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ABSTRACT 
While a service-oriented approach to software engineering has 
become popular in recent times, the actual performance of 
systems composed from many distributed parts is still largely 
unpredictable. We describe our recent research applying 
performance test-bed generation techniques to service-oriented 
architectural models as an advance on the state of the art in 
performance engineering of service-oriented software. We outline 
our related research on tools for business process composition, 
performance engineering and dynamic system architectures. 

Categories and Subject Descriptors 
D.2.2 [Design Tools and Techniques]: Computer-aided software 
engineering; D.2.8 [Metrics]: Performance measures; D.2.11 
[Software Architectures]: Domain-specific architectures. 

General Terms: Measurement, Performance, Design, 
Experimentation 

Keywords: Performance engineering, business process 
composition, domain-specific software tools, dynamic 
architectures 

1. INTRODUCTION 
The use of a service-oriented approach to software engineering 
has become popular, with a number of architectural design 
techniques, implementation technologies and exemplar 
applications having been researched in recent times [1][12]. One 
aspect of such service-oriented systems is that their component 
services can usually be composed and used in a variety of 
unplanned-for ways. A natural consequence of unpredictable 
service deployment and composition is unpredictable performance 
of the eventual composed system [1], [16]. 
We have been working on a number of related architectural 
design techniques, realization technologies and software tools 
applicable to the service-oriented software systems domain. These 
include architectural models augmented with aspects to better 
characterize  
services, dynamic discovery and composition of these augmented 
service descriptions, and various realizations of these approaches 
via both augmented implementation technologies and standard 
component technologies [10][11][14]. All of these have 
demonstrated great unpredictability in performance of the 
resultant service compositions. 
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Recently we have been extending and applying a performance 
test-bed generator, MaramaMTE [6], for use in the domain of 
service-oriented architecture performance analysis. Our eventual 
aim is to allow service compositions – both static and dynamic – 
to be modelled and performance test-beds to be generated – again 
both statically and dynamically – to assess the performance of 
both models and resultant service-oriented systems. 
We outline a motivating example for our work, the key aspects of 
our approach, the set of co-operating tools for service composition 
modelling and performance analysis, and discuss preliminary 
results from our research to date. We conclude with areas for 
continuing future research. 

2. MOTIVATION 
A classic example of a service-oriented software system is a 
travel planning application built from dynamically discovered 
web services providing travel item search (flights, cars, hotel 
rooms etc), booking, payment, event scheduling and itinerary 
management. The application may allow dynamic discovery of 
appropriate services providing these functions and multiple, 
alternative service providers may be discovered. Services may 
provide limited or comprehensive functionality. Some may be 
free, others require payment. They may be from “trusted” 
providers or unknown 3rd parties. Some may support business 
transaction models, respond faster than others to requests, or 
support security models that others don’t. An outline of such a 
system is shown in Figure 1. The client discovers various services 
from a web services registry e.g. UDDI (1). Flight searches are 
performed via various providers (2), which may use different 
protocols and data representations. Travel item bookings made 
directly or via agents (3), possibly using a payment system (such 
as credit card authorization) (4). 
Whole rafts of issues present when composing such a system from 
discrete, distributed services as opposed to a classic monolithic 
single application: 
• How to identify appropriate division of responsibility into 

services from one or more applications’ set of requirements. 
• How to implement, describe, deploy and advertise the 

constituent services. 
• How to discover, integrate with and invoke a range of 

services from multiple providers and potentially using 
incompatible protocols, data representations etc. This may 
be done statically (compile time) or dynamically (run time), 
and the composition may change at run time e.g. the service 
goes down so another is discovered and integrated to 
replace it. 

• Whether the composed set of services will meet various 
non-functional requirements of the overall application. 
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Figure 1. Travel planner service-oriented system. 

The research we describe here attempts to address the last item, 
specifically issues related to the performance of the composed 
service-oriented software system. Performance measures may 
include transactional throughput of one or multiple composed 
services and response time of a service, set of services or a client 
application to the end users. Software engineers are interested in 
how the compositions will perform, how different compositions 
may perform, how the system performs under different loading 
scenarios, and how performance may change if the service 
compositions change dynamically. Ultimately performance is but 
one non-functional requirement; others that may need assessment 
include security, transactional consistency, resource utilization, 
reliability and fault-tolerance. 

Currently there is a lack of suitable approaches and tools to 
support such performance engineering of service oriented 
systems. Various methods have been developed for performance 
engineering of highly distributed systems [4], [15]. However most 
of these assume static composition of components and often 
assume a fixed set of client and server components [2], [5]. Some 
efforts to performance engineer service-oriented architectures 
have been attempted, though usually via simulation rather than 
empirically [7], [8], [13]. Due to the complexity in performance 
engineering of large distributed systems some tools for this task 
have been developed [5], [7], [9]. However few of these have 
been applied to service-oriented software systems. There has been 
a trend to using models of software architecture to assist with 
performance engineering [3], [6], [12], [15], [16], [19]. Our work 
is closely related to this trend in its use of high-level architecture 
models, service compositions and client load models. 

3. OUR APPROACH 
Figure 2 provides an outline of our approach to performance 
engineering of service-oriented software systems. Formal models 
of service compositions are described (1) at a high level using one 
of our tools for specifying business processes and service 
composition (using either BPMN or Tool Abstraction-based 
modelling approaches). These high-level formal compositions are 
extended with a lower-level service composition model at the 
detailed service interface level (2) is then specified using the 
architecture design capabilities of our MaramaMTE performance 
test-bed generation tool. Both existing and proposed services can 
be incorporated into this model; proposed services have an 
implementation generated (3) by our service generation 

component of MaramaMTE. This latter approach can also be used 
to create a test-bed proxy for existing web services to avoid the 
need to directly interact with the live web service when estimating 
service composition performance. Client load models are 
developed in MaramaMTE (4) using another formal model, the 
form chart, to provide realistic client user interface load models. 
In addition, back-end service invocation load models can also be 
developed if required. From the composition and load models 
MaramaMTE generates one or more performance test-beds (5). 
These test-beds are executed (6) to stress-test the service 
compositions and results are presented to the engineer (7). Partial 
compositions may be tested or the entire service-oriented system. 
Compositions, load models and test descriptions can be modified 
(8) and performance tests re-run to compare different performance 
profiles. 

4. EXAMPLE USAGE 
Service compositions can be specified in three ways using our 
toolset: (1) by the use of the Business Process Modelling Notation 
[21]; (2) by use of our own ViTABaL-WS web service 
composition notation [14]; and (3) at a more detailed service 
interface level in MaramaMTE (based on the software 
architecture notation we developed for our earlier performance 
engineering tool, ArgoMTE [9]). Using BPMN has the advantage 
that it is a “standardized” approach to high-level service 
composition, where services represent business process stages and 
the notation provides a compositional metaphor. 

Figure 3 (left) shows an example BPMN process specification for 
part of the travel planning application. The diagram shows 
itinerary creation and booking confirmation process as a set of 
composed BPMN process stages. Most stages correspond to 
available services e.g. searching for flights; confirming seats; 
paying for confirmed seats. These services have been assembled 
into a composition using BPMN’s process stage compositional 
metaphor, providing a high-level compositional model. In this 
example BPMN tool, an Eclipse plug-in, we do not specify details 
of the protocols or message formats. In order to performance test 
such compositions we need to flesh out these details using 
MatamaMTE views (see below). Some of the BPMN stages 
shown here represent “error handling” for the service composition 
e.g. Notify Error and Find Alternative. These are not services at 
all but are part of the compositional logic used to resolve 
problems arising during the “normal” inter-service process flow.
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Figure 2. Performance engineering of SOAs with MaramaMTE. 
The second way to specify service compositions at a high level is 
using our ViTABaL-WS tool, another Eclipse plug-in illustrated 
in Figure 3 (right). This uses a different service composition 
metaphor based on the Tool Abstraction paradigm [14]. In this 
example two messages (itinerary updates and travel booking) are 
received by different composite “toolies” (web service 
compositions), which invoke other services to carry out the 
composite business processes (updating the travel itinerary data to 
add/remove planned seats and to confirm/pay for seats 
respectively). Services are characterized as process-centric 
(ovals), data-centric (squares, e.g. flights and itinerary at the 
bottom) and  exception-handling (e.g. find alternative at the 
bottom right). Again some of these “services” may be indeed 
discrete, remote service components e.g. a web service, while 
others are themselves composites or error handling logic for the 
composition. Unlike our BPMN modeling tool, ViTABaL-WS 
supports specification of message formats and port details for web 
services, i.e. more detailed service-oriented architecture 

information. While the services composed and inter-service 
messages are in common between BPMN and ViTABaL-WS, 
their compositional metaphors and constructs differ. BPMN is 
message-flow oriented while ViTABaL-WS supports event and 
control synchronisation. Their error handling specifications are 
quite different as are their abstractive approaches (enclosure vs 
drill-down. 

We export from these high-level service composition views a 
formal model of the BPMN and ViTABaL-WS composite 
specifications. These are complementary and provide our 
MaramaMTE tool two overlapping architectural models that are 
used to assemble a partial architectural model for the target 
service-oriented software system. However, in order to run 
performance tests on these compositions further information must 
be supplied, including host/port information for each service; full 
message structure details; and a loading model for the “client” for 
each service composition.  

 

 
Figure 3. BPMN and ViTABaL-WS service compositions. 



 

 

 
Figure 4. MaramaMTE Architecture view of service-oriented system. 

Some of this information can be obtained automatically e.g. 
message format extracted from a Web Service Description 
Language (WSDL) document for a service. Other information 
must be supplied via MaramaMTE’s architectural modelling 
view. 

An example, part of the service-oriented architecture model for 
the travel planner is shown in Figure 4. This focuses on the flights 
server which provides three services: finding flights, finding 
available seats for a flight and reserving one or more seats. Each 
service has a host/port, input message format and response 
message format. A client load test that invokes these flights 
services (i.e. is  a composition of these services) is shown on the 
left hand side at top, while another service that invokes the seat 
reservation service is shown left hand side at bottom. 

In this example we also specify relationships from the services to 
a database, shown on the right hand side (AirNZFlightsDB) and 
database tables (flights and seats). This information is used to 
synthesise code for each service if the service doesn’t yet exist i.e. 
to generate a performance test-bed for the services. The 
MaramaMTE user specifies request details for each service e.g. 
for the reserveSeat service there are two database requests, the 
first doing database select the second an insert. If a service 
already exists and we wish to performance test the real service the 
architect instead specifies information to construct a test input 
message to send to the service.  

The example client load specification, FlightSearchTest1, is 
shown for one of the composites from Figure 3, the flight search 
and seat selection service composition. This simple load test 
describes a flight search/seat selection composite service 
invocation scenario with example user input data, user delay and 
user selection of service invocation result. In the property view in 

the screen dump on the right is shown some of the properties of 
one of the client load test requests to the findFlight service.  

MaramaMTE generates code to implement this test (either a Java 
application, a Microsoft Application Centre Test load testing tool 
script or an Apache JMeter load testing tool script, depending on 
whether the actual client is intended to be an application or web 
browser). This simple load test when run will call the findFlight, 
findSeats and reserveSeat services multiple times with example 
message input data and delays between each mimicking client 
application delays. Multiple concurrent instances of this example 
load test can be run by multi-threading or even running single 
instances on multiple hosts [9]. 

The simple loading tests as illustrated above have proved to be 
accurate across a range of applications for stress testing the likely 
maximum throughput performance and concurrent usage of 
service compositions [6], [9]. However they are quite limited in 
terms of representing actual service client behaviour, especially 
when the client of a service composition is e.g. a web browser 
with user interaction. To this end we have developed a new client 
load modelling technique based on the Form Charts formalism 
[6]. An example of such a model is shown in Figure 5. A form 
chart specification models how users interact with 
submit/response type interfaces, like a web browser, and is 
composed of pages (ovals) and actions (rectangles). Each 
transition link from a page to an action to the next page has a 
probability assigned, and each page specifies a stochastic model 
to use to calculate likely user delay while viewing the page/filling 
out a web form before selecting an action. In this example the 
initial starting page is “login”, which is denoted by the transition 
like from this form chart test, BookingTest1.  

 



 

 
Figure 5. MaramaMTE example client load model view. 

This example form chart model captures part of the flight 
search/seat selection and seat booking process a user would see 
realised in a web browser as a set of pages (login, mainMenu, 
flightSearch, addFlight, bookFlights). Each page has one or more 
actions the user can perform with different likelihood (e.g. find 
flights, book flights and logout for the mainMenu). 

The architect specifies the service to invoke for each page (a 
URL), example form data to send to the service, and a stochastic 
delay algorithm and parameters (random delay, fixed, normal 
curve, based on historical data, or no delay).From this form chart 
model a more complete loading test for the service compositions 
can be generated – we generate a Java program implementing a 
state chart for the model – and run to stress test the composition. 
Again, multiple concurrent state chart programs can be run via 
threading or deployment of the generated Java client application 
to multiple hosts. 

Results are collected from execution of the generated Java client 
program, possibly many multiple concurrent runs, and reported to 
the architect. Figure 6 shows an example of results for 10 
concurrent threads of the form chart load model specified in 
Figure 5 on our exemplar travel planner service-oriented software 
system. Even though this is a simplistic example and we have 
generated stub code for the services from MaramaMTE (each 
service is simply a set of database operations via JDBC to a SQL 
Server database), some interesting results can be observed. 
Because this test run was made with client, services and database 
for services all running in the same host, the average time for all 
services is very low. However, concurrent service invocation 
causes bottlenecks and delays for the mainMenu and flightSearch 
services. The seat selection and booking confirmation for chosen 
seats use less time on average despite being more complex 

services as they don’t suffer from much contention with only 10 
concurrent users. 
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Figure 6. Results of a performance test run. 

The software architect can use our tool suite to quickly modify a 
range of architectural, design and test properties and then re-run 
the load tests and compare results. For example: 

• Merging or splitting service compositions in the BPMN 
and ViTABaL-WS tools will result in merging or 
splitting services in the MaramaMTE architectural 
model. This can dramatically impact performance e.g. 



putting the flights and seats in different databases and 
accessed by services on different hosts will reduce 
performance under light loading (more communication) 
but potentially increase it under heavy loading (less 
network, thread pool and database pool contention); 

• Using different database commands, service-to-service 
vs service-to-database and enabling simple cache code 
generation in the MaramaMTE architecture tool all 
impact performance e.g. less or more time in database; 
more realistic test data used cause database page hits to 
reduce; transaction commits for database in different 
places reduce/increase overheads; and cache hits reduce 
read time but distributed cache synchronisation may 
impact write time severely. 

• Using different stochastic models for the form chart 
pages increase or reduce concurrent service invocations; 
increasing concurrent Java form chart-generated  client 
load application runs increases concurrent accesses to 
services; using real historical data to replay service 
messages from generated client load application instead 
of stochastic model gives more realistic service loading 
tests. 

Our current tool prototypes are all Eclipse plug-ins implemented 
with the help of a meta-tool generator. The architecture models in 
MaramaMTE are represented in an XMI format but currently do 
not leverage any standardised architectural representation model. 
The stub service code, client load test code and scripts, and form 
chart-generated Java code are all written to the Eclipse workspace 
and are synchronised with the Eclipse Java Development Toolkit, 
allowing on-the-fly re-generation, compilation and loading test 
runs. 

5. DISCUSSION 
Our approach, as currently implemented, has a number of 
strengths to it. Firstly, the suite of visual specification languages 
makes it very quick and straightforward to specify and generate 
both service compositions and test-beds for estimating the 
performance of those compositions. Implementers have a choice 
of modelling paradigms they can use and can approach modelling 
at several different levels of abstraction, from very high level 
process oriented descriptions through to detailed architectural 
views. The modelling tools are integrated into the commonly used 
Eclipse development environment. 

Secondly test beds can be generated for either complete systems 
with fully implemented components or partial systems with stub 
implementations acting as proxies for either existing or yet to be 
developed services. The simplicity of the modelling approaches 
and the automatic generation capability means that compositions 
can be rapidly changed and tests re-run to empirically determine 
optimal configurations without significant programming 
overhead. Progressively exchanging proxy stubs for live services 
means an iterative approach can be taken to developing and 
testing a complete service composition. Extracting the 
specifications for newly developed or discovered services via 
WSDL or similar descriptions allows the MaramaMTE 
architectural models to be extended as required. 

Our current implementation has a number of limitations with 
respect to addressing the issues identified in Section 2. Firstly, our 

modelling languages currently only support static compositions, 
with no support yet existing for dynamic discovery. Extending 
our approach to support this could be handled at two levels. On 
the one hand, at the level of modelling using our existing tools, it 
would be very straightforward to add support for interrogating a 
UDDI repository to provide candidate services to be added as 
model elements when designing compositions, i.e. a form of 
dynamic library support for the design tools. On the other hand, 
and with more difficulty, additional modelling elements could be 
added to our modelling languages representing dynamically 
selected services. These could specify a UDDI repository that, in 
the generated implementation, is interrogated to supply an 
appropriate service which is dynamically connected to. These 
elements could also specify a strategy to follow in selecting 
candidate services. Performance estimation in such cases is more 
difficult as the performance will depend on the particular service 
discovered at any time. Problematically, standard UDDI 
repositories lack sufficient detail in their service descriptions to 
allow an informed choice of service. We have been investigating 
aspect oriented extensions to WSDL to provide this type of detail 
for aspects such as performance [18]. 

Secondly, and related to the latter point, the system currently 
makes no use of service level agreements or contract 
specifications to judge the results. This would be relatively 
straightforward for us to add and some existing tools could be 
leveraged to both support SLA authoring and management [20]. 
This is one aspect of a broader limitation: as it stands the system 
has very limited oracle capability. It is incumbent on the end user 
to interpret the results presented rather than being provided with 
assistance in understanding whether they are “reasonable”. Our 
plan is to integrate aspect-based specifications of web services 
and their compositions into both our high-level composition tools 
and into MaramaMTE [18]. We have used these to support rich, 
concern-based querying and dynamic integration of dynamic web 
services. Using them to assist specifying SLAs for services will 
also allow dynamic service composition performance test 
generation and test evaluation.  

Thirdly from MatamaMTE we generate to a limited set of 
implementation technologies, currently only to Java RMI and 
HTTP invocations. This is sufficient to prove the overall concept 
of our approach but insufficient for serious service-oriented 
architecture performance analysis. Adding code generation for 
extra technologies, particularly SOAP, .NET remoting and J2EE 
message-driven beans is relatively straightforward with the 
implementation framework and meta tool we are using. Indeed we 
supported all of these target technologies in our earlier Argo/MTE 
performance test bed generator [9].  

We currently generate a state machine to implement the form 
chart-based client load tests using a stochastic model for client 
interaction and very limited use of historical usage data and server 
responses to requests [6]. We are planning further work to explore 
the use of web application session and history capture techniques 
[17] to provide highly realistic service-oriented software system 
loading. 

Finally the system has no support for asynchronous performance 
evaluation. This has been shown to be a very challenging area for 
assessing component-based software system performance, both 
using (hand-coded) empirical performance test-beds and 
simulation models [4][15]. We are planning further work using 



such techniques with our MaramaMTE test-bed generator to 
explore asynchronous service-oriented architecture performance 
analysis. 

Key areas of future work include support for dynamic service 
discovery service adaptation, incorporation of aspect-based and 
other service level agreement approaches in both the specification 
of compositions and analysis of results, and extension to cover 
additional technologies. In addition, we have plans to improve the 
visualization of results. In particular we intend to add a more 
dynamic visualization of system performance providing the 
ability to capture and replay the load on services to observe 
temporal variations. This will assist architects locating potential 
performance issues arising from service compositions. 

6. CONCLUSIONS 
We have described a novel approach that allows specification and 
generation of both actual service compositions and test-beds for 
estimating service composition performance. The tool suite we 
have developed supports modeling of compositions using a 
variety of abstractions. The test-beds generate deployable code 
rather than using a simulation based approach. The tool suite is at 
a proof of concept stage, currently having been applied to only a 
limited range of problems and generating only to a limited set of 
implementation technologies. Nevertheless, results are 
encouraging and the tool suite is readily extensible to make it 
more practically usable. 
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