
Performance Engineering of Service Compositions
John Grundy

Dept Electrical and Computer Engineering & Dept
Computer Science

University of Auckland, Private Bag 92019
Auckland, New Zealand

+64-9-3737-599
john-g@cs.auckland.ac.nz

John Hosking, Lei Li and Na Liu
Dept Computer Science
University of Auckland

Private Bag 92019
Auckland, New Zealand

+64-9-3737-599
john@cs.auckland.ac.nz

ABSTRACT
While a service-oriented approach to software engineering has
become popular in recent times, the actual performance of
systems composed from many distributed parts is still largely
unpredictable. We describe our recent research applying
performance test-bed generation techniques to service-oriented
architectural models as an advance on the state of the art in
performance engineering of service-oriented software. We outline
our related research on tools for business process composition,
performance engineering and dynamic system architectures.

Categories and Subject Descriptors
D.2.2 [Design Tools and Techniques]: Computer-aided software
engineering; D.2.8 [Metrics]: Performance measures; D.2.11
[Software Architectures]: Domain-specific architectures.

General Terms: Measurement, Performance, Design,
Experimentation

Keywords: Performance engineering, business process
composition, domain-specific software tools, dynamic
architectures

1. INTRODUCTION
The use of a service-oriented approach to software engineering
has become popular, with a number of architectural design
techniques, implementation technologies and exemplar
applications having been researched in recent times [1][12]. One
aspect of such service-oriented systems is that their component
services can usually be composed and used in a variety of
unplanned-for ways. A natural consequence of unpredictable
service deployment and composition is unpredictable performance
of the eventual composed system [1], [16].
We have been working on a number of related architectural
design techniques, realization technologies and software tools
applicable to the service-oriented software systems domain. These
include architectural models augmented with aspects to better
characterize
services, dynamic discovery and composition of these augmented
service descriptions, and various realizations of these approaches
via both augmented implementation technologies and standard
component technologies [10][11][14]. All of these have
demonstrated great unpredictability in performance of the
resultant service compositions.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
IW-SOSE’06, May 27–28, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005...$5.00.

Recently we have been extending and applying a performance
test-bed generator, MaramaMTE [6], for use in the domain of
service-oriented architecture performance analysis. Our eventual
aim is to allow service compositions – both static and dynamic –
to be modelled and performance test-beds to be generated – again
both statically and dynamically – to assess the performance of
both models and resultant service-oriented systems.
We outline a motivating example for our work, the key aspects of
our approach, the set of co-operating tools for service composition
modelling and performance analysis, and discuss preliminary
results from our research to date. We conclude with areas for
continuing future research.

2. MOTIVATION
A classic example of a service-oriented software system is a
travel planning application built from dynamically discovered
web services providing travel item search (flights, cars, hotel
rooms etc), booking, payment, event scheduling and itinerary
management. The application may allow dynamic discovery of
appropriate services providing these functions and multiple,
alternative service providers may be discovered. Services may
provide limited or comprehensive functionality. Some may be
free, others require payment. They may be from “trusted”
providers or unknown 3rd parties. Some may support business
transaction models, respond faster than others to requests, or
support security models that others don’t. An outline of such a
system is shown in Figure 1. The client discovers various services
from a web services registry e.g. UDDI (1). Flight searches are
performed via various providers (2), which may use different
protocols and data representations. Travel item bookings made
directly or via agents (3), possibly using a payment system (such
as credit card authorization) (4).
Whole rafts of issues present when composing such a system from
discrete, distributed services as opposed to a classic monolithic
single application:
• How to identify appropriate division of responsibility into

services from one or more applications’ set of requirements.
• How to implement, describe, deploy and advertise the

constituent services.
• How to discover, integrate with and invoke a range of

services from multiple providers and potentially using
incompatible protocols, data representations etc. This may
be done statically (compile time) or dynamically (run time),
and the composition may change at run time e.g. the service
goes down so another is discovered and integrated to
replace it.

• Whether the composed set of services will meet various
non-functional requirements of the overall application.

Travel Planner
Client

findFlights()
bookFlights()
payBookings()
cancelBook()

Flights Search
#1

findFlights()
bookFlights()

Flights Search
#2

findFlights()

Agent #1

bookItems()
doPayment()
undoBooking()

Payment

processPayment()

BTP Service

Register()
Commit()
Rollback()

UDDI

Payment Adaptor
doPayment()
creditReversal()

2

1

3

4

Figure 1. Travel planner service-oriented system.

The research we describe here attempts to address the last item,
specifically issues related to the performance of the composed
service-oriented software system. Performance measures may
include transactional throughput of one or multiple composed
services and response time of a service, set of services or a client
application to the end users. Software engineers are interested in
how the compositions will perform, how different compositions
may perform, how the system performs under different loading
scenarios, and how performance may change if the service
compositions change dynamically. Ultimately performance is but
one non-functional requirement; others that may need assessment
include security, transactional consistency, resource utilization,
reliability and fault-tolerance.

Currently there is a lack of suitable approaches and tools to
support such performance engineering of service oriented
systems. Various methods have been developed for performance
engineering of highly distributed systems [4], [15]. However most
of these assume static composition of components and often
assume a fixed set of client and server components [2], [5]. Some
efforts to performance engineer service-oriented architectures
have been attempted, though usually via simulation rather than
empirically [7], [8], [13]. Due to the complexity in performance
engineering of large distributed systems some tools for this task
have been developed [5], [7], [9]. However few of these have
been applied to service-oriented software systems. There has been
a trend to using models of software architecture to assist with
performance engineering [3], [6], [12], [15], [16], [19]. Our work
is closely related to this trend in its use of high-level architecture
models, service compositions and client load models.

3. OUR APPROACH
Figure 2 provides an outline of our approach to performance
engineering of service-oriented software systems. Formal models
of service compositions are described (1) at a high level using one
of our tools for specifying business processes and service
composition (using either BPMN or Tool Abstraction-based
modelling approaches). These high-level formal compositions are
extended with a lower-level service composition model at the
detailed service interface level (2) is then specified using the
architecture design capabilities of our MaramaMTE performance
test-bed generation tool. Both existing and proposed services can
be incorporated into this model; proposed services have an
implementation generated (3) by our service generation

component of MaramaMTE. This latter approach can also be used
to create a test-bed proxy for existing web services to avoid the
need to directly interact with the live web service when estimating
service composition performance. Client load models are
developed in MaramaMTE (4) using another formal model, the
form chart, to provide realistic client user interface load models.
In addition, back-end service invocation load models can also be
developed if required. From the composition and load models
MaramaMTE generates one or more performance test-beds (5).
These test-beds are executed (6) to stress-test the service
compositions and results are presented to the engineer (7). Partial
compositions may be tested or the entire service-oriented system.
Compositions, load models and test descriptions can be modified
(8) and performance tests re-run to compare different performance
profiles.

4. EXAMPLE USAGE
Service compositions can be specified in three ways using our
toolset: (1) by the use of the Business Process Modelling Notation
[21]; (2) by use of our own ViTABaL-WS web service
composition notation [14]; and (3) at a more detailed service
interface level in MaramaMTE (based on the software
architecture notation we developed for our earlier performance
engineering tool, ArgoMTE [9]). Using BPMN has the advantage
that it is a “standardized” approach to high-level service
composition, where services represent business process stages and
the notation provides a compositional metaphor.

Figure 3 (left) shows an example BPMN process specification for
part of the travel planning application. The diagram shows
itinerary creation and booking confirmation process as a set of
composed BPMN process stages. Most stages correspond to
available services e.g. searching for flights; confirming seats;
paying for confirmed seats. These services have been assembled
into a composition using BPMN’s process stage compositional
metaphor, providing a high-level compositional model. In this
example BPMN tool, an Eclipse plug-in, we do not specify details
of the protocols or message formats. In order to performance test
such compositions we need to flesh out these details using
MatamaMTE views (see below). Some of the BPMN stages
shown here represent “error handling” for the service composition
e.g. Notify Error and Find Alternative. These are not services at
all but are part of the compositional logic used to resolve
problems arising during the “normal” inter-service process flow.

1. Model compositions e.g.
in BPMN, ViTABaL-WS

MaramaMTE

Import

2. Model detailed architecture
in MaramaMTE

4. Model client loads in
MaramaMTE

3. Generate service stub code
from MaramaMTE

6. Run generated performance
tests & collect results

7. Analyse and visualise
performance test results

8. Modify compositions and
re-test…

MaramaMTE

MaramaMTE

MaramaMTE

MaramaMTE

MaramaMTE

5. Generate client loading tests
from MaramaMTE

Figure 2. Performance engineering of SOAs with MaramaMTE.
The second way to specify service compositions at a high level is
using our ViTABaL-WS tool, another Eclipse plug-in illustrated
in Figure 3 (right). This uses a different service composition
metaphor based on the Tool Abstraction paradigm [14]. In this
example two messages (itinerary updates and travel booking) are
received by different composite “toolies” (web service
compositions), which invoke other services to carry out the
composite business processes (updating the travel itinerary data to
add/remove planned seats and to confirm/pay for seats
respectively). Services are characterized as process-centric
(ovals), data-centric (squares, e.g. flights and itinerary at the
bottom) and exception-handling (e.g. find alternative at the
bottom right). Again some of these “services” may be indeed
discrete, remote service components e.g. a web service, while
others are themselves composites or error handling logic for the
composition. Unlike our BPMN modeling tool, ViTABaL-WS
supports specification of message formats and port details for web
services, i.e. more detailed service-oriented architecture

information. While the services composed and inter-service
messages are in common between BPMN and ViTABaL-WS,
their compositional metaphors and constructs differ. BPMN is
message-flow oriented while ViTABaL-WS supports event and
control synchronisation. Their error handling specifications are
quite different as are their abstractive approaches (enclosure vs
drill-down.

We export from these high-level service composition views a
formal model of the BPMN and ViTABaL-WS composite
specifications. These are complementary and provide our
MaramaMTE tool two overlapping architectural models that are
used to assemble a partial architectural model for the target
service-oriented software system. However, in order to run
performance tests on these compositions further information must
be supplied, including host/port information for each service; full
message structure details; and a loading model for the “client” for
each service composition.

Figure 3. BPMN and ViTABaL-WS service compositions.

Figure 4. MaramaMTE Architecture view of service-oriented system.

Some of this information can be obtained automatically e.g.
message format extracted from a Web Service Description
Language (WSDL) document for a service. Other information
must be supplied via MaramaMTE’s architectural modelling
view.

An example, part of the service-oriented architecture model for
the travel planner is shown in Figure 4. This focuses on the flights
server which provides three services: finding flights, finding
available seats for a flight and reserving one or more seats. Each
service has a host/port, input message format and response
message format. A client load test that invokes these flights
services (i.e. is a composition of these services) is shown on the
left hand side at top, while another service that invokes the seat
reservation service is shown left hand side at bottom.

In this example we also specify relationships from the services to
a database, shown on the right hand side (AirNZFlightsDB) and
database tables (flights and seats). This information is used to
synthesise code for each service if the service doesn’t yet exist i.e.
to generate a performance test-bed for the services. The
MaramaMTE user specifies request details for each service e.g.
for the reserveSeat service there are two database requests, the
first doing database select the second an insert. If a service
already exists and we wish to performance test the real service the
architect instead specifies information to construct a test input
message to send to the service.

The example client load specification, FlightSearchTest1, is
shown for one of the composites from Figure 3, the flight search
and seat selection service composition. This simple load test
describes a flight search/seat selection composite service
invocation scenario with example user input data, user delay and
user selection of service invocation result. In the property view in

the screen dump on the right is shown some of the properties of
one of the client load test requests to the findFlight service.

MaramaMTE generates code to implement this test (either a Java
application, a Microsoft Application Centre Test load testing tool
script or an Apache JMeter load testing tool script, depending on
whether the actual client is intended to be an application or web
browser). This simple load test when run will call the findFlight,
findSeats and reserveSeat services multiple times with example
message input data and delays between each mimicking client
application delays. Multiple concurrent instances of this example
load test can be run by multi-threading or even running single
instances on multiple hosts [9].

The simple loading tests as illustrated above have proved to be
accurate across a range of applications for stress testing the likely
maximum throughput performance and concurrent usage of
service compositions [6], [9]. However they are quite limited in
terms of representing actual service client behaviour, especially
when the client of a service composition is e.g. a web browser
with user interaction. To this end we have developed a new client
load modelling technique based on the Form Charts formalism
[6]. An example of such a model is shown in Figure 5. A form
chart specification models how users interact with
submit/response type interfaces, like a web browser, and is
composed of pages (ovals) and actions (rectangles). Each
transition link from a page to an action to the next page has a
probability assigned, and each page specifies a stochastic model
to use to calculate likely user delay while viewing the page/filling
out a web form before selecting an action. In this example the
initial starting page is “login”, which is denoted by the transition
like from this form chart test, BookingTest1.

Figure 5. MaramaMTE example client load model view.

This example form chart model captures part of the flight
search/seat selection and seat booking process a user would see
realised in a web browser as a set of pages (login, mainMenu,
flightSearch, addFlight, bookFlights). Each page has one or more
actions the user can perform with different likelihood (e.g. find
flights, book flights and logout for the mainMenu).

The architect specifies the service to invoke for each page (a
URL), example form data to send to the service, and a stochastic
delay algorithm and parameters (random delay, fixed, normal
curve, based on historical data, or no delay).From this form chart
model a more complete loading test for the service compositions
can be generated – we generate a Java program implementing a
state chart for the model – and run to stress test the composition.
Again, multiple concurrent state chart programs can be run via
threading or deployment of the generated Java client application
to multiple hosts.

Results are collected from execution of the generated Java client
program, possibly many multiple concurrent runs, and reported to
the architect. Figure 6 shows an example of results for 10
concurrent threads of the form chart load model specified in
Figure 5 on our exemplar travel planner service-oriented software
system. Even though this is a simplistic example and we have
generated stub code for the services from MaramaMTE (each
service is simply a set of database operations via JDBC to a SQL
Server database), some interesting results can be observed.
Because this test run was made with client, services and database
for services all running in the same host, the average time for all
services is very low. However, concurrent service invocation
causes bottlenecks and delays for the mainMenu and flightSearch
services. The seat selection and booking confirmation for chosen
seats use less time on average despite being more complex

services as they don’t suffer from much contention with only 10
concurrent users.

Travel run example

0

5

10

15

20

25

30

35

log
in

main
Men

u

flig
htS

ea
rch

bo
ok

Flig
hts

ad
dF

lig
ht

service

tim
e # visits

ave time (ms)

T ot al t ime t aken (ms)

login

mainMenu

f l ightSear ch

bookFl ights

addFl ight

Figure 6. Results of a performance test run.

The software architect can use our tool suite to quickly modify a
range of architectural, design and test properties and then re-run
the load tests and compare results. For example:

• Merging or splitting service compositions in the BPMN
and ViTABaL-WS tools will result in merging or
splitting services in the MaramaMTE architectural
model. This can dramatically impact performance e.g.

putting the flights and seats in different databases and
accessed by services on different hosts will reduce
performance under light loading (more communication)
but potentially increase it under heavy loading (less
network, thread pool and database pool contention);

• Using different database commands, service-to-service
vs service-to-database and enabling simple cache code
generation in the MaramaMTE architecture tool all
impact performance e.g. less or more time in database;
more realistic test data used cause database page hits to
reduce; transaction commits for database in different
places reduce/increase overheads; and cache hits reduce
read time but distributed cache synchronisation may
impact write time severely.

• Using different stochastic models for the form chart
pages increase or reduce concurrent service invocations;
increasing concurrent Java form chart-generated client
load application runs increases concurrent accesses to
services; using real historical data to replay service
messages from generated client load application instead
of stochastic model gives more realistic service loading
tests.

Our current tool prototypes are all Eclipse plug-ins implemented
with the help of a meta-tool generator. The architecture models in
MaramaMTE are represented in an XMI format but currently do
not leverage any standardised architectural representation model.
The stub service code, client load test code and scripts, and form
chart-generated Java code are all written to the Eclipse workspace
and are synchronised with the Eclipse Java Development Toolkit,
allowing on-the-fly re-generation, compilation and loading test
runs.

5. DISCUSSION
Our approach, as currently implemented, has a number of
strengths to it. Firstly, the suite of visual specification languages
makes it very quick and straightforward to specify and generate
both service compositions and test-beds for estimating the
performance of those compositions. Implementers have a choice
of modelling paradigms they can use and can approach modelling
at several different levels of abstraction, from very high level
process oriented descriptions through to detailed architectural
views. The modelling tools are integrated into the commonly used
Eclipse development environment.

Secondly test beds can be generated for either complete systems
with fully implemented components or partial systems with stub
implementations acting as proxies for either existing or yet to be
developed services. The simplicity of the modelling approaches
and the automatic generation capability means that compositions
can be rapidly changed and tests re-run to empirically determine
optimal configurations without significant programming
overhead. Progressively exchanging proxy stubs for live services
means an iterative approach can be taken to developing and
testing a complete service composition. Extracting the
specifications for newly developed or discovered services via
WSDL or similar descriptions allows the MaramaMTE
architectural models to be extended as required.

Our current implementation has a number of limitations with
respect to addressing the issues identified in Section 2. Firstly, our

modelling languages currently only support static compositions,
with no support yet existing for dynamic discovery. Extending
our approach to support this could be handled at two levels. On
the one hand, at the level of modelling using our existing tools, it
would be very straightforward to add support for interrogating a
UDDI repository to provide candidate services to be added as
model elements when designing compositions, i.e. a form of
dynamic library support for the design tools. On the other hand,
and with more difficulty, additional modelling elements could be
added to our modelling languages representing dynamically
selected services. These could specify a UDDI repository that, in
the generated implementation, is interrogated to supply an
appropriate service which is dynamically connected to. These
elements could also specify a strategy to follow in selecting
candidate services. Performance estimation in such cases is more
difficult as the performance will depend on the particular service
discovered at any time. Problematically, standard UDDI
repositories lack sufficient detail in their service descriptions to
allow an informed choice of service. We have been investigating
aspect oriented extensions to WSDL to provide this type of detail
for aspects such as performance [18].

Secondly, and related to the latter point, the system currently
makes no use of service level agreements or contract
specifications to judge the results. This would be relatively
straightforward for us to add and some existing tools could be
leveraged to both support SLA authoring and management [20].
This is one aspect of a broader limitation: as it stands the system
has very limited oracle capability. It is incumbent on the end user
to interpret the results presented rather than being provided with
assistance in understanding whether they are “reasonable”. Our
plan is to integrate aspect-based specifications of web services
and their compositions into both our high-level composition tools
and into MaramaMTE [18]. We have used these to support rich,
concern-based querying and dynamic integration of dynamic web
services. Using them to assist specifying SLAs for services will
also allow dynamic service composition performance test
generation and test evaluation.

Thirdly from MatamaMTE we generate to a limited set of
implementation technologies, currently only to Java RMI and
HTTP invocations. This is sufficient to prove the overall concept
of our approach but insufficient for serious service-oriented
architecture performance analysis. Adding code generation for
extra technologies, particularly SOAP, .NET remoting and J2EE
message-driven beans is relatively straightforward with the
implementation framework and meta tool we are using. Indeed we
supported all of these target technologies in our earlier Argo/MTE
performance test bed generator [9].

We currently generate a state machine to implement the form
chart-based client load tests using a stochastic model for client
interaction and very limited use of historical usage data and server
responses to requests [6]. We are planning further work to explore
the use of web application session and history capture techniques
[17] to provide highly realistic service-oriented software system
loading.

Finally the system has no support for asynchronous performance
evaluation. This has been shown to be a very challenging area for
assessing component-based software system performance, both
using (hand-coded) empirical performance test-beds and
simulation models [4][15]. We are planning further work using

such techniques with our MaramaMTE test-bed generator to
explore asynchronous service-oriented architecture performance
analysis.

Key areas of future work include support for dynamic service
discovery service adaptation, incorporation of aspect-based and
other service level agreement approaches in both the specification
of compositions and analysis of results, and extension to cover
additional technologies. In addition, we have plans to improve the
visualization of results. In particular we intend to add a more
dynamic visualization of system performance providing the
ability to capture and replay the load on services to observe
temporal variations. This will assist architects locating potential
performance issues arising from service compositions.

6. CONCLUSIONS
We have described a novel approach that allows specification and
generation of both actual service compositions and test-beds for
estimating service composition performance. The tool suite we
have developed supports modeling of compositions using a
variety of abstractions. The test-beds generate deployable code
rather than using a simulation based approach. The tool suite is at
a proof of concept stage, currently having been applied to only a
limited range of problems and generating only to a limited set of
implementation technologies. Nevertheless, results are
encouraging and the tool suite is readily extensible to make it
more practically usable.

7. REFERENCES
[1] R. Agrawal, R. Bayardo, D. Gruhl, and S. Papdimitriou.

Vinci: A service-oriented architecture for rapid development
of web applications. In WWW10, Hongkong, May 2001.

[2] F. Andolfi, F. Aquilani, S. Balsamo, and P. Inverardi,
Deriving Performance Models of Software Architectures
from Message Sequence Charts ACM Proc. Second Int'l
Workshop Software and Performance, pp. 47-57, 2000.

[3] F. Aquilani, S. Balsamo, and P. Inverardi, Performance
Analysis at the Software Architecture Design Level,
Performance Evaluation, vol. 45, no. 4, pp. 205-221, 2001.

[4] S. Chen, Y. Liu, I. Gorton, A. Liu: Performance prediction of
component-based applications. Journal of Systems and
Software 74(1), 2005, pp. 35-43.

[5] V. Cortellessa, and R. Mirandola, Deriving a Queuing
Network Based Performance Model from UML Diagrams
ACM Proc. Int'l Workshop Software and Performance, pp.
58-70, 2000.

[6] D. Darheim, J. Grundy, J. Hosking, C. Lutteroth, G. Weber,
Realistic Load Testing of Web Applications, In Proceedings
of 10th European Conference on Software Maintenance and
Reengineering, Bari, Italy, 22-24 March 2006.

[7] M. Gerndt, Automatic performance analysis tools for the
Grid, Concurrency and computation: practice and
experience, 2005, Volume 17.

[8] I. Gourlay, M. Haji and K. Djemame. Performance
Evaluation of a SNAP-based Grid Resource Broker,
Proceedings of the 1st European Performance Engineering
Workshop (EPEW'2004), Toledo, Spain, September 2004.

[9] J. Grundy, Y. Cai and A. Liu, SoftArch/MTE: Generating
Distributed System Test-beds from High-level Software
Architecture Descriptions, Automated Software Engineering,
Kluwer Academic Publishers, vol. 12, no. 1, January 2005,
pp. 5-39.

[10] J.C. Grundy and J.G. Hosking, Engineering plug-in software
components to support collaborative work, Software –
Practice and Experience, vol. 32, Wiley, pp. 983-1013, 2002.

[11] J.C. Grundy, G. Ding, and J.G. Hosking, Deployed Software
Component Testing using Dynamic Validation Agents,
Journal of Systems and Software: Special Issue on
Automated Component-based Software Engineering, vol. 74,
no. 1, January 2005, Elsevier, pp. 5-14.

[12] R. Heckel, R. and M. Lohmann, Towards Contract-based
Testing of Web Services, Electronic Notes in Theoretical
Computer Science Vol. 82 No. 6, 2003.

[13] M. Kano, A. Koide, T.-K. Liu, and B. Ramachandran,
Analysis and simulation of business solutions in a service-
oriented architecture, IBM Systems Journal, Volume 44,
Number 4, 2005.

[14] N. Liu, J.C. Grundy, J.G. Hosking, A visual language and
environment for composing web services, In Proceedings of
the 2005 ACM/IEEE International Conference on Automated
Software Engineering, Long Beach, California, Nov 7-11
2005, IEEE Press, pp. 321-324.

[15] Y. Liu, I. Gorton, Performance Prediction of J2EE
Applications Using Messaging Protocols. Proceedings of
2005 Symposium on Component-based Software
Engineering, 2005, pp. 1-16.

[16] A. Mos and J. Murphy, A Framework for Performance
Monitoring, Modelling and Prediction of Component
Oriented Distributed Systems, Proc. of ACM 3rd
International Workshop on Software and Performance, pp.
235-236, ACM Press, Rome, Italy, July 2002.

[17] S. Sprenkle, E. Gibson, S. Sampath, L. Pollock, Automated
Replay and Failure Detection for Web Applications, In
proceedings of the 2005IEEE/ACM International Conference
on Automated Software Engineering, November 2005.

[18] S. Singh, J.C. Grundy, J.G. Hosking, and J. Sun, An
Architecture for Developing Aspect-Oriented Web Services,
In Proceedings of the 2005 European Conference on Web
Services, Vaxjo, Sweden, Nov 14-16 2005, IEEE Press.

[19] J. Skene and W. Emerick, Model Driven Performance
Analysis of Enterprise Information Systems, Electronic
Notes in Theoretical Computer Science Vol. 82 No. 6
(2003).

[20] J. Skene, D. Lamanna, W. Emerick, Precise service-level
agreements, In 26th International Conference on Software
Engineering, 2004, pp. 179-188.

[21] S.A. White, An introduction to BPMN, IBM, May 2004,
http://www.bpmn.org/

