
Building Multi-device, Component-based, Thin-client Groupware:
Issues and Experiences

John Grundy, Xing Wang and John Hosking
Department of Computer Science, University of Auckland

Private Bag 92019, Auckland, New Zealand
john-g@cs.auckland.ac.nz

Abstract
The use of groupware, or collaborative work-supporting
technologies, has become wide-spread, but many existing
groupware systems are too difficult to integrate with
domain-specific software applications, only work for
specific user interface hardware, or provide inappropriate,
thick-client architectural solutions. We describe a set of
server-side software components we have developed
providing a variety of thin-client groupware solutions
(chat, email, annotation, to-do lists, notification etc).
These components provide HTML and WML-based thin-
client user interfaces and can be readily “plugged into”
the server-side architectures of domain-specific
applications. We focus on the key issues of designing and
realising the user interfaces for such groupware solutions
and report on our experiences to date.

Keywords: groupware, thin-client user interfaces, mobile
user interfaces, software architecture

1 Introduction
People engage in group work in all organisations and
during many activities. Group work ranges from face-to-
face meetings where participants can interact freely,
sometimes with the aid of computer technologies, to
distributed location and/or time group work. Many
“groupware” systems have been developed to aid in
supporting group work. Examples include chat, email,
ICQ, video and audio conferencing, collaborative
document editors, shared calendars and to-do lists, and
annotation and awareness facilities [Drummond et al
2001, Ellis 1998, Greenberg, 1991]. Most groupware to
date has been run using dedicated desktop applications
[Begole et al 1999, Chong and Sakauchi 2000, Roseman
and Greenberg 1996]. This means much groupware has
not been easily accessible when workers are travelling or
without their normal desktop computer environments.
Recently some specialised groupware systems have been
developed to support mobile devices like PDAs and WAP
phones [Kurashima et al 1999, Han et al 2000]. Much
groupware has been “stand alone” or, when integrated

Copyright © 2001, Australian Computer Society, Inc.
This paper appeared at the Third Australasian User
Interfaces Conference (AUIC2002), Melbourne,
Australia. Conferences in Research and Practice in
Information Technology, Vol. 7. John Grundy and Paul
Calder, Eds. Reproduction for academic, not-for profit
purposes permitted provided this text is included.

with software packages like word processors and
software tools, “hard coded” into these. This means it has
been very challenging to engineer groupware and
adequately integrate it with other applications users
require.

Recent trends in organisations and software systems have
included the move to web-based information “intra-nets”,
the growth of mobile computing technologies, and the use
of “software components” to encapsulate, reuse and
integrate functionality [Rylet 2001, Hartman and Dirksen
2001, Szyperski 1998]. Web-based systems typically
utilise thin-client architectures and have key advantages
of location and platform independence of the software,
along with centralised software maintenance and data
management. Mobile systems are deployed on cell
phones, wearable computers, PDAs and laptops, allowing
mobile work with networked, usually thin-client,
interfaces via WAP/WML and similar technologies.
Software components extend the object paradigm
allowing software to be constructed from reusable,
sometimes plug-and-play, parts.

We describe our work developing some proof-of-concept
thin-client groupware for HTML (web browser) and
WML (mobile) user interfaces. These support multiple
input devices, in that users of the groupware can access
the same facilities using different platforms and the
groupware provides appropriate support for the device
capabilities. They utilise a component-based architecture
allowing both presentation and business logic server-side
components to be integrated and reused, both among the
groupware components themselves and (to date, a limited
degree) with domain-specific server-side components.

2 Motivation
Figure 1 shows a scenario of several people having to
work together to plan a travel itinerary. The work
involves developing an agreed travel plan, which requires
deciding locations to travel to, dates, times and transport
options, and accommodation and activities. Groupware
facilities are needed to provide communication, co-
ordination and collaboration facilities [Grundy et al
1998]. Examples of communication facilities might
include synchronous video/audio; semi-synchronous chat;
and asynchronous email/messaging and document
annotation. Co-ordination facilities might include
notification events and group awareness clues (what other
users doing; looking at; where they are etc).

Edit Itinerary

Send Message

Awareness Info

View Itinerary

View Changes

Annotate Items Book Itinerary

Read Messages

Lock items

View Annotations

Discuss Itinerary

Review Edits

Figure 1. Distributed groupwork with various devices.

Collaboration facilities might include shared editing
spaces (e.g. shared “whiteboards” and portals), version
control over documents and document/information
exchange techniques. Some users may access the system
using a desktop-hosted browser; some may use mobile
technologies (laptop, PDA, pager or phone).

Key requirements we have identified for groupware
deployed in a situation like the above includes:

• Support for thin-clients and thick-clients. Thin-client
systems (like HTML, WML) have most processing
and user interface definition done server-side. This
allows these systems to be deployed on any client
running a suitable browser, allows developers to
upgrade the server-resident systems more easily, and
allows new people to join the environment without
the need to download/install software. Thin-clients
also have light-weight demands on clients, and if
carefully designed can have low bandwidth demands.

• Adaptability. A wide variety of clients may present,
requiring various forms of adaptation by the
groupware servers. Different devices require
different user interface designs and technologies (e.g.
phones are very small; PDAs have limited or no
colors). Different users have different capabilities
(some can view and change some data; some cannot).
Individual users may be doing a task that requires
some capabilities and not others. Ideally our
groupware should seamlessly adapt to these
situations.

• Compatibility and Consistency. Groupware running
on different client devices for different users should
be compatible and consistent where possible. Similar
interaction and layout approaches should be used
where practicable, functionality should be similar
and groupware should be “integrated” e.g. can
exchange data/messages between all users whatever
their locale/client device etc.

• Architectures. Where possible, the same server-side
components should be reused for different kinds of
groupware to reduce development and maintenance
effort.

• Integration. Groupware is not typically used in
isolation, but with domain-specific applications e.g.
the travel planning software outlined above. Where
possible, groupware should be accessible in a
seamless way from such applications and should
exchange events with such applications as
appropriate.

Many examples of groupware have been developed.
Some key examples include messaging systems (e.g.
email, ICQ, IRC) [Drummond et al 2001], collaborative
editing tools (e.g. Grove, DUPLEX, CocoDoC) [Ellis et
al 1991, Pacull et al 1994, ter Hofte et al 1997], meeting
support systems (e.g. MS Netmeeting™, TeamWave)
[Roseman and Greenberg, 1996], and workflow and work
co-ordination systems [Bandinelli et al 1996]. In general,
many groupware systems are desktop applications and
often make use of platform-specific hardware and
software. These have the advantages of enabling support
for high degrees of user interactivity and 3rd party
application integration, at the cost of platform
dependence and installation and maintenance costs. Much
groupware is “custom built” from low-level software
libraries and is very difficult to integrate fully with other
applications.

Groupware development tools and toolkits enable the
construction of new groupware facilities and tools much
more easily, as they provide developers with high-level,
groupware-oriented abstractions. Many examples exist,
including Groupkit, JViews, COAST and Suite [Roseman
and Greenberg 1996, Shuckman et al 1996, Dewan and
Choudhary 1991]. Many of these systems, such as
CocoDoc, TeamWave and COAST, utilise a “software
component” model focusing on composing new systems
from existing, tailorable parts, rather than complete
system development. These component-based solutions
potentially allow better reuse of groupware abstractions
and integration of groupware facilities with other
software applications. Most existing approaches to using
software components to build groupware have to date
focused on building thick-client, desktop applications or
application components.

Client
Browsers/WAP

devices

Application UIs

Groupware
UIs

Web Server(s)

Groupware
Clients

• Chat
• Email
• To-do list
• Notes
• Notifier
• …

Application
Server Pages

http/wap

Application Server(s)

Groupware
Server(s)

Application
Server(s)

XML
Access

File
Access

Datbase
Access

CORBA/
RMI

SQL/
XML/

etc

Figure 2. Architecture of our thin-client groupware.

The use of “new” interaction devices and technologies
has become popular in groupware research and
applications. Examples include the use of virtual reality
interfaces (e.g. CHIME) [Dossick and Kaiser, 1999],
web-based user interfaces (e.g. MILOS, OzWeb and
BSCW) [Maurer et al 2000, Appelt, 1999, Kaiser et al
1998], large image displays [Humphereys and Hanrahan,
1999], and mobile devices [Hartman and Dirksen, 2001].
Some approaches, such as WebSplitter, combine multi-
display device and groupware support techniques [Han et
al 2000].

Many of these systems use custom architectures and
implementation approaches, but a few have begun to use
basic software component models, such as MILOS
[Maurer et al 2000] and WebSplitter [Han et al 2000].
MILOS provides web-based project management
software for (currently only) HTML web browsers.
MILOS adopts a server-side component model to provide
its teamwork support functionality. WebSplitter provides
for multi-device and multi-user browsing of documents. It
uses XML-encoded screen descriptions for multi-media
groupware and uses this to produce mark-up for multiple
display devices, including web browsers and PDAs.

 Integrating such groupware with desktop applications is
possible though limited, but integrating them with other
Virtual Environments, web or mobile applications more
promising. A number of challenges present, particularly
with small-screen mobile device groupware and
applications. User interface design for such groupware
requires careful attention to detail and use of appropriate
device characteristics. However, ideally all thin-client
groupware should provide consistent interfaces for
similar groupware functionality.

In the following sections we concentrate on describing
the motivation for and design of the abstract architecture
and user interfaces of our groupware components. We
summarise some key aspects of our detailed design and
implementation approaches and experiences to date with
our thin-client groupware components.

3 Our Approach
We have developed a number of groupware components
to provide thin-client groupware facilities for stand-alone
use and use in conjunction with other thin-client (or

thick-client) applications. These groupware components
are summarised in Figure 2. They include:

• Groupware clients. These include user interfaces for
text chat, email, note annotations, to-do list and so
on. Being thin-client UIs, these are actually server-
side presentation management services, accessed by
web browsers and WAP browsers and provide
HTML and WML marked-up data.

• Groupware servers. These provide centralised
groupware messaging and data management
facilities. As thin-clients must (typically) access a
server, our groupware “clients” access these middle-
tier groupware business logic and data management
components, rather than doing peer-to-peer style
communication (like ICQ, a thick-client application).

• A database access component, storing large numbers
of small groupware component data e.g. chat
messages, notification events, textual notes, to-do list
items and so on.

• An XML access component, providing read/write
storage of XML data for coarser-grained but
structured groupware data e.g. email, chat and event
histories.

• A file access component, providing read/write data
management for unstructured groupware data e.g.
large email content and attachments.

• Application client Uis, server pagers and application
servers. These are the applications we have
“plugged” our groupware components into. To date,
we have focused on thin-client, HTML or WML
applications (i.e. web-based or WAP-based) being
augmented by our groupware components.

The client devices (web browser, WAP phone, PDA etc)
communicate with the web server components using
HTTP or WAP protocols. WAP device requests are
directed to WML-supplying web server components and
HTTP requests to HTTP-supplying components. The
groupware user interfaces may be embedded inside (or
linked to from) application interfaces, but can also be
provided in their own browser window or WML cards.

(1)
(2)

(3) (4)

Figure 3. Examples of HTML thin-client groupware user interfaces.

The groupware web server components interact with the
application’s web server components by being included
in application pages, linked to by application pages, and
groupware interfaces providing links to application pages.

The web server components communicate with their
groupware application server components via distributed
object protocols: for example CORBA (if application
server objects are CORBA objects) or RMI (if the
application server objects are Enterprise JavaBeans
components). The groupware servers interact with each
other e.g. sending an email notifies the notification
server; adding a note annotation to a chat history item
notifies the chat server etc. An integrated application’s
application server components interact with groupware
application server components by sending them selected
notification messages (e.g. customer placed order; travel
agent changed travel itinerary, etc). These typically
provide generic subscribe-notify functionality our
groupware server components can make use of to be sent
application events. Our groupware servers can invoke
(via additional plug-in components) specified application
server functions. Data is stored/retrieved using a variety
of mechanisms (SQL for databases, XML/XQL for XML-
encoded data, binary for e.g. Word and Excel documents,
GIFs, JPEGs etc).

4 Groupware User Interfaces
In this section we illustrate some of our groupware user
interfaces and describe the key design rationale we used
when developing these interfaces. Note that we currently
implement the web server components using Java Server
Pages and Java Servlets, and some of the user interfaces
illustrated below have been developed to make use of
things easy (or relatively easy) to do using these

technologies, and could possibly be further improved
with different web technologies or effort.

Consider the scenario of Xing, John and Mark planning a
trip. Xing is the travel agent, Mark and John the
customers. A travel planning application provides
itinerary management, flight schedules and booking,
accommodation details and reservation, etc. facilities.
Our groupware components are used to provide various
collaborative work support for the participants.

4.1. Web-based Groupware Interfaces for
Desktop Computers

In Figure 3, John is using a desktop PC running a web
browser to access the groupware functionality. He uses a
text chat (1) component to discuss, semi-synchronously,
with Xing and Mark his overall needs for a forthcoming
trip, including a rough outline of locations, dates etc.
Subsequently John may message Xing and/or Mark, or
receive messages from them asynchronously (when the
recipient may be off-line) using an email component (2).
In this example, the group discuss revisions to the
itinerary. Documents such as costing e.g. an Excel
spreadsheet and detailed itinerary e.g. a Word document
can also be attached to messages. The group can plan and
review co-operative activities, along with being kept
aware of others’ work, using a to-do list facility (3). Here,
John has sketched out tasks he and others perform. To-do
list item histories convey historical progress on tasks
allowing others to review work progress on shared tasks.
Notification agents can be set up to watch for various
events (two users begin a chat; a new email arrives; a
note annotation is changed, or an application event
occurs).

Figure 4. Examples of mobile phone and PDA groupware.

Here, John specifies he is interested in being informed of
group discussions by Xing, so he can join in if able, and
when Mark has read email from John, so John knows
Mark is aware of changes to their shared travel plan (4).

When designing the user interfaces of such thin-client,
HTML-based groupware, we focused on a common look-
and-feel for most groupware orien\ted around message,
to-do, note annotation and event history lists. A common,
tailorable list formatting component is used to provide
such lists. All of our web-based groupware is “pull-
oriented” i.e. uses standard HTTP GET and POST
commands to communicate with the server components.
Chat, note and email clients periodically poll the server
for new or updated information (or explicitly request
updates on user-direction) in contrast to many thick-client
groupware applications where the server pushes changes
to clients. To obtain appropriate user interaction
characteristics with the chat in particular, we separated
the chat history from the chat message entry via HTML
frames with the history frame periodically auto-refreshed
(in addition to after the user posts a chat message).

The notify controller provides users with all possible
events detectable for a specified component (groupware
or third-party). For example, chat started/, joined; email
sent, received, read. To-do list item added, updated. Note
added, viewed, updated. For each event, the user indicates
a notification action. For example, when Xing reads his
email, John is told of this by a message. When Mark joins
a chat, Xing is informed by a text message, etc. This
allows co-operating people to be kept informed of basic
groupware events others are performing. Our simple rule
guard→action metaphor works well with simple
notification tasks, but would need extension to handle
more complex multi-event scenarios. In addition, we are
extending our support for detecting application events
e.g. Xing adds travel itinerary item, John changes hotel
reservation, etc. and using our groupware to keep co-
operating works informed of these events.

4.2. Thin-client Groupware Interfaces for
Mobile Devices

In Figure 4 Xing is using a variety of thin-client, mobile
phone-hosted groupware similar to that used by John

through a conventional browser above. In the first three
screens, Xing receives a chat message from John about a
travel itinerary item change and replies. In the second
three screens, Xing is reading an email from John telling
him about further changes he has made. Users can also
review to-do lists, add simple note annotations and set
notification parameters. We attempted to maintain an
identical set of functions for all WAP-based groupware as
provided by the web-based groupware above, though
accessed and presented in a way tailored to small mobile
devices. While WAP devices can make use of a standard
Push Application Protocol, allowing servers to push data
to the WAP device, we decided to use auto- and manual-
refresh for our groupware (chat, email, notes etc) as with
the Web-based groupware. This was so we could both
reuse the same server-side groupware components
without needing to depend on client device
characteristics, but also to maintain the same basic look-
and-feel of user interaction across devices. In practice, the
use of pull-only WAP interfaces has worked well, both
from user interaction and groupware infrastructure
perspectives.

A major challenge with small mobile devices is managing
wide or deep interfaces. In web-based interfaces, the
email, to-do list etc lists, item details and interactors can
all often be displayed together. This isn’t possible with
most mobile device user interfaces. These either require
an interface to be divided into a “stack of cards”
(separate, inter-linked screens) or require right/down
scrolling over a “canvas”. We chose to provide a number
of cards to divide up lists, details and operation
selections. This requires more option selection by users
with to-and-fro linking, but we discovered users found
this far easier and more intuitive than tiresome tracking
across a large area using the small window of the device
display.

The right-hand side screen in Figure 4 shows Mark
interacting with John and Xing via a mobile Palm PDA-
hosted interfaces. Some of the Palm interfaces we
developed use the same WML-based groupware
components as the mobile phone interfaces illustrated
above. Others are tailored to utilise the increased size
available on such mobile PDA devices. In addition, some
PDAs provide (limited) use of colour, which can be used

to distinguish status of messages and notes, different users, authorship, and so on.

(1)

(2)

(3)

(4)

Figure 5. Examples of groupware component and application interface integration.

4.3. Integration with Other Thin-client
Applications

Groupware is not typically used in isolation, but in
conjunction with other application software e.g,. John,
Xing and Mark in the example above want to collaborate
to plan a travel itinerary using a thin-client travel
planning application augmented with our groupware
support. There are three main ways we have identified
groupware components can be incorporated with other
thin-client application user interfaces: via hypertext links;
use of multiple frames or cards; and inclusion of
groupware soucre into related interface pages.

• Hypertext links, buttons or menus. These provide an
entry point to accessing groupware facilities. The
groupware interfaces are displayed in another frame,
window or in-place in the application user interface
after selecting the affordance.

• Multiple frames or cards. These place the
groupware user interfaces in a different place within
the same thin client display. Frames are effective for
desktop-hosted browsers; cards for small-screen
mobile devices. They have the advantage over
display in another window of allowing the user to
see the groupware (frames) or skip to it easily
(cards).

• Including groupware pages. This technique places
the groupware thin-client source (HTML or WML)
within part of the application user interface. The
advantage is of more seamless integration than
frames or cards, but can adversely affect the
application interface layout and perception by the
user (especially for small-screen devices).

We have focused on the first two approaches and begun
investigating the third. Figure 5 shows some examples. In
the application’s travel itinerary outline screen (1), a set
of groupware buttons have been included into the source
JSP for this page (2). The actual list of buttons displayed
can change if a user enables/disables particular
groupware facilities (e.g. the Messages button disappears
if the user specifies in our groupware preferences they
don’t want to use our email facility). Multiple frames
have been used to include both the application-specific
travel itinerary screen and the reusable groupware to-do
list viewer (3). Clicking on the Chat button will open
another window for the chat viewer (4).

4.4. Groupware Interface Design Comparison
Key design criteria for our groupware has been to 1)
provide the user with an effective, efficient user interface
to interact with; 2) realise the same groupware
functionality and data across different devices; 3) where
possible, preserve similar interaction and information
display approaches across different groupware and across
different display devices; and 4) preserving groupware
and application interaction and display characteristics
when composing groupware and application user
interfaces.

Figure 6 (a) and (b) illustrate the dividing of the Email
user interfaces for HTML and WML devices. In the
HTML version intended for desktop PC browsers, the
user logs in, selects an email message from a list (which
may span multiple pages) and reads email details or
composes an email via another page. In the WML
version, we have preserved the same logical interface
divisions but added additional cards and pages to enable

users to be “led through” instructions, email headers and email text.

Login Page

Email List

Read/Compose
Email

Login Page

Email List Compose
Email Header

Email
Instructions

Read Email
Header

Login

Email List

Read/Compose
Email

Read Email
Text

Compose Email
Text

(a) HTML Email Pages (b) WML Email Cards/Pages (c) Large Image Display
Email Screen

Figure 6. Splitting user interfaces for different device characteristics.

For example, a list of options is presented in the HTML
version as buttons on the email list page(s), but on a
separate card linked to other cards in the WML version.
A set of WML cards enables the user to specify To: and
Cc: recipients, message subject and importance and
message body, whereas a single page is used in the
HTML version. A Large Image Display approach might
use a single page, with user log-in at the top, a scrollable
list of messages, and reading/composition area at the
bottom of the screen.

A problem with the approach we used to realise these
different groupware interfaces is that multiple
implementations must be provided for different display
devices (e.g. Large Image device vs desktop browser vs
PDA browser vs mobile phone vs pager).

To some extent the division of user interfaces, choice of
interaction options/buttons/menus etc, and the basic data
display approaches can be automatically selected for a
user’s device. We are developing an adaptation
mechanism where interface designers specify logical page
labels, edit fields, image options, option selection
affordances (buttons, menus), page element display
priorities, and basic logical groupings of page elements
(lists and tables). A single logical interface specification
is provided and at run-time an HTML or WML version is
created by a web server plug-in component using device
characteristics (width, height, colour support, default font
rendering width/height, user preferences etc). Parts of the
interface that extend beyond specified width/height area
for the device are folded into additional cards/pages
which are linked from the main page for the interface
given to the client device. In addition, user and task
adaptation is provided by turning interface components
on/off, or hiding them altogether, if inappropriate for the
user or the particular user task being performed. We are
currently reimplementing our groupware and several thin-
client applications using this approach to provide
adaptable thin-client interfaces.

5 Groupware Components
We briefly discuss the design of our groupware
components in this section. Figure 7 illustrates some of
the components that comprise the chat facility. The
dashed boxes indicate different hosts these are normally
run on. Each of our groupware components comprises
one (or more) server-side dynamic web services (we use
Java Server Pages). Some of these web services provide
clients with HTML, some WML and some WML for
different devices e.g. PDA vs mobile phone vs pager. The
web services each have a number of associated
components (we use JavaBeans) that encapsulate data
representation, management and processing. Many of
these can be reused by different web services e.g. user
and session management, event lists, and message and
attachment management. Web services run on the same
host as the web server that the client browsers connect to
(wireless one via a wireless gateway). The chat service
and application interface e.g. travel itinerary viewer, can
interact by hypertext links, multiple HTML frames
enclosing the two interfaces, or one interface including
the other.

The presentation-tier components connect to a set of
remote objects that provide application server-tier
functionality. Many of these are reusable e.g. user
authentication and look-up, event history management,
event notification management and so on. All groupware
server objects provide subscribe-notify support so the
notification facility can subscribe to various events and
action these. A number of components provide data
mangement: database access, XML file manipulation and
binary file manipulation. The application servers
managing the remote objects may be deployed on
different hosts for increased performance and reliability
support. These servers could be implemented in different
languages, depending on the implementation technology
used (e.g. DCOM and CORBA would support this).

TravelItineraryManager
<<application server>>

Browser

get()
post(

<<client>>

Chat Service

login()
logout()
getMessages(
)
send

<<web service>>

MessageData
<<web tier component>>

EventListData
<<web tier component>>

UserData
<<web tier component>>

ChatManager
<<web tier component>>

RemoteUserManager
<<application tier>>

XMLManagement
<<data management>>

EventListManager
<<application tier>>

Middleware DatabaseAccess
<<data management>>

RemoteChatService
<<application tier>>

RemoteEmailService

RemoteNotifyService
<<application tier>>

RemoteNoteService

TravelItineraryView
<<application web service>>

Middleware

http

corba, dcom, rmi

corba, dcom, rmi

link; include

via middleware

corba, dcom, rmi
-> chat events

notify user(s)...

select, ins, upd, del

read/write

Figure 7. Example of component design for our thin-client groupware.

6 Implementation and Experience
To date we have used Java Server Pages (JSPs) to
implement our web services, JavaBeans to implement the
web service components, CORBA to implement our
remote application server objects, and JDBC and XML to
implement data management. JSPs are used to provide
server-side presentation logic, receiving user requests and
interacting with JavaBeans to fulfil them, or formatting
JavaBean-held data for output to users. Some JSPs
provide HTML-based input/output while others provide
WML (we are working on integrating these into single,
adaptive components). JavaBeans encapsulate data and
interaction with remote CORBA objects, which provide
centralised groupware server functionality. We used
CORBA to provide basic remote object functionality for
simplicity and to allow implementation of reusable
servers independent of client-side implementation
language, platform etc. XML is used to encode and store
large amounts of hierarchical groupware data e.g. event,
email, chat and to-do list histories.

JDBC database connectivity is used to manage user,
message and notified configuration data. Our CORBA
servers all provide event subscribe-notify to enable
notification mechanisms. Third-party client-side JSPs (or
other server-side scripting technologies) may include
some of our JSPs to provide in-place groupware, or may
provide links to them. To-do list items may provide
hypertext links to appropriate 3rd party thin-client
application pages (stored in the database associated with
each to-do list item). Events from 3rd party application
server components can be subscribed to and translated
into our groupware CORBA object events by
“notification wrappers” written using the target
application technology.

We have built a range of groupware interfaces using thin-
client interfaces, component-based development
techniques and that provide groupware facilities with

limited adaptability (to different devices) and integration
(both among the groupware components and with 3rd
party application components). Across these groupware
user interfaces we have attempted to provide consistent
display and user interaction look-and-feel characteristics.
We have performance-tested our groupware to
demonstrate the server-side CORBA servers provide
efficient management of groupware events and data for a
large number of concurrent users. We have carried out
some basic usability testing of our groupware using
function checklist and common design guidelines,
comparing our interfaces to both those of third-party thin-
client groupware we have encountered and to facilities
provided by thick-client applications. In general our
groupware components provide comparable facilities and
interaction approaches across multiple devices to custom-
built thin-client groupware applications.

We are currently designing a combination of
observational and questionnaire-based usability
experiments to more precisely gauge the effectives and
efficiency of our groupware components. We are
integrating each of our set of groupware components
providing interfaces for different devices into a single
chat, email, note, to-do list, notifier etc JSP which detects
the device characteristics and provide appropriate
interface (HTML, WML for Phone, WML for PDA, etc)
for the device. We are also adding further adaptation
support to tailor interfaces to different users (e.g. user
display and interaction preferences; facilities based on
user e.g. moderator can update/delete messages etc) and
possibly tasks (some facilities irrelevant for a particular
user task are disabled). We are extending groupware
client components to enable further tailoring e.g. colours,
fonts, display layouts, images and so on, using
component property setting that can be done by
developers and sometimes end users.

7 Summary
We have designed and prototyped a range of thin-client
groupware using a component-based approach. Our
groupware components reuse significant numbers of
server-tier abstractions (messages, events, event and
message histories, subscribe-notify infrastructure, server
organisation) and presentation-tier abstractions (list
management, component configuration, message,
annotation and event representation). Our groupware
provides interfaces for both HTML-based and WML-
based client devices. We have provided some basic
mechanisms for groupware and 3rd party thin-client
application integration. To date our groupware
components have proved useful for supporting basic
communication and co-ordination needs in thin-client
domains. Our groupware provides page-based interaction
between users including semi-synchronous chat and task
awareness facilities and asynchronous email, notes, to-do
lists and so on. Due to its thin-client architecture, fully
synchronous exchanges like key-stoke and mouse-
movements are not supported. We are working on further
support for collaboration (version management and some
additional group awareness support, including last-page-
accessed information), run-time adaptive components (to
devices, users and tasks) and possibly Enterprise
JavaBeans-based sever-side components (to further
improve reusability, performance and 3rd party
application server integration support).

8 Acknowledgments
Support for this research from a New Economy Research
Fund grant and the University of Auckland Research
Committee is gratefully acknowledged.

9 References

APPELT W. (1999): WWW based collaboration with the
BSCW system, Proc. 26th Conference on Current
Trends in Theory and Practice of Informatics, Lecture
Notes in Computer Science 1725, 66-78, Springer-
Verlag.

 BANDINELLI, S., DINITTO, E., AND FUGGETTA, A.
(1996): Supporting cooperation in the SPADE-1
environment, IEEE Transactions on Software Engineering
22(12), 1996.

BEGOLE, J., ROSSON, M.B., SHAFFER, C.A. (1999):
Flexible collaboration transparency: supporting worker
independence in replicated application-sharing
systems. ACM Transactions on Computer-Human
Interaction 6(2), 95-132.

CHONG, N.S.T., SAKAUCHI, M. (2000): e-CoBrowse:
co-navigating the Web with chat-pointers and add-ins -
problems and promises, Parallel and Distributed
Computing and Systems 2, 803-808, IASTED/ACTA
Press.

DEWAN, P. AND CHOUDHARY, R. (1991): Flexible
user interface coupling in collaborative systems, Proc.
of ACM Conference on Human Factors in Computing
CHI'91, 41-49, ACM Press.

DOSSICK, S.E. AND KAISER, G.E. (1999); CHIME: A
Metadata-Based Distributed Software Development
Environment, Proc. Joint Seventh European Software
Engineering Conference and Seventh ACM SIGSOFT
International Symposium on the Foundations of
Software Engineering, 464-475, ACM Press.

DRUMMOND, S., BOLDYREFF, C., RAMAGE, M.
(2001) Evaluating groupware support for software
engineering students. Computer Science Education
11(1), 33-54, Swets & Zeitlinger, Netherlands.

ELLIS, C.A. (1998): A framework and mathematical
model for collaboration technology, Coordination
Technology for Collaborative Applications:
Organization, Processes, and Agents, 121-144,
Springer-Verlag.

ELLIS, C.A., GIBBS, S.J. AND REIN, G. (1991):
Groupware: some issues and experiences,
Communications of the ACM 34(1), 39-58.

GREENBERG, S. (1991): Computer-supported
cooperative work and groupware: an introduction to the
special issues, International Journal of Man-Machine
Studies 34(2), 133-141.

GRUNDY, J.C., MUGRIDGE, W.B., HOSKING, J.G. AND
APPERLEY, M.D. (1998): Tool integration, collaborative
work and user interaction issues in component-based
software architectures, Proc. TOOLS Pacific '98, Melbourne,
Australia, 24-26 November 1998, IEEE CS Press.

HAN, R., FERRET, V., NAGHSHINEH, M. (2000):
WebSplitter: a unified XML framework for multi-
device collaborative Web browsing. Proc. ACM 2000
Conference on Computer Supported Cooperative Work,
221-230, ACM Press.

HARTMANN S, DIRKSEN V. (2001): Optimization of
internal business processes through integration of
mobile commerce components. Information
Management & Consulting 16(2), pp.16-19, IMC
GmbH, Germany.

HUMPHREYS, G., HANRAHAN, P. (1999): A.
distributed graphics system far large tiled displays. In
Proceedings ofVisualization ’99, IEEE CS Press, 1999,
pp.215-527.

KAISER, G.E., DOSSICK, S.E., JIANG, W., YANG, J.J.
AND YE, S.X. (1998): WWW-based Collaboration
Environments with Distributed Tool Services. World
Wide Web 1, Baltzer Science Publishers.

KURASHIMA, A., MAENO, K., ICHIMURA, S.,
TAGASHIRA, S., TAKETSUGU, M., NAGATA, Y.
(1999): A mobile groupware system "Nakayoshi"
supporting local area collaboration. Trans. Information
Processing Society of Japan 40(5), 2487-2496.

MAURER F, DELLEN B, BENDECK F, GOLDMANN
S, HOLZ H, KOTTING B, SCHAAF M. (2000):
Merging project planning and Web enabled dynamic
workflow technologies. IEEE Internet Computing 4(3),
65-74, IEEE CS Press.

PACULL, F., SANDOZ, A., SCHIPER, A. (1994):
DUPLEX: a distributed collaborative editing

environment in large scale. Proceedings of the 1994
ACM Conference on Computer Supported Cooperative
Work, pp.165-173.

ROSEMAN, M. AND GREENBERG, S. (1996):
Building real-time groupware with GroupKit, a
groupware toolkit, ACM Transactions on Computer-
Human Interaction 3 (1), 66-106, ACM Press.

ROSEMAN, M. AND GREENBERG, S. (1996):
TeamRooms: network places for collaboration, Proc.
ACM 1996 conference on Computer supported
cooperative work, 325 – 333, ACM Press.

RYLEY, S. (2001): Corporate portal development: a
practical approach ensures real business benefits.
Business Information Review 18(2), 28-34.

SHUCKMAN, C., KIRCHNER, L., SCHUMMER, J.
AND HAAKE, J.M. (1996): Designing object-oriented
synchronous groupware with COAST, Proc. ACM
Conference on Computer Supported Cooperative Work,
21-29, ACM Press.

SZYPERSKI, C.A. (1997): Component Software: Beyond OO
Programming, Addison-Wesley.

TER HOFTE, G.H. AND VAN DER LUGT, H.J. (1998):
CoCoDoc: A framework for collaborative compound
document editing based on OpenDoc and CORBA.
Proc. IFIP/IEEE international conference on open
distributed processing and distributed platforms,
Toronto, Canada, May 26-30, 1997, 15-33, Chapman &
Hall.

