designer.

The mimio data capture device is configured to control
the standard Windows mouse movements, with a tap of
the pen on the whiteboard surface simulating a left mouse
button click in that position. The interface does not make
use of the right-mouse button as this currently cannot be
simulated by the mimio pens. While the mimio system
provides multiple pens and an “eraser”, we chose to only
use one pen and to provide deletion via modal button and

element selection. Note the interfaces below are displayed
on our large back-projected E-whiteboard surface and the
circuit design manipulated only by the mimio pen-based
input device.

To add gates to a circuit design three fundamental
direct manipulation operations can be used: the user
sketching a shape, either an abstract gesture or one
corresponding to the desired circuit element, on the
whiteboard board; using a pop-up menu to have a
computer-drawn shape added in the selected position; or
dragging a computer-drawn circuit component from a tool
palette into the desired position. We chose to focus on
using the first approach, as illustrated in Figure 4 (1),
where the user is sketching an AND-gate. A shape
recognition algorithm processes the sketched points and
creates a new circuit gate, draws it and adds it to the
underlying circuit data structure (Figure 4 (2)). This
recognition algorithm can make a mistake and the user
can change the element type using a pop-up menu by
tapping on the shape. Alternative replacement approaches
could be to allow the user to draw over the top of an
incorrectly recognised shape and have the new one
replace the old. We currently use a single-stoke

recognition algorithm to recognise element types i.e. use
the first single movement drawn by the user. Again, a
multi-stroke recognition could be used e.g. to recognise
several single-strokes, or to recognise a complex multi-
stroke drawn shape, to provide a wider range of possible
sketched shapes to recognise.

After adding shapes to a circuit design, including
input, output, AND, OR and NOT gates, the user can
connect input and output pins for these circuit gates. This
is illustrated in Figure 4 (3). Users may also sketch any
other annotations they like on a circuit design (as shown
by the “text” and highlights in Figure 4 (4)). These strokes
are simply represented as an unrecognised shape in our
data structure but are saved and loaded and may be moved
or deleted as can the recognised circuit elements. The user
can move and delete gates via direct manipulation with
the pen on the electronic whiteboard surface. Moving is
done by selecting one or more gates using the pen to
specify a bounding box then moving the gates by clicking
within the bounding box and dragging the pen to indicate
relative amount to offset the gates as illustrated in Figure
4 (4).

1

2

3

4

Figure 4. Manipulating a circuit design with pen-based input/large screen display output.

1

2

3

Figure 5. Animating a circuit design using pen/large-screen display.

At any time a circuit design can be “run” (animated)

by a user to demonstrate its functionality. To do this, the
user specifies on (0) or off (1) values for input gates via
toggling these values when clicking on the gates, as
shown in Figure 5 (1 and 2). This sets the initial state for
the input gates to the circuit.

Once all input gates have specified initial value, the
user then tells the circuit designer to propagate these
signals along connector wires to gate pins. When an
element receives signals for all its input pins its state is set
(0 or 1) and shown to the user. On the next user-initiated
step, the element propagates its value to its output pin(s).
The result is illustrated in Figure 5 (3) where a circuit
design is animated by the user to propagate a value to an
output gate.

The propagation algorithm could be made
incremental, and the state of gates illustrated in the views
with colour and/or state information for gate inputs and
outputs. This would allow more interactive and iterative
visualisation of circuit design state. It would also be
possible to leave the state visualisations in place while the
user manipulated the circuit design, enabling them to
visualise the changing circuit results as they changed the
circuit design structure.

4. Implementation

We implemented our prototype circuit designer using

the C++ programming language and Microsoft
Foundation Classes GUI toolkit. The window opened by
our application is back-projected onto the electronic
whiteboard surface to show digitally captured circuit

design content and to support user interaction with
buttons and menus. Input from the mimio device is
captured and sent as serial signals to the PC running the
circuit designer application. The standard MimioMouse
application is used to generate Windows mouse
movement events and left mouse button click events from
a mimio pen being moved and tapped on the electronic
whiteboard surface.

We implemented Rubine’s algorithm for single-stoke
recognition [9]. A training interface is provided to allow
different users to specify example sketches for shape
classes to configure the recognition algorithm. This is
illustrated in Figure 6. Circuit designs and annotations are
currently saved and loaded as text files.

Figure 6. Shape recogniser training interface.

The architecture of our prototype tool is shown in
Figure 7. MFC C++ libraries are used to render the user
interface and accept pen input. The shape trainer is used
to process pen input to determine sketched shape, process
move/delete commands etc, and this is used to update the
circuit design. The circuit data structure uses the MFC
libraries to draw the circuit which is projected onto the E-
whiteboard. Circuit designs are currently saved as ASCII
text, which we are planning to extend to XML and also
use to broadcast circuit changes between multiple remote-
located designers.

Shape
Trainer

Shape
Recognition

C++ MFC Libraries – drawn interface,
capture pen movement

Circuit Data Structure Save Format

Communication with
other, remote designer

Poject
screen Pen input

Figure 7. Prototype tool architecture.

5. Discussion

We have carried out an evaluation of our E-

whiteboard circuit designer prototype by having users
sketch designs in single and small group settings. The
former tested basic interaction with the designer via the
pen-based input and LIDS-based output technologies. The
second investigated the use of the whiteboard during a
simulated “tutorial” situation where one user would
sketch a design and animate it, explaining the process to
others. Reaction to the E-whiteboard designer was
generally very positive and was expected to be a useful
tool for both tutorial-based instruction, providing same-
place collaboration on simple circuit design. However a
number of interesting user interface design issues have
presented during the development and experimentation
with our prototype. These are summarised below.

The lack of a right-mouse button simulation with
mimio pens led us to choose a number of interaction
techniques for manipulating circuit designs with the pen
device where a single pen tap operation only is used. For

example, tapping on shapes gives a pop-up menu
(normally a right-mouse button would be used to do this)
to select element type or delete a single shape. A model
move and delete facility is currently used to allow created
circuit element manipulation. The user selects the
manipulation mode and then selects the circuit elements
to apply the operation to. Users of our prototype have
suggested investigating alternative ways of moving,
deleting and also resizing shapes. These have included
tap-move-release of the pen for single-shape moves (the
most common), use of a contextual pop-up menu and use
of highlights or handles on drawn circuit elements to
access particular manipulation functions. A context-
dependent pop-up menu in the drawing area is currently
difficult to provide for non-model operation selection as
no right-mouse button vs left-mouse button click
simulation exists to say when the user wants selection vs
pop-up.

We chose to support shape sketching and recognition
to provide an “E-whiteboard” sketch-based look and feel
for our prototype. Hand-drawn circuit elements are
automatically converted to computer-drawn form. It
would also be possible to allow drag-and-drop of these
computer drawn elements from a tool palette. However,
we could also preserve the hand-drawn circuit element
sketches and show their human-sketched form instead of
computer-drawn elements. This would allow us to
preserve a more sketch-based appearance to circuit
designs, including allowing much greater flexibility for
differently-sized and oriented circuit elements. Similarly,
computer-drawn pin connector wires could be drawn
instead of preserving user-sketched connections.
Currently if user-drawn connection wires don’t exactly
connect pins the circuit designer then the tool moves them
to directly connect the pins. If preserving hand-drawn
wires then the tool would need to add a small computer-
drawn line from the start pin and end pin centres to the
user-drawn line to reflect pin connection accurately.

While some users have suggested that they would like
the option of preserving hand-drawn circuit gates and
connector wires, there are problems preserving these
sketched elements when moving, resizing or deleting
gates. Currently we can redraw connector wires when
circuit gates are moved. With hand-drawn it is difficult to
automatically “redraw” them to preserve their human-
sketched appearance. An alternative would be to simply
draw a straight line between connectors (though this
doesn’t work so well for loop-back connection wires!) but
this would give the circuit appearance an odd look with
sketched gates and some wires hand-drawn and some
computer-drawn. Users have suggested an option to have
hand-drawn circuit elements left as sketches or
automatically converted as drawn into computer-drawn
form, as done in Knight [3]. Similarly, a further option

could allow the user to specify “formalising” of the circuit
design from all-sketch to computer-drawn as in SILK [6].

Currently to over-ride a gate type the user either
selects required type via a pop-up menu or deletes the
gate and redraws it (having to reconnect the new gate’s
pins). An alternative we plan to experiment with is to
allow the user to draw over the top of an existing gate,
replacing its sketch shape with the new one and re-
running the shape recognition algorithm. Our shape
recognition algorithm currently uses a single stroke based
on a training set of shape classes to gate mappings
specified by the users. This means circuit shapes can only
be recognised from a single user stroke with the pen,
making similarly-shaped objects difficult to draw without
the use of abstract gestures. Our recognition algorithm
could be enhanced to allow multiple, sequential strokes to
be chained together and a composite gate type recognised
from simple, multi-stroke parts, as done in the
VisualBasic UI sketching tool [2].Text recognition could
be added to convert some annotations to computer-
recognised and rendered text.

Our circuit animation facility allows a teacher to show
how a circuit works when signals are applied via input
pins to the circuit. This uses a simple propagation
algorithm which works well for circuits without feedback,
but becomes hard to follow when outputs from a gate are
feed back into the gate directly or indirectly. It also does
not adequately show the signals being propagated along
wires and we plan to colour or annotate wires and gates to
indicate their state clearly.

We have not yet investigated the E-whiteboard circuit
designer being used by multiple people simultaneously
i.e. with multiple pen input, either co-located or remote-
located. Co-located collaboration has been via turn-taking
with a single input pen. We are building a basic UML
CASE tool using the same interface technology and plan
to explore both remote collaboration and same-place
collaboration with this more sophisticated design
environment.

6. Summary

We have developed a sketching-based circuit designer

that utilises an electronic whiteboard incorporating a pen-
based input device and a back-projected large image
display surface. Users sketch circuit gates, connect gate
pins and manipulate circuit designs using pen-based direct
manipulation techniques. Multiple people can view and
discuss the design in a tutorial situation and the design
can be animated to indicate circuit functionality.

Further work on the prototype includes running more
structured usability evaluations with an extended
prototype with configurable circuit display and interaction
mechanisms, to more accurately gauge potential end

users’ preferred interaction techniques. Our preliminary
investigation of the prototype’s usability suggests that
these user preference options will be required allowing a
range of complementary interaction and circuit display
techniques to be supported. We are planning to use the
prototype and electronic whiteboard hardware in some
Year 2 Digital Electronics course tutorials to assess its
effectiveness for interactive teaching purposes. We plan
to add multiple views of complex circuits as well as
investigate specification of complex integrated circuit
components by elementary sub-circuits views. We are in
the progress of implementing a more sophisticated UML
CASE tool using this interface technology and will
evaluate its performance for collaborative design tasks
rather than tutorial-based instruction.

References

1. Apperley et al (2002): Lightweight capture of presentations

for review, In Proceedings of IHM-HCI, Lille, France,
ACM Press.

2. Apperly, M. and Plimmer, B. (2001) “Computer-Aided
Sketching to Capture Preliminary Design.” The Third
Australasian User Interfaces Conference (AUIC2002),
Australian Computer Society Inc., Melbourne, Australia.

3. Damm, C.H., Hansen, K.M. and Thomsen, M. (2000):
Tools support for co-operative object-oriented design:
Gesture based modelling on an electronic whiteboard,
Proceedings of CHI’2000, ACM Press, pp. 518-525.

4. Gross, M. and Do, E.Y-L. (1996): Amiguous intentions: a
paper-like interface for creative design, Proceedings of
UIST’1996, Seattle, WA., ACM Press, pp. 183-192.

5. Landay, J.A. and Myers, B.A. (1995): Interactive sketching
for the early stages of user interface design, Proceedings of
CHI’95, ACM Press, pp. 43-50.

6. Landay, J.A. and Myers, B.A. (2001): Sketching Interfaces:
Toward More Human Interface Design. IEEE Computer,
March 2001, IEEE CS Press.

7. Lin, J., Newman, M.W., Hong, J.I. and Landay, J. A.
(2000): Denim: Finding a tighter fit between tools and
practice for web design, Proceedings of CHI’2000, ACM
Press, pp. 510-517.

8. Myers, B.A. (1997): The Amulet Environment: New
Models for Effective User Interface Software Development,
IEEE Transactions on Software Engineering, vol. 23, no. 6,
347-365, June 1997.

9. Rubine, D. (1991): Specifying Gesture by Examples,
Computer Graphics, 25(4), pp. 329-337.

10. Smart Technologies Inc. (2002): SMART Board,
www.smarttech.com.

