
Preprint of paper published in Interacting with Computers, vol. 14, no. 3, © Elsevier Science Publishers.

Developing Adaptable User Interfaces for Component-based Systems

John Grundy1, 2 and John Hosking1

Department of Computer Science1 and Department of Electrical and Electronic Engineering1, 2,
University of Auckland, Private Bag 92019, Auckland, New Zealand

{john-g, john}@cs.auckland.ac.nz

Abstract

Software components are becoming increasingly

popular design and implementation technologies that can
be plugged and played to provide user-enhanceable
software. However, developing software components with
user interfaces that can be adapted to diverse reuse
situations is challenging. Examples of such adaptations
include extending, composing and reconfiguring multiple
component user interfaces, and adapting component user
interfaces to particular user preferences, roles and
subtasks. We describe our recent work in facilitating such
adaptation via the concept of user interface aspects, which
support effective component user interface design and
realisation using an extended, component-based software
architecture.

Keywords: component-based user interfaces, user
interface adaptation, software architecture

1. Introduction

Component-based software applications are composed

from diverse software components (software "building
blocks") to form an application [1, 19, 24, 25].
Developers and sometimes end-users compose
("assemble") applications from often stand-alone
components in flexible ways to achieve a desired set of
functionality. Two key aims of component technologies
are to increase reuse of software in diverse situations
without code modifications, and to enable end users to
extend and reconfigure their applications via plug-and-
play of components. Typically many of the components
used to build and/or extend an application have been
developed separately, with no knowledge of the user
interfaces of other components they may be composed
with. This can result in component-based applications
with inappropriate, inconsistent interfaces.

For example, two components with user interfaces that
need to be accessed simultaneously may be hard-coded to
each open a separate window. Composed components
may also provide inconsistent interface metaphors, e.g.
menu items vs buttons. They may show unsuitable
interfaces or parts of interfaces to a user, due to the user’s
level of expertise, the task and/or role being performed,

and users’ personal preferences. As end users reconfigure
their applications, they may add new components with
user interfaces that introduce further complications or
inconsistencies to the overall application interface.

There is thus a need for software components to
provide more adaptable user interfaces than most do at
present. Unfortunately the design and implementation of
many existing software components, and the architectures
they are built upon, do not adequately support the
description of component user interfaces and adaptation
of them. Mechanisms are needed to allow components to:
inspect and understand other component user interface
elements; programmatically adapt related component
interfaces to suit a particular reuse situation; and be able
to extend and combine the interfaces of other components
with their own.

We describe our approach to addressing these issues.
This uses component user interface aspects to describe
user interface elements and adaptability. These aspects are
characterised by component developers and are encoded
in component implementations. Other components can
use them to determine the user interface elements of a
component, and standardised programming interfaces are
used to extend, compose and reconfigure component
interfaces in various ways. We use the state of a workflow
engine to support adaptation of interfaces to particular
user roles and subtasks.

Section 2 illustrates the need for component user
interface adaptation using a component-based,
Collaborative Information System, and Section 3 reviews
related research. Section 4 briefly describes our concept
of user interface aspects and the expression of such
aspects in a software architecture used to support
component implementation. Sections 5 to 7 illustrate
particular kinds of user interface adaptation our approach
supports, and briefly discusses realisation of these
techniques using our architecture. Section 8 summarises
the contributions of this research and outlines some future
work directions.

2. Need for User Interface Adaptation

Our need to develop improved approaches to component
user interface adaptation arose from experiences
developing several component-based environments [8, 9,
10].

(1)

(2)

(5)
(4)

(3)

Figure 1. Some Itinerary Planner component user interfaces.

A screen dump from one such system, a collaborative
travel itinerary planner, is shown in Figure 1. This system
provides multiple views to a travel agent and client
allowing them to co-operatively plan a trip. Views include
structured itinerary, map visualisation, itinerary item
details, web-based information, and a visual plug-and-
play component configuration interface.

A variety of software components have been
composed to produce this system, many reused from other
applications. However, in order to provide end users with
appropriate user interfaces, a number of individual
component user interfaces had to be adapted in various
ways. Through our work with a variety of component-
based systems we have identified four main kinds of
component interface adaptation:
• Extension. This is where one component allows one

or more of its user interface elements to be extended
in a controlled, consistent fashion by other
components, to support a single, consistent interface
for all. For example, in Figure 1 a component storing
editing events has its button panel extended by a
version control tool, allowing sets of itinerary
changes to be tracked over time. This seamlessly
provides users access to the version control tool’s
facilities (1). In a similar way, the itinerary editor’s
menu is extended by each kind of itinerary item
component (2), providing users a quick access
mechanism to item creation. Extension avoids the
problem of multiple, inconsistent access points to
common functionality.

• Composition. Combining elements of one
component’s interface with those of one (or more)
others may be more suitable for users than to have
each presented separately. For example, property
sheets from multiple components, such as the map
and map visualisation agent, can be combined (3), as
the properties for these components are almost

always changed at the same time by users. A
composed interface avoids using multiple windows
and disjoint access points to the two components'
properties.

• Reconfiguration. Other software components may
need to reconfigure a component’s interface. For
example, a collaborative work software agent has
adapted a component’s user interface to suit its group
awareness needs by highlighting parts of the interface
other users are interacting with (4). This
reconfiguration gives the user concrete feedback
about the multiple user nature of the system through
existing component interface elements, rather than
adding new elements for this purpose.

• Adaptation to user, role and subtask. Users may
specify preferences about which elements or
alternative interfaces they want to use, default values
and constraints, and what adaptation approaches are
preferred. Some component user interfaces and/or
elements suit some users but not others, based on the
particular user’s role or subtask being performed. For
example, itinerary item dialogues need some items
hidden e.g. the fare class, if a customer is the user of
the interface, rather than a travel agent (5).

Other forms of adaptation we are exploring include
seamlessly adapting the itinerary component interfaces to
web-based and PDA devices, including the differing user
interaction styles used as well as differing colour,
resolution and base user interface element facilities
available. To support the development of software
components that are amenable to all of these kinds of user
interface adaptation, new approaches to specification,
design and implementation of adaptable interfaces are
needed.

3. Related Research

Common adaptive user interface techniques used by

software developers include extensible menus and panels
and programmatical reconfiguration of interfaces [16, 19,
7]. However, no commonly agreed design guidelines exist
for building systems with adaptable user interfaces. Just
as significantly, no commonly agreed software
architectures and implementation techniques exist to
allow developers to build adaptable components.

User interface frameworks, such as Interviews [13],
AWT and JFC [6] and Amulet [17], permit composition
of interfaces from discrete objects representing user
interface elements, and most allow interfaces to be
dynamically built and changed at run-time. However,
there is typically little guidance or control over how other
objects go about discovering, understanding and adapting
interfaces built with these frameworks [4]. Thus systems
built using these frameworks use ad-hoc approaches to
adaptation which may well be incompatible with other’s
approaches, greatly reducing the reusability of software
components with adaptable interfaces.

Component-based software architectures for building
user interfaces, such as JavaBeans [19], Active-X [3] and
OpenDoc [1], provide more powerful component
introspection mechanisms that allow other components to
discover properties, methods and events dynamically.
However, neither these introspection mechanisms nor the
design methods and coding standards for such systems
address the need for user interface adaptation in any
general, high-level way. Basic design guidelines that do
exist [25, 19, 3] suggest components should support
adaptation of the user interfaces, and architectures should
allow this, but no consistent approaches are used nor
appropriate implementation support exists. There has
been work at attempting to define communications
architectures to support system inter-operability and
adaptability, such as Jini [18]. Our user interface
adaptation work can be seen as a similar thrust but
focusing on interface component adaptation rather than
service look-up and adaptation.

Work on adaptable user interface systems [12, 5, 27],
intelligent user interfaces [20, 21], and agent-based
systems [15, 23] has contributed to the development of
techniques supporting various kinds of interface
adaptation. Some adaptable and agent-based systems
support techniques for designing and implementing user
interface adaptation facilities. However, such approaches
use custom architectures and implementations that assume
all other components are designed and built in the same
way. A more major limitation is the number of
assumptions made about the kinds of user interface
techniques to be supported. These are typically limited to
extensible menus, message areas and command lines.
While agent-based systems use knowledge encoding
techniques extensively in order to exchange information,
they don't use these to exchange information about their
user interfaces to support adaptation.

Many end user computing systems [14, 16] support
user interface-level configuration by end users. This often

necessitates adapting "component" interfaces to
incorporate user preferences as well as integrate added
component interfaces. Again, most end user computing
systems adopt either ad-hoc solutions, incompatible with
each other, or restrict adaptations to simple menu or tool
bar extensions [16].

Extensible workflow systems [9], process-centred
environments [2], and collaborative work tools [22, 26]
have long recognised the need for integrating and
modifying user interface elements. Most characterise the
adaptable parts of interfaces at very low levels of
abstraction however, and do not agree on a consistent
approach to implementing such adaptability. Many make
unreasonable assumptions about the adaptation and
software interfaces provided by related tools and
components, greatly reducing their flexibility.

4. A Supporting Architecture

4.1. User Interface Knowledge Representation

Due to the limitations of current approaches, we have

been developing a technique for characterising component
user interfaces at a high-level of abstraction. Support for
describing and inspecting these characteristics forms the
basis for implementing adaptation facilities in a
component-based software architecture. This work has
been part of the development of a new component
engineering methodology called aspect-oriented
component engineering [11]. This approach uses systemic
aspects to describe the way in which components provide
services or require services from other components. In
addition to using this approach as a methodlogy, we have
also added architecture support for it to a component
development framework. This allows component
developers to identify, describe, reason about and
implement generic persistency, distribution, collaborative
work and end user configuration support for component-
based systems.

User interface information for components may also
be characterised using aspects These describe the user
interface-related services a component provides to and
requires from other components. Examples of user
interface aspects include dialogues and windows a
component provides (or requires from another component
for extension), panels (composite user interface elements)
provided or required, and menus, buttons and other basic
interface elements provided or required. Information
recorded about these aspects may include the nature of the
interface element provided or required, related elements
and/or interfaces for the component, how an element may
be adapted and/or preferred adaptation approaches,
information about the component’s software interfaces
which enable adaptation of elements, and information
about particular users, roles and subtasks for which
elements are relevant.

Consider a very common example of menu bar
extension: in this case itinerary item components
extending the itinerary editor component’s menu bar, as

illustrated in Figure 1. This is achieved by having the
itinerary editor designer characterise the menu bar as
being an extensible user interface affordance the editor
provides for other components. The itinerary item
designer characterises the user interface needs of these
components as requiring a component that provides an
affordance (of some kind) they can extend. Constraints
may be specified about both the extension provisions and
requirements of each of these components: the editor may
limit extension of its menu bar to adding menus to the end
or only adding menu items to existing menus in the bar.
Similarly, the itinerary item component may require
specifically an extensible menu bar, or may generalise
this to some extensible menu (pull down or pop-up), or
even any extensible affordance (which may be a menu,
button panel, list or combo box or whatever).

Figure 2 illustrates the publication of user interface
aspect information by an itinerary item factory
component, responsible for creating itinerary items of a
particular kind, and the itinerary editor component,
responsible for viewing and editing itinerary items
grouped in a tree hierarchy. Aspect details with a “+” in
front are provided by the component, “-” are required. For
example, the itinerary item factory component requires an
extensible affordance it can add a user interface element
to. This is restricted to being a menu (pull-down or pop-
up) by its KIND property. The itinerary editor provides an
extensible pull-down menu bar which can be extended by
the addition of menus or menu items (specified by its
EXTENDS_BY property).

Another, more complex example is where a composed
user interface is being used. A component providing UI
composition (typically inside a window or dialogue
frame) obtains information about the UIs of other
components to compose by querying each component's
aspects. It determines the mechanism to obtain each
components UI elements (typically grouped as a panel)
then builds and displays a composite UI for the group as a
whole.

Note that conflicts can arise during user interface
adaptation. For example, two components may need to
extend a third component's menu, but both want to use the
save menu item label. One component may want to
disable a control while another highlight it. One
component may want to hide a component's panel from
the user due to their role or current task, and another
compose it and display it with other panels. This is similar
to the conflicts that can arise in programming languages
using multiple inheritance (e.g. C++) where same-named
functions are inherited and must be renamed.

We currently resolve such conflicts using basic
mechanisms. The default situation is that the last
component to make an adaptation to a UI typically "wins"
in that its adaptation over-rides others. However,
developers can build components to e.g. annotate same-
named menu items and buttons or reposition/separate
them; check relative "priorities" of adaptations and apply
only the most important ones; or allow end users to
modify display and adaptation preferences to solve
conflicts in the way that most suits the user's needs.

Itinerary Editor
Component

Itinerary Item
Factory Component

<<User interface aspects>>
+ window frame
 KIND=frame
 DEFAULT_INTERFACE=true
 CAN_DISABLE=false
+ tree editor
 KIND=tree
 EDITABLE=true
+ message panel
 KIND=message area
 EDITABLE=false
+ extensible menu bar
 KIND=menu bar
 EXTENSIBLE=true
 EXTENDS_BY=add menu OR
 add menu item
- property sheet editor
…

<<User interface aspects>>
- extensible affordance
 KIND=menu,
 EXTENDS_BY=add menu item
+ creation menu item
 KIND=menu item
 FUNCTION=component creation
+ property sheet dialogue
 KIND=property sheet
 + property text fields
 KIND=labelled text field
 NUMBER=>1
 CAN_DISABLE=true
 DEFAULT_COLOUR=black
- property sheet editor
 OPTIONAL=true
…

Add Flight

Itinerary editor frame and
extensible menu bar

Itinerary item menu item

Figure 2. Aspect publication by software components.

Factory :
It ineraryItem

RequiredAffordance :
ExtensibleAffordance

ItineraryEditor :
ItineraryEditor

UIAspects :
AspectsManager

ProvidedAffordanceDetail :
ExtensibleAffordanceDetail

1. initialise()
2. getUIAspects()

3. findExtensibleAffordance()

4. addAffordance(name,Factory)

5. addMenuItem(name,Factory)

Figure 3. Extensible affordance user interface aspects.

4.2. Architecture and Component Framework Support
We have extended our Java-based JViews [8] software

architecture and implementation framework to allow
components (implemented as components called
"JavaBeans") to advertise such user interface (and other)
aspects. Component developers specify a component’s
user interface aspects during design, using our JComposer
CASE tool [11]. This information is encoded in
component implementations. JViews includes several
classes that encode this information, and which provide
standardised APIs for adapting other component’s user
interfaces. Aspect encodings can be modified
dynamically, for example to change default and preferred
values and to specify additional information, such as role
and subtask. Together, these mechanisms allow
independently-developed components to exchange
knowledge about their user intrerfaces in a commonly-
agreed manner, and support programmatic interface
adaptation using commonly-agreed mechanisms.

Figure 3 illustrates the way JViews components
achieve user interface adaptation in a de-coupled manner
using aspects. After the factory and editor components
have been linked, the factory tells its required extensible
affordance aspect detail to initialise (1). This aspect detail
object obtains a provided extensible affordance aspect
detail object from the itinerary editor (2, 3) and asks this
to extend the editor's menu (4). The editor's extensible
affordance detail knows how to appropriately extend the
editor's user interface, and adds a new menu item (5),
which, when selected, informs the factory of this user
interaction. Note the factory and editor have no
knowledge of each other's interfaces - all extension is via
their (standardised) aspect detail objects. Various
constraints can be added in aspect detail objects to e.g.

check requested adaptation is sensible, appropriately
control user interface layout and interaction, modify
permitted adaptations at run-time and so on.
4.3. System-wide Aspects

Figure 4 shows a larger example consisting of JViews

components from our collaborative travel itinerary
planner together with some of the user interface aspects
of these components. Note that user interface aspect
details may overlap, such as a panel aspect detail which
describes an aggregate of several textfield and button
aspect details. Not all user interface elements relating to a
component need have an aspect detail characterisation, for
example if the component designer wants them always
treated as a composite element or to not be adaptable.

We use the Serendipity-II workflow system [10] to
provide information about users, their roles in a task
specification and the particular subtask they are
performing. User preferences about interface adaptation
are associated with role information and a task adaptor
component monitors the workflow engine state. Several
of the components in the travel itinerary planner, such as
the tree-based itinerary editor, editing history, version
control tool, map visualisation and collaborative
awareness components have been reused from other
applications [9].

The following three sections illustrate some examples
of adaptation of components using extension and
composition of related component interfaces,
reconfiguration of a component’s interface by other
components, and adaptation based on user preferences
and subtask.

Itinerary
Items

Travel
Itinerary

Itinerary
Editor

Editing
History

Workflow
Engine

Users
(roles)

User Prefs
Editor

Task
Adaptor

Agent
Specification

Views

Agent
Components

Map
Visualiser

Map

Collaborative
awareness agent

Serendipity-II workflow tool

Collaborative Itinerary Planner

+dialogue
+event list panel
+extensible button panel
+undo/redo buttons
-graphical viewer
…

+preferences dialogue
+preferences info

component

+provided aspect detail
- required aspect detail

+ property sheet
+ property text fields
+ text field panel
- extensible menu
- frame

+ property sheet
+ property panel
+ property text fields
+ map window
+ node list

+ property sheet
+ property text fields
+ property panel
- subpanels
…

+ tree viewer
+ tree panel
+ tree window
+ property sheet
+ property text fields
+ extensible menu
…

- highlightable elements
- extensible menu
…

- tree viewer
- preferences editor
+ property sheet
+ property text fields
…

Version
Control

+ checkin/out buttons
- extensible button panel
+ checkin/out menu items
- extensible menu

inter-component
relationship

advertised aspect

Figure 4. Collaborative travel itinerary planner architecture and some component user interface aspects.

5. Interface Extension and Composition

The most common example of user interface

adaptation we have encountered is the need for
components to seamlessly share user interfaces. Often this
is by one component providing an affordance (e.g. button
panel, pop-up or pull-down menu, combo box or text field
panel) that other components can extend. The extending
components thus present access to their own data and
functionality via another component’s interface in a
seamless fashion.

User interface extension avoids the situation of
multiple, composed components presenting multiple,

inconsistent interfaces to end users. This often happens in
naïve composition of component-based systems where
software components are composed with no knowledge of
each other’s user interfaces and inappropriately open
windows, display their user interface elements in the
“wrong” place, or use inconsistent appearance and
behaviour, thus confusing users. The itinerary editor
provides one example of how to avoid this by having all
component factories extend its menu bar to provide a
consistent, controlled interface to their functionality, no
matter where a particular factory is sourced from.

Extended button panel
 Extended

menu bar
Extended
pop-up
menu

Added
status
field

(a) Extensible panel. (b) Extensible menus and panel.

Figure 5. Examples of user interface extension.

For another example, consider the event history
component’s dialogue, shown in Figure 5 (a). A file
persistency component and version control tool
component are to be used with this event history to
manage export/import of event object data and versioning
of event object lists respectively. These components,
instead of providing or using their own user interfaces,
have extended the event history’s button panel to give the
user access to their functionality. Clicking on these
buttons will then open file save and version check in/out
dialogues as appropriate. Figure 5 (b) shows two more
examples of menu extension for a software agent
specification view component. A collaborative editing
component has extended the view component’s menu bar
to provide the user with a hierarchical menu. A newly
created software agent, represented by the rectangle icon,
has extended the icon’s pop-up menu to provide the user
access to its functionality. A component’s interface can be
extended by adding discrete elements e.g. buttons, text
fields, combo boxes, radio and check boxes and text
areas. For example, the collaborative editing component
has added a status message field underneath the view’s
menu bar.

Visualiser agent
properties

Itinerary editor component
properties

Map component
properties

Figure 6. Example of User Interface composition.

A related technique for supporting user interface
adaptation is composition of multiple component
interfaces. Figure 6 illustrates composition of itinerary
editor, visualisation agent and map component property
sheet panels. This allows end users to access and/or
modify these three component’s properties at the same
time, rather than have three dialogues. Such composition
can also be done at the individual user interface element
level, with components inter-mixed in the composite
dialogue rather than remaining in separate panels.

Care needs to be taken when designing user interfaces
that may be extended and composed, and when designing
components that extend or compose other components’
interfaces. Designers need to be aware that extending part
of an interface will possibly change the appearance, size
and layout of the interface. If inappropriate extension or
no re-layout of elements is done, undesirable layouts can
result. Ordering of a component’s user interface elements
might be important and should be preserved. For example,
extending the menu bar of an application should constrain
new menus to be to the right of previously added menus,
so the File and Edit menus are always kept at the left.
Similarly, it may make sense for a component that is
extending another component’s user interface to add its
affordances in places which relate to the affordances
already there, e.g. adding the Check in and Check out
buttons BEFORE the Close button (unlike the event
history dialogue above!). Label and icon conflicts
between composed interfaces can be resolved by
annotation or layout changes. Developers need to specify
ways in which user interface elements can sensibly be
embedded with user interface elements from other
components. We have found using panels containing
multiple elements gives reasonable control on how these
groups can be composed. In addition, care must be taken
with constraints, tab ordering and field inter-
dependencies, so that behavioural constraints are sensibly
preserved when parts of a component user interface are
composed.

While designing and implementing user interfaces that
support extension and composition takes more care and
effort, the reuse costs for these components drop
dramatically as new interfaces do not need to be
developed nearly as frequently as for components with
interfaces that are not adaptable. In addition, we have
found that having components that share interfaces
dynamically greatly enhances usability of applications.

We achieve most user interface extension and
composition for components in the way outlined in the
previous section for the editor’s menu bar. Composition is
more complex than extension, in general, with composite
aspect detail components having to obtain a list of
interface elements to compose from related components
and apply a composition algorithm. Figure 7 shows an
example. When the map component (or a related
component’s) property sheet is requested (1), the map
component’s composite interface aspect detail object is
informed (2). This obtains composite aspect detail objects
indicating required composition from each of the
components related to the map (3-5). The provided
composite interface aspect detail object then combines the
interfaces of those requiring composition into one
property sheet dialogue and displays this to the user (6).
The composition process constrains composed elements
to use the same look-and-feel in limited ways.

Component Map : Map
Visualisation

Composite
Detail :

Related
Component

Composite
Detail :

1. openDialogue()
2. openRequested()

3. getRelatedComps()

4. findCompositeDetail()

5. getPanel()

6. openDialogue()

Figure 7. Example of interface composition process.

6. User Interface Reconfiguration

Components often need to reconfigure the existing

user interface elements of other components, including
hiding, showing, disabling or enabling user interface
elements, or changing display and/or behavioural
characteristics, such as colour, default values, and layout
and editing constraints. In this way a component may
make use of the user interface elements provided by a
component in ways not anticipated by the original
developer, in order to provide appropriate interface
characteristics for a component in a new situation it is
reused.

Figure 8 illustrates examples of such reconfiguration
from our collaborative itinerary planner. In Figure 8 (a)
the undo/redo buttons of the event history component
have been disabled by another component. This might
occur when undoing or redoing the stored events doesn’t
make sense, for example where the itinerary represents a
past trip and can’t be changed. Figure 8 (b) illustrates
adaptation of itinerary editor and itinerary item
component user interfaces by a collaborative work
awareness agent component. This agent highlights parts
of the itinerary another user is modifying in various ways
by adjusting the display and editing characteristics of
parts of their user interfaces. For example, the item being
edited in the itinerary tree editor is highlighted and is not
able to be changed (i.e. is "locked"). The field being
edited in an item property sheet dialogue is highlighted in
a different way. The agent also appropriates the
collaborative chat messaging tool for notification support,
sending “map monitor” messages.

Reconfiguring user interface elements may adversely
affect usability. When designing user interfaces,
component developers may wish to allow only parts of
the interface to be adapted by other components, or limit
the ways they may be adapted. Care needs to be taken

when designing both the reconfigurable component
interfaces and components wishing to reconfigure them.

Disabled buttons
(a) Disabling of user interface elements.

Various
awareness
highlighting

(b) Adaptation of other component’s user interface

elements.

Figure 8. Examples of user interface reconfiguration

Inappropriate reconfiguration may make an interface
difficult or confusing to use, or even prevent users
effectively using their application. For example, a
collaborative monitoring agent that "forgets" to unlock a
dialogue field for a component prevents that field value

being changed. Disabling, hiding or changing layout and
interaction behaviour of user interface elements may
adversely affect interface look and feel, impacting on
overall application usability. One issue that developers
and end users need to be aware of is that several
components independently developed and reused may
want to change a single user interface element of another
component in different, incompatible ways. This
introduces complex reconfiguration co-ordination
problems. We have found conservative use of
reconfiguration is necessary to avoid these problems, or
the use of "reconfiguration agents" to manage them.
Another technique is to prioritise adaptations and apply
only "high priority" changes to user interface elements. A
challenge is to adapt priorities as component composition
occurs or users change their preferences.

Components that may wish to adapt the interfaces of
related components need to be provided with general
mechanisms to identify and programmatically extend
these interfaces. We achieve interface reconfiguration for
JViews components in the same way as extension and
composition are supported: components advertise parts of
their interface which may be reconfigured. User interface
aspect information classes provide methods to enable,
disable, hide, show and modify the display and editing
characteristics of these interface elements. Some
constraints on what are permissible interface
reconfigurations can be specified. Components wanting to
reconfigure other components’ interfaces use this aspect
information and standardised methods to perform
appropriate reconfiguration. We have also developed
some extended Java AWT class specialisations and
interfaces to support more general adaptation of user
interfaces by composition, extension and reconfiguration.

ItineraryItem :
ItineraryItem

Collaboration
Monitor

EditField :
EditField

Reconfiguration
Manager

1. getReconfigDetail

2. disableField(name)

3. findField(name)
4. disable()

5. gainedFocus(EditField)

7. highlightField(name)

6. acquireLock()

8. setColour()

Figure 9. Simple user interface reconfiguration.

Figure 9 shows an example of reconfiguration. The
collaboration monitor locates a reconfiguration manager

for a component (1), and requests it to disable an edit field
(2-4) to ensure it is not updated. If an edit field is about to
be modified by a user (it is not disabled), it notifies the
collaboration monitor (5), which tries to acquire a lock on
the field among the users of the collaborative application
(6). If this succeeds, it highlights the field (via the
reconfiguration manager). Enabling and highlighting can
be done directly to the edit field (using its aspect detail
information), but the reconfiguration manager allows
multiple components to reconfigure a single user interface
element in a co-ordinated way.

7. Adaptation to User, Role and Subtask

Adaptation of user interfaces may be made, as in the

previous examples, to extend, compose and/or reconfigure
a component’s user interface so related components can
express their interface needs in a consistent, seamless
way. Adaptation may also be required due to particular
user preferences, such as a particular interface to display
or interface characteristics to use. A component user
interface may also need to be adapted to suit a user’s role
in a task model and/or a particular subtask a user is
currently working on, to ensure a component presents an
appropriate interface for the user.

A particular user of a component-based application
may wish to specify a variety of preferences about the
user interfaces the components present. This may include
their preferred user interface if multiple alternatives exist
for a component, default user interface element
appearance characteristics, and preferred extension and
composition approaches, if multiple exist for a
component. For example, consider the dialogue shown in
Figure 10. This is a standard configuration interface
provided by our JViews user interface aspect manager
allowing basic preferences about a component’s user
interface to be set. In this example the user may specify
which alternative interfaces they want shown for itinerary
item components, whether to show or hide “expert”
information like performance configuration parameters in
itinerary item property sheets, and any user interface
configuration-related properties, such as default colours
and font to use for user interface elements.

Figure 10. Example of user preferences.

We achieve user preference-based interface
configuration for our components by having aspect
information record these preferences as annotations and
provide programmatic interfaces to access and modify
them. Additionally, a user preferences component can be
used which provides dialogues allowing users to specify
user interface-related preference information for multiple
component interfaces. Some preferences may be system-
wide defaults, such as colour and font choices. Others are
specific to components the preferences component is
linked to, and are obtained from user interface aspect
information advertised by these components. Some
reconfiguration and extension properties of aspect
information objects can be changed dynamically e.g. to
allow a user to “turn off” certain reconfiguration
approaches for some components.

Multiple users of an application typically perform a
specified role, with different roles potentially wanting to
use only parts of a component’s user interface. Similarly,
as users perform different subtasks of an overall work
task, certain component user interface elements may be
appropriate and useful and others may not.

In general, adaptation to user task and role is
challenging because 1) a component-based system must
determine the user profile, subtask and role, and 2) the
appropriate adaptations to role/subtask must be specified,
and there may be a large number of these in any non-
trivial work domain. In our travel planner the Serendipity-
II workflow system provides the role/subtask information
for our task adaptors. However, for many systems it may
be difficult to characterise a "work process", or to take
task models of user interaction and "enact" these while
the system runs to obtain role/subtask information. In our
travel planner the work process model is quite simple, as
illustrated in the workflow diagram on the left hand side
of Figure 9. This means it is feasible to specify for some
component user interfaces adaptations according to
different workflow subtasks/roles. For a system with a
large, complex workflow model, this may be very
challenging.

As with user interface extension and reconfiguration,
conflicts can occur with user preferences, role and task
adaptation. For example, a panel may be hidden as its
content is inappropriate for a user but another component
extends the panel or reconfigures its content, adaptations
which should be shown to the user. Such conflicts can be
resolved by developers engineering components with
priorities or with "adaptation" preferences the user can
set, or simple adaptation heuristics e.g. if parts of an
interface have been adapted, don't hide it.

Figure 11 also illustrates two component user interface
adaptations to role and task that we have found useful in
the collaborative itinerary planner. The itinerary item
component’s user interface has two forms: one for
customers which hides some details, and one for agents.
For the customer, additional reconfigurations are done
depending on whether they are sketching a travel plan
(subtask 1 - most fields are hidden and time defaulted) or
modifying a detailed travel plan (subtask 5 - all fields
visible and editable). Similar adaptation can be employed

for different subtasks for the agent. In subtask 2, the agent
does not require the Details or stops fields, and can have
the fare code defaulted from customer preferences. In
subtask 4, however, all fields need to be shown.

Figure 11. Examples of adaptation to task.

We achieve such role and subtask-based adaptation for
our JViews component user interfaces by the use of a task
adaptation component. This component is informed of
Serendipity-II workflow engine enactment events and role
assignments. It also provides a dialogue allowing
preferences about the user interface elements of
components linked to it to be set, in a similar manner to
the user preferences adaptation component. User interface
element aspect information is queried and annotated by
information such as for a given subtask and/or role,
whether or not the element should be enabled, disabled,
hidden, shown etc. When the user interface elements of
these components are to be displayed, JViews user
interface events are detected by the task adaptation
component which modifies the user interface elements
based on the current role and subtask information it has.

Task Adaptor UserInterface

Aspects
Component UserInterface

Detail
Workflow

Engine

2. getAspets()

3. getAspectDetails()

1. workflowEvent()

4. getAnnotation()

6. reconfigure()

5. inspectWFState()

Figure 12. Task and Role Adapatation.

Figure 12 illustrates this basic process. When a
workflow engine event is received (1), the task adaptor
obtains user interface information from a component's
aspects (2, 3). Each UI element's annotations are obtained
(4), which record whether the element is relevant to
particular workflow subtasks and user roles. The

workflow state is inspected (5) and appropriate
reconfigurations applied to the UI element by the task
adaptor (6).

8. Conclusions and Future Research

We have described an approach to engineering

software components with adaptable user interfaces.
High-level characterisations of component user interface
elements, including provided and required elements,
extensible and composable elements and element groups,
reconfiguration properties, and user preference, role and
subtask information are specified. Encodings of these
characterisations in component implementations enables
other components to access this information, and
programmatically adapt a component’s user interface in
standardised ways. Our approach has provided us
components with interfaces that can be more suitably
adapted in diverse reuse situations.

Some guidelines we have identified for component
developers, to guide adaptive user interface construction,
are summarised below:

1. Allow for user interface extension and
composition. If a component provides a user
interface element like a panel, menu or button list,
allow this to be extended programmatically by
other components in a controlled way.

2. Use extension and composition of other
components where possible. If a component needs
to present an affordance or feedback element to
the user, allow this to be done by extending
another component interface if appropriate rather
than having to open its own dialogue/window.

3. Allow component user interface elements to be
programmatically identified and reconfigured in
controlled ways by other components. This is
usually not difficult in most UI development
toolkits.

4. Capture user, role and task information where
possible and allow user interface adaptations to
drawn upon these. If "user" preferences can be set
programmatically by other components, this may
provide another adaptation mechanism e.g. to
modify layout, appearance etc to suit adaptations.

Several directions for future research exist. Better-

integrating adaptation needs into the component
engineering lifecycle is chief among these. Software
component developers need to take user interface
adaptation into account during each stage of component
development. Our current characterisation of user
interface elements can be improved by adding more
comprehensive layout, appearance and semantic
constraint specification in the user interface aspects i.e.
enriching the knowledge representation we currently use.

Tool support for specifying user interface aspects is
currently rudimentary, with component developers
specifying UI aspects in the same manner as other
component aspects. Generating aspect characterisations
from the user interface specification tool of JComposer

would greatly improve this. Third party components can
have aspect information specified in JComposer and used
by JViews components. Unfortunately these third party
components are not implemented with knowledge of
aspects and thus can not themselves programmatically
adapt JViews component interfaces. We would like to
develop our user interface adaptation techniques with
common component-based architectural services, such as
those of Enterprise Java Beans, Jini or CORBA in future,
making them more generally accessible.

A general mechanism is needed to capture user, role
and subtask information in order to support appropriate
adaptation of user interfaces as these change. Our work
has drawn on the process enactment state of the
Serendipity-II workflow tool. In general, most application
end users do not have their work activities co-ordinated
with such tools, making the unobtrusive acquiring of such
information for interface adaptation difficult.

We plan to investigate the application of our approach
to 3D, Virtual Reality interfaces and ubiquitous user
interfaces, such as PDAs, which may provide a greater
range of possible adaptation approaches. This may require
better characterisation and use of user interface
containment i.e. the properties of user interface element
containers, leading to the use of "aggregate aspects".
There is currently a clear separation in JViews between a
component’s logical model and its user interface, and a
component’s properties and methods are not used directly
when adapting its user interface. We are investigating the
specification of mappings between logical model and user
interface realisation, which will include the ability to
more easily adapt the appearance and behaviour of an
interface based on the way logical model structures need
to be composed and related to users, roles and subtasks.

Acknowledgements

Support for this research from the New Zealand Public

Good Science Fund is gratefully acknowledged.

References

1. Apple Computer Inc., OpenDoc Users Manual, 1995.
2. Bandinelli, S., DiNitto, E., and Fuggetta, A., “Supporting

cooperation in the SPADE-1 environment,” IEEE
Transactions on Software Engineering, vol. 22, no. 12,
841-865, December 1996.

3. Chappell, D. Understanding Active-X and Ole, Microsoft
Press, January 1996.

4. Dachselt R. The challenge to build flexible user interface
components for non-immersive 3D environments.
Proceedings of 8th International Conference on Human-
Computer Interaction. Lawrence Erlbaum Associates. Part
vol.2, 1999, vol.2. Mahwah, NJ, USA, pp.1055-1059.

5. Eisenberg, M. and Fischer, G. (1994): Programmable
Design Environments: Integrating End-User Programming
with Domain-Oriented Assitance, Proceedings of ACM
CHI’94, ACM Press, pp. 431-437.

6. Geary, D.M., Graphic Java 2, Mastering the JFC, 3rd
Edition, Prentice Hall, 1998.

7. Goldberg, A. and Robson, D., Smalltalk-80: The Language
and its Environment. Reading, MA: Addison-Wesley,
1984.

8. Grundy, J.C., Mugridge, W.B., Hosking, J.G. Static and
dynamic visualisation of component-based software
architectures, In Proceedings of 10th International
Conference on Software Engineering and Knowledge
Engineering, San Francisco, June 18-20, 1998, KSI Press.

9. Grundy, J.C., Mugridge, W.B., Hosking, J.G., and
Apperley, M.D., Tool integration, collaborative work and
user interaction issues in component-based software
architectures, In Proceedings of TOOLS Pacific '98,
Melbourne, Australia, 24-26 November, IEEE CS Press.

10. Grundy, J.C., Hosking, J.G., Mugridge, W.B. and
Apperley, M.D. An architecture for decentralised process
modelling and enactment, IEEE Internet Computing, Vol.
2, No. 5, September/October 1998, IEEE CS Press.

11. Grundy, J.C. Aspect-oriented Requirements Engineering
for Component-based Software Systems, In 1999 IEEE
Symposium on Requirements Engineering, Limerick,
Ireland, 7-11 June, 1999, IEEE CS Press.

12. Grunst, G., Oppermann, R., Thomas, C. G. Adaptive and
adaptable systems, In Hoschka, P. (ed.): Computers As
Assistants - A New Generation of Support Systems.
Hillsdale: Lawrence Erlbaum Associates, 1996. 29-46.

13. Linton M.A., Vlissides J.M., Calder, P.R. 1989:
Composing user interfaces with Interviews, COMPUTER,
Vol. 22, No. 2, February 1989, 8-22.

14. Mehandjiev, N. and Bottaci, L. (1998): The place of user
enhanceability in user-oriented software development,
Journal of End User Computing, Vol. 10, No. 2, 4-14.

15. Moran DR, Cheyer AJ, Julia LE, Martin DL, Sangkyu
Park. Multimodal user interfaces in the Open Agent
Architecture. 1997 International Conference on Intelligent
User Interfaces. ACM. 1997, New York, NY, USA.

16. Morch, A. Tailoring tools for system development, Journal
of End User Computing 10 (2), 1998, pp. 22-29.

17. Myers et al (1997): Myers, B.A. et al, The Amulet
Environment: New Models for Effective User Interface
Software Development, IEEE Transactions on Software
Engineering 23 (6), June 1997, 347-365.

18. Oaks, S. and Wong, H. Jini in a Nutshell : A Desktop
Quick Reference, O’Reilly and Associates, March 2000.

19. O'Neil, J. and Schildt, H. Java Beans Programming from
the Ground Up, Osborne McGraw-Hill, 1998.

20. Paelke V. Visual presentation agents for 3D environments.
1999 International Conference on Intelligent User
Interfaces. ACM. 1999, New York, NY, USA.

21. Rossel M. Adaptive support: the Intelligent Tour Guide.
1999 International Conference on Intelligent User
Interfaces. ACM. 1999, New York, NY, USA.

22. Roseman and Greenberg (1997): Roseman, M. and
Greenberg, S., Simplifying Component Development in an
Integrated Groupware Environment, Proceedings of the
ACM UIST'97 Conference, ACM Press, 1997.

23. Sanchez JA, Azevedo FS, Leggett JJ. PARAgente:
exploring the issues in agent-based user interfaces.
Proceedings. First International Conference on Multi-Agent
Systems. AAAI Press. 1995, Menlo Park, CA, USA.

24. Sessions, R. COM and DCOM: Microsoft's vision for
distributed objects, John Wiley & Sons 1998.

25. Szyperski, C.A. Component Software: Beyond Object-
oriented Programming, Addison-Wesley, 1997.

26. ter Hofte, G.H. and van der Lugt, H.J., CoCoDoc : A
framework for collaborative compound document editing
based on OpenDoc and CORBA. In Proceedings of the
IFIP/IEEE international conference on open distributed
processing and distributed platforms, Toronto, Canada,
May 26-30, 1997. Chapman & Hall, London, 1997, p. 15-
33.

27. Wing, H. and Colomb RM. Behaviour sharing in adaptable
user interfaces. Proceedings Sixth Australian Conference
on Computer-Human Interaction, IEEE CS Press, 1996,
Los Alamitos, CA, USA, pp.197-204.

