
Three Integration Methods for a Component-based
NetPay Vendor System

Xiaoling Dai1 and John Grundy2

Department of Mathematics and Computing Science

The University of the South Pacific, Laucala Campus, Suva, Fiji1
dai_s@usp.ac.fj

Department of Electrical and Computer Engineering and Department of Computer Science2

University of Auckland, Private Bag 92019, Auckland, New Zealand
john-g@cs.auckland.ac.nz

Abstract. We have developed NetPay, a micro-payment protocol characterized
by off-line processing, customer anonymity and relatively high performance
and security using one-way hashing functions for encryption. In our NetPay
prototypes we have designed and implemented two kinds of NetPay vendor
systems which use thin-client user interfaces, a component-based server-side
infrastructure and CORBA remote objects for inter-system communications.
We describe three alternative ways to integrate NetPay interface facilities into
these existing E-Journal web applications. We describe the relative strengths
and weaknesses with each approach and our experiences building prototypes of
them.

Key words: Electronic commerce; Micro-payment; System integration

1 Introduction

World-wide proliferation of the Internet led to the birth of electronic commerce, a
business environment that allows the transfer of electronic payments as well as trans-
actional information via the Internet. However, the problem of paying for large-
volume, small-value items of information is still to be solved. We have developed a
new micro-payment protocol called NetPay [1]. The NetPay protocol allows custom-
ers to buy E-coins, worth very small amounts of money, from a broker and spend
these E-coins at various vendor sites to pay for large numbers of discrete information
or services of small value each. There are a number of other micro-payment systems
such as PayWord [5], Millicent [4], and PayFair [6]. However, most existing or pro-
posed micro-payment technologies suffer from problems with communication, security, lack
of anonymity and being overly vendor-specific. We have developed the NetPay protocol
and supporting architecture to address problems with communication, security, anonym-
ity and vendor-specific. In this paper, we give an overview of existing micro-payment
models and point out the problems with these models. We then briefly describe our

CORBA-based and component-based NetPay micro-payment system design. We then
describe the designs for the three ways to integrate NetPay interface facilities into an
existing web application. We conclude with an outline of our further plans for re-
search and development in this area.

2 CORBA-based NetPay Architecture

We initially developed a software architecture for implementing NetPay-based micro-
payment systems for thin-client web applications that used hard-coded vendor facili-
ties for micro-payments [2]. NetPay additions to the web components included pric-
ing for items, pay-per-click for each item, a server-side e-coins spent database, and
nightly redemption of spent e-coins with a broker in exchange for real money. The
existing web server components’ code was modified to interact with the NetPay func-
tions when needed. There are some major disadvantages to this approach:
• It is difficult and time consuming to add NetPay support to existing applications.
• The reusability level is lower. For example, when some NetPay functions and

interfaces are fitted into an E-newspaper system developers can’t reuse the same
NetPay objects into another existing web application without modification.

• Enhancement of the NetPay functions means modifying the web components.

To overcome these disadvantages, a component-based NetPay vendor system was
developed. One of the characteristics of such a system is that its components can be
plugged into an existing web system. The new system should match the needs of
existing systems and have NetPay micro-payment support integrated seamlessly with
minimum effort with their existing web application architecture. We need to enhance
the existing, domain-specific components of an existing NetPay vendor system and,
using plug-and-play, add the NetPay components to the existing web application. In
an E-journal example, the journal provider (vendor) would want to charge small
amounts on a per-article basis (perhaps varying amounts). The main purpose of the
component-based NetPay vendor system was to separate the NetPay EJBs from the
particular domain knowledge of the web application, enabling each enterprise bean to
be reused in different EJB-based vendor systems via plug-and-play with the existing
vendor components. In addition, the E-journal’s user interface must be annotated to
display E-coin balance, article cost, credit checks and coin debits to the NetPay EJBs.

3 Component-based NetPay Architecture

We have developed a set of Enterprise Java Beans (EJBs) that capture the functional-
ity of the NetPay micro-payment system [�3]. These include components such as:
• ArticlePrice. This provides pricing for items or services sold by the vendor.

• EwalletController. This provides sever-side e-coin management, either by man-
aging a customer’s e-wallet or providing a CORBA interface to an e-wallet
hosted on the customer’s own PC.

• RedeemController. Provides nightly redemption functionality to broker.

We have used CORBA to enable the NetPay EJB application servers to access the
broker application server to obtain touchstone information to verify the e-coins being
spent and to redeem spent e-coins. A dispatcher is used to forward web browser re-
quests to JSP pages. Fig. 1. shows some required interactions of existing E-journal
system components (grey) with some NetPay components.

Web
Client

1.HTTP Request

Dispatcher
Servlet

Template
JSP page

Articles
JSP page

HTTP
Servlet

Response

2.HTTPServlet Request

3.

5.

6.HTTP Response

ArticleDBEJB
EnterpriseBean

4a.

ArticlePriceEJB
EnterpriseBean

4b.

EwalletControlle
 Enterprise Bean

4c.

Web
Server

RedeemEntity Bean

Fig. 1. Web component interaction after modified article.jsp

4 NetPay Integration with E-journal Webpages

In order to add our NetPay micro-payment facility to the E-journal, or to other 3rd
party J2EE-based applications, we need to be able to add our EJBs to their J2EE
server and to detect when pages are being accessed by customers that need to be paid
for. We also need to ensure that if the customer attempting to access does not have
enough e-coins they are directed to the NetPay broker site to buy some more. There
are three main ways to integrate the NetPay user interface facilities: (1) modify the
existing system web pages to incorporate NetPay information; (2) generate web pages
that display the existing system pages in frames and make appropriate interactions
with NetPay EJB components; and (3) generate proxy web pages that interact with
NetPay session beans and redirect access to the original web pages.

4.1 Modifying the Existing System Web Pages

In this approach the articles.jsp is modified to retrieve price data from Article-
PriceEJB enterprise bean for displaying article price information or retrieve e-wallet
data (for server-side NetPay) from e-wallet enterprise bean for displaying e-wallet
information. Fig. 1 depicts the interaction between these Web components. A HTTP
request (1) is delivered to the dispatcher component which processes and then for-
wards the HTTPServlet request (2) to the template.jsp. The template.jsp generates the
response (3) by including the responses from Articles JSP page. Articles JSP page
retrieves article contents from the article enterprise bean (4a) and article price from
the article price enterprise bean (4b), and e-wallet data from e-wallet enterprise bean
(4c). Articles JSP page transmits responses (5 and 6) to the client for presentation.

The content.jsp is modified to make payment from e-wallet enterprise bean in or-
der to debit e-coins paying for article content and Login.jsp is implemented (for
server-side NetPay) to retrieve e-wallet data from e-wallet enterprise bean. Fig. 2
depicts the interaction between these components.

Web
Client

Dispatcher
Servlet

Template
JSP page

Content or
Login JSP

HTTP Servlet
Response

2.HTTPServlet Request

3.

5.

6.HTTP Response

ArticleDBEJB
EnterpriseBean

4a.

EwalletController
EnterpriseBean

4b.

Web Server

J2EE Server

1.HTTP Request

Fig. 2. Web component interaction after modified and implement JSP pages

A HTTP request (1) is delivered to the dispatcher component which processes and

then forwards the HTTPServlet request (2) to the template.jsp. The template.jsp gen-
erates the response (3) by including the responses from Content or Login JSP page.
Content JSP page retrieves article contents from the article enterprise bean (4a) and
Login JSP page retrieves e-coin ID and password from the e-wallet enterprise bean
(4b). Articles or Content JSP page transmits responses (5 and 6) to the client.

This approach requires updates to the existing system web page implementations.
For example, in the journal example system, article.jsp needs to be modified to inter-
act with the price and the e-wallet enterprise beans for displaying the costs of articles
and e-wallet balance. content.jsp was modified to debit e-coin from the e-wallet by
interacting with the e-wallet enterprise bean before displaying an article content. This
can be done easily and possibly by code injection into the existing JSPs by a tool.

4.2 Generating NetPay JSP Pages

In this approach NetPay JSP pages are generated to interface to existing E-journal
pages. An HTTP request (1) is delivered to a NetPay JSP page which displays arti-
cle.jsp in frames, after retrieving article price data from the article price enterprise
bean (3) and e-wallet data from the e-wallet enterprise bean (4). The article.jsp re-
trieves articles’ title and author data from the article enterprise bean (2). NetPay JSP
pages display the articles and e-wallet information to the client (5). Fig. 3 depicts the
interactions between these components. NetPay JSP pages also display content.jsp in
frames and interact with the e-wallet enterprise bean in order to debit e-coins.

Web
Client

Journal
JSP

ArticleDBEJB
EnterpriseBean

ArticlePriceEJB
Enterprise Bean

EwalletControllerEJB
Enterprise Bean

(1) (2)

(3)

(4)
(5)

NetPay
JSP+Frame

Fig. 3. Generating NetPay JSP pages.

This approach has the advantage that no code changes to the original JSPs are
needed and the NetPay pricing information can be displayed in a separate frame to
existing information. However, this separation of pricing of items from item descrip-
tions may not be ideal when large numbers of items are displayed together e.g. for
large search results, table of contents, news headlines etc.

4.3. Generating NetPay proxy JSP Pages

In this third approach NetPay JSP pages are again generated. These however act as
“proxies” to the original web-based system’s JSP pages. An HTTP request (1) is
delivered to the NetPay proxy pages which obtain article price data from the article
price enterprise bean (2) and e-wallet data from the e-wallet enterprise bean (3) for
displaying costs of the articles and e-wallet information. NetPay proxy JSP pages
then redirect to article.jsp accessing the journal home page (4). When a customer
wants to read an article content, NetPay proxy JSP pages interact with the e-wallet
enterprise bean to debit e-coins from customer’s e-wallet (3) and then redirect to
content.jsp which retrieve article content from article enterprise bean (5). Finally
NetPay proxy JSP pages display the article content to the client (6). Fig. 4 illustrates
the interaction between these components.

This approach hides the NetPay functionality from the user without requiring code
changes. However, displaying article price information, information about e-coins left
in wallet/spent and so on has to be done by the proxy before forwarding to the origi-
nal pages. For sites with complex multi-JSP page interactions, this can be intrusive.

Web
Client

Journal
JSP pages ArticleDBEJB

EnterpriseBean

ArticlePriceEJB
EnterpriseBean

EwalletControllerEJB
EnterpriseBean

NetPay Proxy
JSP Pages

(1)

(6)

Redirect

(2)

(3)

(5)

Fig. 4. Generating NetPay proxy JSP pages

5 Summary

We have built NetPay vendor Enterprise JavaBeans to provide plug-in vendor micro-
payment support components and plugged in EJBs into the E-journal’s existing appli-
cation server and developed three techniques to have the E-journal’s JSPs to make
appropriate function calls to the NetPay EJBs. These allow for minimal code impact
to the existing system’s infrastructure. The NetPay vendor system components have
been designed, implemented, plugged into the E-journal example system, and suc-
cessfully deployed to a J2EE server running the E-journal web site.

References

1. Dai, X. and Lo, B.: NetPay – An Efficient Protocol for Micropayments on the WWW.
Fifth Australian World Wide Web Conference, Australia, 1999 .

2. Dai, X., Grundy, J.: Architecture of a Micro-Payment System for Thin-Client Web Appli-
cations. In Proceedings of the 2002 International Conference on Internet Computing, Las
Vegas, CSREA Press, June 24-27, 444-450.

3. Dai X. and Grundy J.: Architecture for a Component-based, Plug-in Micro-payment Sys-
tem, In Proceedings of the Fifth Asia Pacific Web Conference, LNCS 2642, Springer,
April 2003, pp. 251-262.

4. Manasse, M.: The Millicent Protocols for Electronic Commerce. First USENIX Workshop
on Electronic Commerce. New York, 1995.

5. Rivest, R. and Shamir, A.: PayWord and MicroMint: Two Simple Micropayment Schemes.
Proceedings of 1996 International Workshop on Security Protocols, LNCS 1189. Springer,
1997, 69—87.

6. Yen, S-M.: PayFair: a prepaid internet ensuring customer fairness micropayment scheme.
IEE Procs-E Computers & Digital Techniques, vol.148, no.6, Nov. 2001, pp.207-13.

