
Preprint of paper published in Journal of Information and Software Technology, Vol. 42, No. 2, January 2000, pp. 117-128. © Elsevier 2000.

Constructing Component-based Software Engineering Environments:
Issues and Experiences

John Grundy 1, Warwick Mugridge 2, John Hosking 2

1 Department of Computer Science, University of Waikato, Private Bag 3105, Hamilton, New

Zealand, Ph: +64-7-838-4452, Fax: +64-7-838-4155, jgrundy@cs.waikato.ac.nz
2 Department of Computer Science, University of Auckland, Private Bag, Auckland, New Zealand,

Ph: +64 9 3737599, Fax: +64 9 3737453, {john,rick}@cs.auckland.ac.nz

Abstract

Developing software engineering tools is a difficult task, and the environments in which these tools are deployed

continually evolve as software developers' processes, tools and tool sets evolve. To more effectively develop such
evolvable environments, we have been using component-based approaches to build and integrate a range of software
development tools, including CASE and workflow tools, file servers and versioning systems, and a variety of reusable
software agents. We describe the rationale for a component-based approach to developing such tools, the architecture
and support tools we have used, some resultant tools and tool facilities we have developed, and summarise possible
future research directions in this area.

Keywords: component-based software architectures, multiple views, consistency management, tool integration, task
automation

1. Introduction

Software engineering tools are usually complex
applications. Many require multiple view support with
appropriate consistency management techniques, most
need to support multiple user facilities, and all need to
support appropriate degrees of integration with other,
often third party, tools. Software developers often want to
reuse existing tools as well as enhance these tools or
develop new tools as appropriate. Integrating a
development team's tool set is often essential in order for
the team members to use the different tools effectively on
a project. It is a challenging task to provide these
capabilities while ensuring that any resulting
development environment is effective [3, 29, 26].

 Many approaches to developing software tools exist,
including the use of class frameworks [12], databases [8,
10], file-based integration [6], message-based integration
[34], and canonical representations [25, 26]. We have
been using a component-based approach to develop,
enhance and integrate software tools [16, 17]. Our
component-based software architecture includes
abstractions useful for software tool development. Meta-
CASE tools assist in designing and generating tools that
use this architecture. We have developed a variety of
useful software engineering tools using our tool set. Our
experiences to date have shown that software tools
developed with component-based architectures are

generally easier to: enhance and extend, integrate with
other tools and deploy than tools developed using other
approaches.

In the following section we review a variety of
approaches to software tool construction, identifying their
respective strengths and weaknesses. We then briefly
characterise component-based software engineering tools,
and provide an overview of our approach to developing
such tools. Following this, we focus on how our
approaches provide useful abstractions for building tools
with support for multiple views, multiple users, tool
integration, and task automation. We conclude by
summarising our experiences in building and using
component-based software engineering tools and outline
possible future directions for research.

2. Related Work

Many approaches exist for building and integrating
software engineering tools. In the following discussion
we use Meyers' taxonomy to loosely group a variety of
tools and their architectures, including file-based,
message-passing (both local and distributed), database
and canonical representation approaches [29]. We briefly
identify the advantages and disadvantages of each for
building tools and for supporting Tomas' taxonomy of
types of integration (data, control, presentation and
process) [39].

Many Unix-based software tools use a file system-
based approach for integrating tools into an environment
[6]. This allows tools to be very loosely integrated, so
that building and adding new tools is straightforward.
However, such tools generally provide limited data,
control and presentation integration mechanisms.

The appearance of tight user interface and control
integration of file-based tools can be achieved with
message-passing approaches, as used by FIELD, HP
Softbench and DEC FUSE [6, 21, 34]. These approaches
allow existing tools to be wrapped and integrated into an
environment very effectively. Data and process
integration is generally not as well supported.

Many software tools are built using object-oriented
frameworks, and use file or database-based persistency.
These are often combined with version control and
configuration management tools to support team
development. Examples of such tools include VisualAge
[23], EiffelCASE [24], PECAN [32], and Smalltalk-80
[12]. Such tools often provide very polished user
interfaces and software development facilities, but are
notoriously difficult to extend and integrate with third-
party tools.

Tools using a database and database views to support
data management and data viewing and editing include
PCTE-based systems [4], SPADE [3] and EPOS [7]. The
database provides a unifying data integration mechanism,
but message-passing is often employed to facilitate
control integration. Process-centred environments, such
as SPADE, EPOS and ProcessWEAVER [11], support
process integration by providing software process
codification and execution facilities. The control of third-
party tools is, however, difficult, as control integration
with such tools is often very limited [9].

A variety of tool generation approaches have been
developed. These typically produce database-integrated
tools, such as KOGGE [10] and that of Backlund et al [2],
or tools which use a canonical program representation,
such as MultiView [1], Escalante [28] and Vampire [27].
Generated tools typically have good data, control and
presentation integration, and can provide good process
integration via the use of process-centered environments
[3, 26]. However, integrating generated environments and
tools produced using different architectures or generated
by different systems has proved very difficult, resulting in
limited presentation, data and control integration [3, 14,
26]. If collaborative work facilities are needed in such
environments, they usually have to be built into the
architecture and generator [3, 9, 13].

Some environments are designed to allow the addition
of other tools. Examples include TeamWAVE [35],
wOrlds [5], Oz [40], and Xanth [22]. The architectures of
these environments usually focus on supporting control
integration with other tools, and to a lesser extent
presentation, data and process integration. Integration is
typically limited to tools built with the same architecture,
though Xanth and Oz provide quite flexible integration
mechanisms for a wide range of tools.

3. Component-based SEEs

The component-based architectural approaches used
by some software tools loosely correspond to a
combination of message, database and canonical
representation approaches. Components communicate via
event propagation and/or message invocation, but often
use other components to manage distributed data.
Examples of environments using this approach include
TeamWAVE, COAST [37], CoCoDoc [38], and SPE-
Serendipity [14]. The use of software components to
model tools and parts of tools typically allows more
effective data and control integration than with other
approaches. Presentation and process integration are also
effectively supported if components are well designed for
extension. Bridges between different component
architectures and the use of Oz-style enveloping
techniques allow component-based architectures to
provide very effective third-party tool integration.

Component-based software engineering environments
use a set of integrated components, with each component
providing a tool or part of a tool used in the enviroment.
Many of these tool components are reusable in other
environments and possibly in other domains.
Components are typically designed with a minimal
knowledge of and dependency on other components, to
facilitate reuse and deployment by plug-and-play. As a
result, tools built using this model are typically highly
reusable and externally controllable by other components.
If carefully designed, these component-based tools thus
tend to be more readily extended and integrated than tools
developed using other approaches.

Figure 1 illustrates the concept of component-based
software tools. This example environment consists of
several components, which implement different software
engineering tools and facilities. The editor, code
generator and debugger share an abstract syntax tree
(AST) and compiled code representation. The workflow
tool co-ordinates use of these tools by monitoring events
generated by them and by sending them messages. The
workflow tool and data representation components use a
distributed file server to manage shared data.

Editor

AST

Code Generator

Workflow Tool

Shared File Server

Debugger

Code Module

Figure 1. A simple component-based SEE.

Any of these tools or data representation components
could be replaced another that satisfies the replaced
interface (and required semantics).

View layer component
(window)

View iconic
components

Stage Enactment
history

View Editing history

Version control tool

Persistency component

End user "agent"
specification

Dynamically reused
components

Figure 2. Serendipity-II: an example component-based software engineering tool.

New tools or components can be added, and may
interact with existing components by monitoring events
they generate or by sending them messages. Some of
these tools could usefully be deployed in other domains.
For example, the workflow tool and shared file server
could be used in an Office Automation environment.

When designing and building component-based
software engineering tools, a variety of issues must be
addressed, including:
• Appropriate identification of components, allocation

of data and behaviour to components and design of
component interfaces.

• Design of common components for software tool
abstractions such as repository management, multiple
view, and collaborative work support.

• Appropriate design of components to permit external
monitoring, control and user interface extension, thus
supporting component reuse, enhancement and
integration.

• Provision of appropriate architectures and tools so
that tool developers can effectively design, build and
deploy component-based tools.

• Provision of appropriate support to tool end users for
deploying and integrating tools and enhancing
environment behaviour via task automation agents.

Figure 2 shows the Serendipity-II software process

modelling and enactment environment, a component-
based software engineering tool that we have developed
[18]. Serendipity-II illustrates how components can be
designed, built and combined to build a sophisticated
software engineering environment. Visual process
modelling views provide editors and multiple views of
process models, using components with extensible user
interfaces and events that can be monitored. The
graphical representation components are separated from
the process model data representation components so that
these can be developed independently. Task automation

agents are specified visually with components in the
model reused by end users. Reusable components are
used to implement repository management, multiple user
editing and versioning support, event history
management, and communication facilities.

In the following sections we outline our component-
based approach to environment development, and
demonstrate how that approach can be used to construct
tools such as Serendipity-II, and describe our experiences
in developing such tools.

4. Overview of Our Approach

JViews is a component-based software architecture
and Java class framework which we have developed for
implementing complex CASE tools, design environments
and Information Sytems [16]. JComposer is a component
development environment which generates and reverse-
engineers JViews components. This is used in
conjunction with the BuildByWire iconic editor design
tool [30], and the JVisualise run-time component
visualisation and configuration tool [16], to design and
implement JViews-based environments.

Jviews provides a set of abstractions for modelling
and implementing software components. The JViews
framework is implemented using JavaBeans [32]. JViews
explicitly supports the design and implementation of
applications with multiple, editable views of information,
and multiple, distributed users. Many abstractions
relating to these capabilities are lacking in other
component-based toolkits.

Figure 3 shows the modelling of part of Serendipity-II
in JViews. Components represent units of data and
functionality that can be statically or dynamically linked
to other components via relationships. A flexible event
propagation and response model allows components to
monitor other components and respond to state change or
other events. Events from other components can be acted

on, but can also be modified, vetoed or prevented from
reaching other components. Events can be stored to
support modification histories, undo/redo and versioning.
A variety of persistency, component distribution and
collaborative editing and communication facilities are

provided by reusable JViews components. These make
building new environments much easier, and also allow
tools added to an existing environment to find and use
components providing such facilities.

component

relationship

link

Stage icon
Stage icon

Enactment glue

View layer

View comps

Editing history

Collaborative
editing

to other users…

View rel
View rel

View rel

Base Stage
Base link

Base Stage

repository

Base stages

…

…

…

Send/receive
changes

Ensure unique names

event propagation

semantics/agent

versioning

persistncy

3rd party tool

Representation
Layer

Repository ("Base")
Layer

View
Layer

Edit e.g. rename stage…

Figure 3. Some JViews components from Serendipity-II.

It is difficult to implement complex, component-based
systems without good CASE tool support. We have
developed JComposer to provide such support for
systems developed with the JViews architecture.
JComposer provides multiple views of JViews
component specifications. It generates JViews classes to
implement component models, and can be used to reverse
engineer JViews classes into a high-level, visual
architecture description language, similar to that used in
Figure 3.

Windows (1) and (2) in Figure 4 show JComposer
being used to model various Serendipity-II repository and
view components. The component designer can specify
information about components in various views,
including functional and non-functional requirements,
attributes, methods, relationships and events supported by
the component, view mappings, and detailed code
generation information. A novel event filter and action
language allows static and dynamic event handling
behaviour for components to be captured at a high level.
This language was adapted in Serendipity-II to provide an
agent specification and deployment language for end
users. Various validation tests can be performed on a
component model in JComposer to ensure generated
JViews components are correct.

Windows (3) and (4) in Figure 4 show the
BuildByWire iconic editor design and generation tool.
BuildByWire allows software tool builders to design
complex iconic representations and generate JavaBean

implementations of these and their editors. JComposer
then allows tool developers to link JViews view
components to these JavaBean components. The
separation of presentation and view data has proved very
effective in allowing tool developers to easily reuse
iconic forms and replace view component iconic
representations.

We have also developed a run-time component
visualisation tool, JVisualise, that allows tool users to
inspect and modify tool components using JViews
component visual representations. Serendipity-II itself
has been reused to provide a process modelling and
enactment tool for JComposer and other JViews-based
tools. Serendipity-II software agent specifications can
include component representations from other tools that
can be monitored or sent messages, facilitating control
and process integration within an environment.

5. Multiple View Support

JViews represents a tool repository's data structure
using components. Semantics are embodied in structural
components or specified by additional components that
monitor structural component events. Multiple views are
supported by relationship components that link structural
repository components to view components. Events
generated due to modifications of the structural
components are monitored by the relationship and
forwarded to the view components and vice-versa.

(2)

(3) (4)

(1)

Figure 4. JComposer and BBW metaCASE tools in use.

Figure 5 shows how multiple views are modelled for
parts of Serendipity-II using JViews. In Fig. 5(a) two
process stage views contain reference to the same stage.
An editing history for one view is also shown. Fig. 5(b)
shows the JViews components corresponding to each
view, and the shared repository, together with event flows
when one of the process stage icons is modified. The
event representing the change is recorded in the view’s
history component, and is also propagated via the view
relationship to the repository component representing the
process stage. This causes the repository component to
update its state, thus generating events that are

propagated to the corresponding process stage icon
components in other views. The latter modify their state
accordingly to maintain consistency with the initial view.

This is one example of a range of sophisticated
inconsistency management facilities provided by JViews
view components. These provide tool users with a range
of techniques for keeping information consistent and for
managing inconsistencies [9].

JViews view components also support extensible user
interfaces; other components may modify their interfaces
appropriately to support seamless user interface extension
[9].

View Layer Component

Process Stage Icon Process Stage Icon

Process Stage Link
…

View Relationship

Base Process Stage

View Layer Component

…

Event History

1. user edits icon; view
component changed

2. event sent to view layer
& view relationship

3. event stored

4. base stage
updated

5. event sent
to view rels

6. view icons
updated

7. iconic representation
redisplayed

2. A Stage
Team

1. A Stage
Team

(a) Example of multiple views in Serendipity-II. (b) JViews architecture supporting multiple views.

Figure 5. Multiple view support in JComposer.

We have found the software component-based
approach effective for supporting multiple views. New
views and view components can be plugged into an
environment without altering existing components. Our
JViews components generate event objects that can be
stored, undone and redone. Hence undo/redo and version
control facilities can be achieved by adding components
to manage these stored events. These event history
components can be replaced, at run-time, with others,
providing different facilities as necessary. Effective
inconsistency management in large, multiple view
software engineering environments is typically one of the
most difficult features to provide. JViews’ component
based approach provides many useful abstractions that
can be combined together simply to produce
inconsistency management solutions that are much more
difficult to provide with more conventional approaches
[9].

6. Collaborative Work and Tool Integration Support
Nearly all multi-user software engineering tools build

multiple user support into the tool as it is developed. In
contrast, our component-based approach allows
collaborative work-supporting facilities to be added as
needed to a tool. This may even be done at run-time.
JViews components broadcast state change events which
can be monitored by other components, both before and
after the stage change occurs (the former permitting veto
of an operation before it takes effect). Synchronous and
asynchronous editing facilities (including locking) can
thus be added to existing JViews-based environments
through the addition of extra collaboration components
monitoring existing event sources and forwarding them to
other environments. This can be done with no
modification to the existing environment or to the added
generic collaboration components [9].

Figure 6 (a) shows a "collaboration" menu in use in
Serendipity-II to configure the "level" of collaborative
editing with a colleague: asynchronous, synchronous and
"presentation" (i.e. show editing changes to others as they
occur but don't action them). The "change history"
dialogue on the bottom, right hand side shows a history of
editing events for the user's process model. Some changes
were made by the user ("John"), and others by a
collaborator ("Mark").

The illustration in Figure 6 (b) shows how these
collaborative editing components were added to
Serendipity-II. Such components may be added to any
JViews-based environment, with no change to the
components or the components that make up the
environment.

A "collaboration menu" component is created when
the user specifies that they want a view to be
collaboratively edited. This component listens to editing
changes in the view, and records them in a version record
component. If the user is in presentation or synchronous
editing mode with another user, the changes are
propagated to that user's environment. This is acheieved
via a decentralised, point-to-point message exchanging
system comprising of a “change sender” component and a
“change receiver” component in each user’s environment.
A sender propagates view editing changes to each other
users’ environment who is interested in such a change i.e.
all those who are collaboratively editing the view.

A user’s environment receives view editing changes
and passes them to the appropriate view collaborative
editing component. This then stores and presents the
received change in a dialogue (presentation mode editing)
or actions it on the view (synchronous mode editing). In
asynchronous editing mode, users request a list of
changes made to another user's view and select, via a
dialogue, those they wish to have applied to their own
version of the view.

EntityIcon

Base Entity

Displ ay in
wi ndow…

RelIc on

RoleGlue

Reposi tory

View

…

BaseRole

BaseRel…

Version Record

Other vi e ws…

Stor e
changes…

Listen b efor e/after
cha nges made… "Col labo rativ e Menu"

Co ll aborato r
Cl ients

Send changes
To c oll aborato rs

Other us er's
Co llaboration

serv eres

User's Co llabo ration
"S erver"

Received changes and
col laboration r equests

Present cha nge s Impo rt changes

Receive changes
fro m oth er users’
col laboration c lients

(a) Example of asynchronous collaborative editing. (b) Software components supporting collaborative editing.

Figure 6. Collaborative view editing and versioning support

To support the replication of components (via object
versioning), JViews has abstractions that are used to
maintain copies of collaboratively edited views. When
events that describe changes generated in one view are
propagated to another user's environment any component
references are translated appropriately.

Tool integration is supported in JViews-based
environments in a similar manner to multiple views.
Components which are part of one tool can request
notification of events from components which are part of
another tool, or can send these other tool components
messages. This facilitates both control and data
integration. JViews provides abstractions for identifying
and communicating between components that are running
in different virtual machine environments or that are
resident on different physical machines.

Figure 7 shows a Serendipity-II component
monitoring an event history component associated with a
JComposer view. When the Serendipity-II component is

sent a modification event from the JComposer
component, it passes this on to a component that
determines if the event is of interest. If so, a third
Serendipity-II component notifies the user of Serendipity-
II.

Component-based software tools facilitate integration
more readily than most other architectures for building
tools, as components have well-defined interfaces with
event monitoring mechanisms built in. Component-based
tools also tend to be engineered for reuse and extension,
allowing other components to externally control them and
extend their user interfaces as necessary.

The success of this approach can be seen with
Serendipity-II. It’s component-based construction allows
it to be seamlessly “bolted on” to any other JViews-based
tool, providing that tool with integrated process modeling
and enactment capabilities, without modification to the
original tool [18].

JComposer Event History Serendipity-II "Event Receiver"

Serendipity-II "Filter"

Serendipity-II "Action"

1. request notification of events

3. receive event
4. is event one we're looking for?

5. yes - notify user

Serendipity-II ToolJComposer Tool

JComposer Component

2. store change

Edit comp. icon

(data/event exchange via
JViews middleware

abstractions)

Figure 7. A simple tool integration example.

7. Environment Extension and Task Automation

Software engineering environments need to support
end user configuration of tools, extension of the
environment, and automation of various tasks. For
example, the user may wish to be notified of specific
changes or to have additional constraints enforced. These
capabilities permit the environment to be adapted to
changing work processes and tool sets of software
developers.

Serendipity-II allows for user enhancement via its
visual event filtering and actioning language. This allows
users to add, configure and link components into the
environment. These event filtering and actioning models
can then be deployed as "software agents" which modify
an environment's composition and behaviour.

Figure 8 shows two examples of such agents: a simple
task automation agent that also illustrates tool integration,
and a distributed notification agent. The icons in these
models represent Serendipity-II processes (ovals with

label and role name), event filters (square icons with
question mark on left side), event actions (shaded icons
with single label) and JViews components (square icons).
Adding these icons to a Serendipity-II agent specification
view creates appropriate JViews components that handle
events or messages sent to the component. The example
on the left instructs Serendipity to download or upload
files to/from a shared file server when a particular process
stage is enacted (started) or finished.

The example on the right has two parts. The agent on
the left runs in user John's environment. The one on the
right runs in Bill’s environment, and gathers changes
made by Bill to the “Shape” and DrawingPanel2” classes
while doing the “modify code” process activity. These
changes are forwarded by the “send to john’s receiver”
action to the “receive bill’s code changes” action in the
agent running in John’s environment. John’s agent stores
the changes in a JViews history component “Bill’s code
changes” (left branch). It also notifies John by message if
any change is made to the Shape class (right branch).

(a) Simple, local software agent for tool integration. (b) Distributed software agent for notification.

Figure 8. Specifying simple task automation agents.

The component-based architecture of JViews-based
environments allows such task automation and tool
integration facilities to be straightforwardly built using
our event filtering and actioning model. JViews
components generate events which can be filtered or used
to produce a wide variety of "actions" (notify user, abort
operation, communicate with another tool/component,
open/close views, store change event, etc.). We have built
a variety of reusable JViews components to help facilitate
the construction of software agents like those in Figure 7.
These include components to: perform parameterised
filtering of events; inter-machine event passing and
operation invocation; store events; notify users of events
and support user communication; and provide interfaces
to various third party tools (e.g. MS Word™ and
Excel™, Eudora™, Netscape™ and WinEdit™).

8. Future Research Opportunities

Our experiences with component-based software
engineering tools have so far been very positive.
Environments like JComposer and Serendipity-II were
easier to build than comparable earlier systems we
developed without using components [15]. This has been
due to the high degree of reusability of our JViews
components, the useful set of middleware and user
interface abstractions embodied by JViews components,
and the use of the JComposer and BuildByWire meta-
CASE tools. We have been able to extend environments
like Serendipity-II using our visual event filtering and
actioning facility. This has allowed us to easily develop
and deploy new reusable components for tool integration
and environment extension, without having to
substantially modify existing structures and behaviour.

As more software tools begin to utilise component-
based architectures, like JavaBeans [32] and COM [36],
and distributed object management facilities like CORBA
[31], it becomes easier to effectively integrate such tools
with JViews-based environments. Better middleware
components to support collaborative work, data

persistency, distributed and parallel processing and
remote notification will allow better performing software
tools to be built. If appropriate component interface
designs have been used for such middleware capabilities,
upgrading environment infrastructures also becomes
easier and more successful.

A problem we encountered with some JViews and
BuildByWire components was poor extensibility of their
user interfaces. Components need to be designed so that
their user interfaces can be appropriately extended by
other components, to ensure a consistent look-and-feel
and to tailor the user interface to suits the needs of
subsets of users.

This becomes more difficult as highly reusable
components are developed whose application domains
are not fully known during their design, and when third-
party component-based tools are reused. Similar issues
arise with middleware component interface and capability
design, requiring the development of better component-
based system interface standards and design techniques.

Multiple view and tool integration support necessarily
involves mapping operations and/or events from
components in one view/tool into another. Support for
complex inter-component event and operation mapping is
lacking in most component-based systems, making
development of multiple views and tools more difficult.
This is an area we have attempted to address in our work,
but additional work is needed.

Software developers are tending to require more
control over the configuration of their tools, composition
of their environments and behaviour of their tools.
Appropriate end-user configuration facilities for
component-based systems are thus essential to ensure
they are effective. Similarly, the use of software agents to
automate tasks and the effective cataloguing and retrieval
of reusable components remain issues requiring further
research.

9. Conclusions
Our experience in the development of complex

component-based software engineering tools has
convinced us of the value of a component-based
approach. The modularity provided by component
interfaces and the flexibility provided by the “plug and
play” event-based composition of components have
proven to be of considerable value in the both the
development of such environments, and the provision of
end users with the capability to tailor and extend the
environments. Several issues remain to be solved to
enable software components in general to be used on a
large scale, and these also impact on our work on the
generation of software engineering tools.

References

1. Altmann, R.A. and Hawke, A.N. and Marlin, C.D., An

Integrated Programming Environment Based on Multiple
Concurrent Views, Australian Computer Journal 20 (2),
May 1988, 65-72.

2. Backlund, B. and Hagsand, O. and Pherson, B., Generation
of Visual Language-oriented Design Environments,
Journal of Visual Languages and Computing 1 (4), 1990,
333-354.

3. Bandinelli, S. and DiNitto, E. and Fuggetta, A., Supporting
cooperation in the SPADE-1 environment, IEEE
Transactions on Software Engineering 22 (12), December
1996, 841-865.

4. Bird, B., An Open Systems SEE Query Language,
Proceedings of 7th Conference on Software Engineering
Environments, Noordwijkerhout, Netherlands, April 5-7
1995, IEEE CS Press.

5. Bogia, D.P. and Kaplan, S.M., Flexibility and Control for
Dynamic Workflows in the wOrlds Environment,
Proceedings of the Conference on Organisational
Computing Systems, Milpitas, CA, November 1995, ACM
Press.

6. Champine, M.A. A visual user interface for the HP-UX and
Domain operating systems, Hewlett-Packard Journal 42
(1), 1991, 88-99.

7. Conradi, R. Hagaseth, M., Larsen, J., Nguyen, M.N.,
Munch, B.P., Westby, P.H., Zhu, W. and Jaccheri, M.L.,
EPOS: Object Oriented Coopeartive Process Modeling, In
Software Process Modeling & Technology, A.Finkelstein
and J. Kramer and B. Nuseibeh Eds, Research Studies
Press, 1994.

8. Daberitz, D. and Kelter, U. Rapid Prototyping of Graphical
Editors in an Open SDE, Proceedings of 7th Conference on
Software Engineering Environments, Noordwijkerhout,
Netherlands, April 5-7 1995, IEEE CS Press, pp. 61-73.

9. Di Nitto, E. and Fuggetta, A. Integrating process
technology and CSCW, Proceedings of IV European
Workshop on Software Process Technology, Leiden,
Netherlands, April 1995, LNCS, Springer-Verlage.

10. Ebert, J. and Suttenbach, R. and Uhe, I. Meta-CASE in
practice: A Case for KOGGE, Proceedings of CaiSE*97,
Barcelona, Spain, June 10-12 1997, LNCS 1250, Springer-
Verlage, pp. 203-216.

11. Fernström, C. ProcessWEAVER: Adding process support to
UNIX, 2nd International Conference on the Software
Process: Continuous Software Process Improvement,

Berlin, Germany, February 1993, IEEE CS Press, pp. 12-
26.

12. Goldberg, A. and Robson, D. Smalltalk-80: The Language
and its Environment, Addison-Wesley, Reading MA, 1984.

13. Grundy, J.C. Human Interaction Issues for User-
configurable Collaborative Editing Systems, Proceedings
of APCHI’98, Tokyo, Japan, July 15-17 1998, IEEE CS
Press, pp. 145-150.

14. Grundy, J.C. and Hosking, J.G., Serendipity: integrated
environment support for process modelling, enactment and
work coordination, Automated Software Engineering 5 (1),
January 1998.

15. Grundy, J.C. and Hosking, J.G. and Fenwick, S. and
Mugridge, W.B. Connecting the pieces, Chapter 11 in
Visual Object-Oriented Programming, Burnett, M.,
Goldberg, A., Lewis, T. Eds, Manning/Prentice-Hall,
1995.

16. Grundy, J.C., Hosking, J.G. and Mugridge, W.B. Static and
Dynamic Visualisation of Software Architectures for
Component-based Systems, Proceedings of SEKE'98, San
Francisco, June 18-20 1998, KSI Press.

17. Grundy, J.C., Hosking, J.G. and Mugridge, W.B.,
Coordinating distributed software development projects
with integrated process modelling and enactment
environments, Proceedings of 7th IEEE Workshops on
Enabling Technologies: Infrastructure for Collaborative
Enterprises, Palo Alto, June 17-19 1998, IEEE CS Press.

18. Grundy, J.C., Apperley, M.D., Mugridge, W.B. and
Hosking, J.G. An architecture for decentralized process
modelling, IEEE Internet Computing, September/October
1998.

19. Grundy, J.C., Hosking, J.G. and Mugridge, W.B.
Inconsistency management for multiple-view software
development environments, IEEE Transactions on
Software Engineering 24 (11), November 1998, 960-681.

20. Grundy, J.C., Mugridge, W.B., Hosking, J.G., and
Apperley, M.D. Tool integration, collaboration and user
interaction issues in component-based software
architectures, Proceedings of TOOLS Pacific’98,
Melbourne, Australia, Nov 24-26 1998, IEEE CS Press,
pp. 289-302.

21. Hart, R.O. and Lupton, G., DECFUSE: Building a graphical
software development environment from Unix tools,
Digital Tech Journal 7 (2), 1995, 5-19.

22. Kaiser, G.E. and Dossick, S. Workgroup middleware for
distributed projects, IEEE WETICE’98, Stanford, June 17-
19 1998, IEEE CS Press, pp. 63-68.

23. IBM Corportation, IBM Visual Age for Java™,
http://www.software.ibm.com/ad/vajava, 1997.

24. Interactive Software Engineering Inc., Eiffel CASE™,
http://www.eiffel.com/products/case.html, 1998.

25. Magnusson, B. and Asklund, U. and Minör, S. Fine-grained
Revision Control for Collaborative Software Development,
Proceedings of the1993 ACM SIGSOFT Conference on
Foundations of Software Engineering, Los Angeles, 1993,
pp. 7-10.

26. Marlin, C. and Peuschel, B. and McCarthy, M. and Harvey,
J., MultiView-Merlin: An Experiment in Tool Integration,
Proceedings of the 6th Conference on Software
Engineering Environments, IEEE CS Press, 1993.

27. McIntyre, D.W., Design and implementation with Vampire,
In Visual Object-Oriented Programming, M. Burnett and
A. Golberg and T. Lewis Eds, Manning Publications,
Greenwich, CT, USA, 1995.

28. McWhirter, J.D. and Nutt, G.J., Escalante: An Environment
for the Rapid Construction of Visual Language
Applications, Proceedings of the 1994 IEEE Symposium
on Visual Languages, IEEE CS Press, 1994.

29. Meyers, S. Difficulties in Integrating Multiview Editing
Environments, IEEE Software 8 (1), January 1991, 49-57.

30. Mugridge, W.B., Hosking, J.G. and Grundy, J.C. Vixels,
CreateThroughs, DragThroughs and AttachmentRegions in
BuildByWire, Proceedings of OZCHI98, Adelaide,
Australia, November 30-Dec 4 1998, IEEE CS Press, pp.
320-327.

31. Object Management Group, OMG CORBA,
http://www.omg.org/, 1998.

32. O’Neil, J. and Schildt, H. Java Beans Programming from
the Ground Up, Osborne McGraw-Hill, 1998.

33. Reiss, S.P., PECAN: Program Development Systems that
Support Multiple Views, IEEE Transactions on Software
Engineering 11 (3), 1985, 276-285.

34. Reiss, S.P., Connecting Tools Using Message Passing in the
Field Environment, IEEE Software 7 (7), July 1990, 57-66.

35. Roseman, M. and Greenberg, S., Simplifying Component
Development in an Integrated Groupware Environment,
Proceedings of the ACM UIST'97 Conference, ACM
Press, 1997.

36. Sessions, R. COM and DCOM: Microsoft’s vision for
distributed objects, John Wiley & Sons, 1998.

37. Shuckman, C., Kirchner, L., Schummer, J. and Haake, J.M.
Designing object-oriented synchronous groupware with
COAST, Proceedings of the ACM Conference on
Computer Supported Cooperative Work, ACM Press,
November 1996, pp. 21-29.

38. Ter Hofte, G.H. and van der Lugt, H.J. CoCoDoC: a
framework for collaborative compound document editing
based on OpenDoc and CORBA, Proceedings of the
IFIP/IEEE International Conference on Open Distributed
Processing and Distributed Platforms, 26-30 May 1997,
Toronto, Canada, pp. 15-33.

39. Thomas, I. and Nejmeh, B. Definitions of tool integration
for environments, IEEE Software 9 (3), March 1992, 29-
35.

40. Valetto, G. and Kaiser, G.E., Enveloping Sophisticated
Tools into Process-centred Environments, Automated
Software Engineering 3, 1996, 309-345.

