
In Proceedings of 5th Asia-Pacific Web Conference, September 27-29 2003, Xi’an, China, Springer
LNCS 2642, pp. 251-262.

Architecture for a Component-based, Plug-in Micro-
payment System

Xiaoling Dai1 and John Grundy1, 2

Department of Computer Science1 and Department of Electrical and Electronic Engineer-
ing2

University of Auckland, Private Bag 92019, Auckland, New Zealand
{xdai001, john-g}@cs.auckland.ac.nz

Abstract. Micro-payment systems have the potential to provide non-intrusive,
high-volume and low-cost pay-as-you-use services for a wide variety of web-
based applications. However, adding micro-payment support to web-sites is
usually time-consuming and intrusive, both to the web site’s software architec-
ture and its user interface implementation. We describe a plug-in, component
model for adding micro-payment support to web applications. We use J2EE
software components to encapsulate micro-payment E-coin debiting and re-
demption and discrete user interface enhancement. A CORBA infrastructure is
used to inter-connect J2EE and non-J2EE vendors and micro-payment brokers.
We demonstrate the feasibility of our approach with an on-line, pay-as-you-use
journal portal example and outline an approach to using web services to further
generalize our architecture.

1 Introduction

Many current e-commerce systems adopt a macro-payment model and architecture
[16], [17], [18]. A customer makes a small number of purchases which have a rea-
sonably high cost per purchase. In order to pay for purchases, a “heavy weight” inter-
action between the vendor of the product or service and an authorisation agent (bank,
credit-card company etc) system is carried out. This typically involves the customer
supplying credit card details or “digital money” certificates, which are communicated
to the authorisation system using complex encryption algorithms. Business processing
logic and database updates are performed by the authoriser before the purchase is
approved. The vendor system waits for approval before providing the customer with
goods or services. This approach works well for relatively small numbers of transac-
tions and relatively high purchase price (to offset the cost of authorisation) [3]. In
some e-commerce scenarios this approach has a number of fundamental flaws. It re-
quires the authorisation system to always be on-line. High numbers of transactions or
low-price purchase items are infeasible, due to bottle- necking or prohibitive cost per-
transaction. In addition, with some approaches the customer’s identity can not gener-

ally be hidden from the vendor and customers are charged for products, services or
information even if they don’t use them [3].

We describe the NetPay micro-payment model and a component-based software
architecture that we have been developing for NetPay. NetPay provides an off-line
micro-payment model using light-weight hashing-based encryption. A customer buys a
collection of “E-coins” using a macro-payment from a broker. These coins are cached
in an “E-wallet” on the customer’s machine. The customer, when buying many small-
cost items from a vendor, pays for these transparently by the passing of E-coin infor-
mation to the vendor. Periodically the vendor redeems the E-coins with the broker for
“real” money. E-coins can be transparently exchanged between vendors when the
customer moves to another site. In previous work we have described the hard-coding
of NetPay support into web-based applications, an approach used by most macro- and
micro-payment solutions [4]. Major disadvantages of such an approach is the diffi-
culty and time to add micro-payment support to existing applications, the mis-match
of implementation technologies and application services if trying to reuse code, and
potential design and software architecture mis-matches.

We describe a new component-based approach for encapsulating micro-payment
support for web-based applications - “vendors” of products, services or information to
be purchased by micro-payment. We use an example web-based application, an E-
journal portal system, that we have developed independently for a teaching project
and then have enhanced by adding NetPay components via J2EE Enterprise JavaBean
components and Java Server Page proxies. These reusable NetPay components are
plugged into the existing journal site to enhance it with micro-payment support with
minimal or no code changes. We describe our approach’s architecture and design and
we illustrate the E-journal interface after plugging in these components. We discuss
related work, the advantages and disadvantages of our approach and outline possibili-
ties for further research.

2 Example Application Domain

On-line journals have become popular and are usually paid for on a macro-payment,
subscription basis. Using subscription-based payment, a customer first has to sub-
scribe to the journal by supplying payment details (credit card etc) and the journal
system would make an electronic debit to pay for their subscription by communicating
with an authorisation server. The customer would then normally go to the journal’s
site where they login with an assigned customer name and password. The journal
looks up their details and provides them access to editions of various journals if their
subscription is still current. The E-journal site may provide a range of journals for a
specific publisher or act as a portal for multiple publishers, paying each on a per-
subscription or per-usage basis. If the customer’s subscription to a particular journal
has run out, they must renew this by authorising a payment from their credit card.

Fig. 1 (a) outlines some of the key interaction use cases for this scenario. Problems with
this approach are that there is no anonymity for the customer (the journal system knows exactly
who they are and when and what they read), they can not move to other sites without first

subscribing to them too, and they must pay for the whole journal (often very expensive), even
if they want just one or two sections or articles. These issues apply to many other information
sources on the internet where vendors want to charge for a variety of information content [1],
[7].

Fig. 1. Two on-line newspaper interaction scenarios

An alternative approach is a micro-payment model. There are several approaches
to micro-payment [5], [6], [8], [9], [10]. We outline the basic interactions of our Net-
Pay model [2]. Fig. 1 (b) outlines the key interaction use cases for this scenario. The
customer first goes to a broker and purchases “E-coins” using a single macro-
payment. These are stored in an E-wallet on the customer’s machine. The customer
can then visit any journal site or newspaper site or music site they wish, their wallet
giving the site an E-coin. Each time they view an article (or section or page, depend-
ing on the item charged for) or download a song their E-coin is debited. The vendor
redeems debits with the broker (for “real” money”) periodically e.g. each night/week.
The customer can move to another site and unspent money associated with their E-
coin is transferred from the first vendor to the second. If E-coins run out, the customer
communicates with the broker and authorises another macro-payment debit. The stan-
dard macro-payment methods cannot be effectively or efficiently applied for buying
inexpensive information goods, like single articles of an on-line journal, because
transaction costs are too high. Encryption mechanisms used are slow and each transac-
tion typically “costs” a few cents. Macro-payment suits spending small numbers of
large amounts. An Internet micro-payment system allows spending large numbers of
small amounts of money at web sites in exchange for various content or services, as in
the E-journal scenario above. The design of micro-payment systems is usually quite
different from existing macro-payment systems, since micro-payment systems must be
very simple, secure, and efficient, with a very low cost per transaction.

The rapid growth of the Internet has led to the appearance of thousands of
different web sites, which are created to provide information to millions of people
around the world. Producing and maintaining a quality web site takes a great deal of
time, dedication and money. To help offset the development costs, web site producers
are keen to use their site as a source of income. Therefore, an efficient micro-payment
system whose components can be plugged into the existing sites to handle such a trade
is needed. Such a micro-payment system would ideally be easily reusable i.e. not re-
quire extensive redevelopment to integrate with the web application’s architecture; not
require any modification to the web application itself; provide effective and efficient

Read Article

Subscribe Make
Macropayment

Authorisation
System

Customer

Debit Coin

Get E-coins

Customer

Read Article
Redeem
Debit

Broker

<<uses>>

(a) Typical macro-payment interaction model. (b) Possible micro-payment interaction model.

debiting of customer “E-coins” and redemption of these coins via a broker for “real”
money; and integrate seamlessly with both the architecture and user interfaces of the
web application. In our E-journal example, the journal provider would want to charge
small amounts on a per-article basis (perhaps varying amounts) and have this micro-
payment support integrated seamlessly and with minimum effort with their existing
web application architecture.

3 An Overview of NetPay

A new micro-payment protocol called NetPay allows customers (e.g. journal readers)
to purchase information from vendors (e.g. on-line E-journal) using “E-coins” on the
WWW [2]. A broker provides a source for E-coin purchase and vendor redemption of
E-coins for “real” money. NetPay is intended to provide a secure, cheap, widely avail-
able, and debit-based protocol for micro-payment applications. NetPay differs from
previous micro-payment protocols in the following ways: NetPay uses “touchstones”
signed by the broker and E-coin indexes signed by vendors which are passed from
vendor to vendor.

Vendor 2

Open Account Payment for E-coins

Bank
Payment for

Redeeming Coins
Redeem E-coins

Buy E-coins

Store E-coins
in e-Wallet

Debit E-coin

Get Touchstone

<<uses>>

Broker

Customer

Visit Other site

Access a site
<<uses>>

Request Touchstone

Vendor 1

Fig. 2. Basic NetPay component interactions

The signed touchstone is used by a vendor to verify the electronic currency – the
“paywords” encoding E-coins, and the signed index is used to prevent double spend-
ing by customers and to resolve disputes between vendors. There is no dependency on
customer trust required with this approach. Customers have an “E-wallet” that man-
ages their available E-coins: the wallet may reside on the customer’s PC or may reside
on the broker and vendor machines, being passed from vendor to vendor as the cus-
tomer accesses information at their web sites. In our NetPay approach we make the

assumption that the broker is honest and is trusted by both the customers and the ven-
dors. The micro-payments only involve customers and
vendors, and the broker is responsible for the registration of customers and for credit-
ing the vendors’ account and debiting customers’ accounts. Fig. 2 outlines some of the
key NetPay system interactions.

Initially a customer accesses the broker’s web site to open an account and ac-
quire a number of E-coins from the broker (bought using a single macro-payment).
The broker sends an “E-wallet” that includes the E-coin ID and E-coins to the cus-
tomer and the customer’s host caches this information. The customer browses the home
page of the journal web site and finds a desired article to read. Each article will have a small
cost e.g. 5-10c, and the customer would typically read a number of these. When wishing to
read the details of an article, the customer clicks on the article heading and the vendor system
debits the customer’s E-coins by e.g.. 10c. The vendor verifies that the E-coin provided by the
customer’s E-wallet is valid by use of a “touchstone” obtained once only from the broker. If
the payment is valid (coin is verified and sufficient credit remains), the article is displayed on
the screen. The customer may browse other articles, their coins being debited (the index of
spent coins incremented) each time an article is read. If E-coins run out, the customer is di-
rected to the broker’s site to buy more.

Customer PCs
Browser+EWallet

HTTP

 SQL DB Server

Vendor1

SQL DB Server

Vendor2

HTTP

HTTPS HTTP Server

 Staff PCs

SQL DB Server

Broker

Application
 Server

SQL

SQL

SQL

 J2EE Server

EJB container
(EJBs)

 Web Container
(JSPs)

SQL CORBA

CORBA

CORBA

 HTTP Server

Application
 Server - C++

socket

Authorisation

Bank

CORBA

EDI; CORBA; Custom

Customer

Perl CGIs

Fig. 3. Basic NetPay software architecture

When the customer changes to another site, the new vendor site first requests the current
E-coin touchstone information from previous vendor’s site. The new vendor contacts the pre-
vious vendor to get the E-coin touchstone and “spent coin” index and then debits coins for to
further news articles. At the end of each day, the vendors all send the E-coins to the broker
redeeming them for real money.

4 A Component-based NetPay Architecture

We initially developed a software architecture for implementing NetPay-based micro-
payment systems for thin-client web applications that used hard-coded vendor facili-
ties for micro-payment [4]. We have extended this work to develop component-based
NetPay vendor services, supporting much more easily and seamlessly reused vendor
server-side NetPay functionality. NetPay micro-payment transactions involve three
key parties: the Broker Server, the Vendor Server, and the Customer browser.

This architecture is illustrated in Fig. 3. The Broker server and the Customer
browser are same as the previous NetPay architecture [4]. The Vendor web sites pro-
vide a web server and possibly a separate application server, depending on the web-
based system architecture they use. The Vendor web server pages provide content that
needs to be paid for and each access to these pages require one or more E-coins from
the customers’ E-wallets in payment. In our architecture Vendor application server
accesses the Broker application server to obtain touchstone information to verify the
E-coins being spent and to redeem spent E-coins. They communicate with other ven-
dor application servers to pass on E-coin indexes and touchstones.

Vendors may use quite different architectures and implementation technology. In
the example above, Vendor #1 uses a web server with Perl-implemented CGI scripts,
C++-implemented application server and relational database. Vendor #2 uses a J2EE-
based architecture with J2EE server providing Java Server Pages (web user interface
services) and Enterprise Java Beans (application server services), along with a
relational database to hold vendor data.

5 NetPay Component

Our example E-Journal system has a number of customer web browser clients used by
customers to access the journal site and read article contents. Another web client is
used by staff to manage the redemption of spent E-coins with the NetPay broker
server. The vendor J2EE server has a number of web pages e.g. JSPs or servlets and
EJBs providing an implementation of the E-journal web system. We add to this a
number of NetPay components: EJBs to provide E-wallet management (tracking
spending of E-coins by customers; E-coin exchange with the client-side E-wallent
application or server-side W-wallet management; touchstone exchange with the Net-
Pay broker or other vendors and E-coin validation). We also provide redemption sup-
port for the vendor to communicate with the NetPay broker and redeem customer-
spent E-coins for real money.

Fig. 4 shows a high-level view of how these various components interact. The end-
user clients access only the session beans. Within the enterprise bean tier, the session
beans are clients of the entity beans. On the back end of the system, the entity beans
access the database tables that store the entity states. The Session beans access the
client-side E-wallet application, broker server and other NetPay-implementing vendor
servers via CORBA remote object interfaces.

In our E-journal example system one session bean, ArticleDBEJB, represents
an interface to the journal article database and is used to select article records. A num-
ber of JSPs provide for customer login (if required), journal information and high-
level organisation, journal searching and article display.

There are two NetPay session beans that have been added to this E-journal system,
EwalletControllerEJB and RedeemControllerEJB. These session beans
provide a client's view of the application's business logic such as MakePayment, Vali-
dateECoins, EwalletReqest and RedeemPayment. Hidden from the clients are the
server-side routines that implement the business logic, access databases, manage rela-
tionships, and perform error checking.

Web
Container

Redeem
e-coins

E-wallet
Controller

Session
Bean

Redeem
Controller

Session
Bean

E-wallet
Entity
Bean

Redeem
 Entity
Bean

Journal’s
Session
Beans

Netpay
DB

Journal
DB

J2EE Server

Staff
Web

Browsers

Client-side E-
wallets

Broker Other
Vendor

Journal’s
Entity
Beans

NetPay JSP
proxy/wrapper

Login with
e-coinID &
password

Display

Article’s title
& left e-coins

Display

Article content
& left e-coins

Customer
Web

Browsers

CORBA
CORBA

CORBA

Fig. 4. E-Journal System with NetPay Components

For each NetPay business entity the system has a matching entity bean, in this case
an EwalletEJB and RedeeemEJB. These beans provide a component-based interface
to various database tables: EWallet, ECoin and RedeemCoin. For each column
in a table, the corresponding entity bean has an instance variable. Because they use
bean-managed persistence, the entity beans contain the SQL statements that access the
tables. For example, the create method of the EwalletEJB entity bean calls the
SQL INSERT command. The NetPay database tables that are used by our entity beans

may be added to the existing E-journal database if this is possible, or may be stored in
a separate database of their own if required.

In order to add our NetPay micro-payment facility to the E-journal, or to other 3rd
party J2EE-based applications, we need to be able to add our EJBs to their J2EE
server and to detect when pages are being accessed by customers that need to be paid
for. We also need to ensure that if the customer attempting access does not have
enough E-coins they are directed to the NetPay broker site to buy some more. If the
customer wants a server-side E-wallet managed by the vendor vs running a client-side
E-wallet application, we need to have the vendor obtain the customer NetPay user-
name/password and obtain the E-wallet from the NetPay broker or the previously-
visited NetPay-enabled vendor. In addition the customer usually wants an idea about
the cost of an article or other information/service before purchase, and access to their
available credit in E-coins.

There are three main ways to integrate the NetPay user interface facilities: (1) mod-
ify the existing system web pages to incorporate NetPay information (we have devel-
oped some JSP page includes so this can be done easily); (2) generate web pages that
display the existing system pages in frames and make appropriate interactions with
NetPay EJB components; and (3) generate proxy web pages that interact with NetPay
session beans and redirect access to the original web pages. These approaches are
illustrated in Fig. 5 below. Each has advantages and disadvantages – the first requiring
updates to the existing system web page implementations, the later two requiring re-
naming of these pages so the generated pages are passed control at appropriate times.
In this paper we show examples of the E-journal extended using the first approach.

2. NetPay JSP + Frame
Customer
Browser

Original
E-Journal JSP

1. Included
NetPay JSP

E-Journal
Session Bean

NetPay
EWallet

Session Bean

3. NetPay proxy
JSP Page

(1)

(2)

(3)
(redirect)

Fig. 5. Ways of integrating NetPay micro-payment functionality with E-journal web pages

A sequence diagram is used in Fig. 6 to show how interactions occur between various
components in our NetPay-enabled E-Journal application. For example, when buying
an article the customer selects the article for reading e.g. clicking on the URL in a
returned article search page or in a journal content page. The web browser requests
the article content from the appropriate JSP, and this JSP or its generated proxy re-
quests payment for the content of the article from the NetPay E-wallet session bean.
The E-wallet session bean communicates with either the client-side E-wallet or the
server-side E-wallet (managed by the E-wallet entity bean) to debit the customer’s E-
coins to pay for the article. If insufficient coins are available, the customer is directed

to the broker site to buy more. Otherwise, the journal article content is displayed to the
customer.

Web Browser
 : Customer

NetPay
JSPProxy/Include

EJournal Article
JSP

NetPay
EWalletBean

EJournal
ArticleBean

Broker Buy
CoinsJSP

Client-side
E-wallet

Click URL
Request Content

Request Payment

[if no e-coins left, redirect to NetPay broker to buy more...] Buy Coins

Get Content

Get Article Content

debit coins

Fig. 6. Click-buy Article and Redeem E-coins Sequence Diagram

6 Implementation

In previous work we implemented a CORBA-based vendor architecture [3]. However,
these NetPay components are not optimally reusable and substantial modifications
may need to be made to an existing web-based application to incorporate them. We
implemented these new NetPay J2EE EJBs and JSP includes to allow for much easier
plug-in of NetPay micropayment facilities into existing J2EE applications.

Fig. 7. Plugging in the NetPay vendor-side components with a J2EE deployment tool

The Ewallet and Redeem EJB components are plugged into the existing E-journal

system by deploying them into the E-journal system’s J2EE server. The Ewallet com-

ponent is used to obtain E-wallet from broker or another vendor, make payments by
using the client-side or server-side Ewallet managed E-coins, and to generate redeem
request data. The Redeem component is responsible for selecting payments and send-
ing these to the NetPay broker.

EJB deploytool provides interface to define relationships between enterprise beans.
That makes it easier to plug-and-play components. Fig. 7 illustrates the interface and
the relationship between Ewallet component and Redeem component. There is no
relationship among existing journal component (ArticleDBJAR) and NetPay compo-
nents. The NetPay components are plugged in the existing system very straightfor-
wardly.

7 Discussion

The area of micro-payment on the Internet has attracted much recent research atten-
tion. Besides NetPay, there are several micro-payment systems that are based on a
payword-based micro-payment protocol. These systems can be classified as credit-
based and debit-based. Payword [10] is an off-line credit-based system where a user’s
account is not debited until some time after purchases. This provides more opportunity
for fraud since a large number of purchases can be made against an account with in-
sufficient funds. PayFair [11] is a debit-based micro-payment system that employs
some parts of the Payword scheme. A payword chain purchased from the broker will
be bound to a specific vendor. Many payword chains can be purchased in advance
from the broker and stored in the customer’s machine. There is no digital-signature
required for witness of the payment promise in the system. NMP [12] is a credit-based
protocol that improves the fairness for customers from Payword protocol.

The Payword-based micro-payment systems described above share a key disadvan-
tage - they are all vendor specific. The E-coin (paywords) in the systems are only
usable at one vendor and have no value for any another vendor. Some currently avail-
able micro-payment protocols are not only specifically designed for selling informa-
tion goods on the Internet, but they can also be used for wireless communications
[13], [14]. This can be an important issue for mobile communications where call
charges are still large in comparison with Internet based communications. It also re-
duces delay and removes the possibility of incomplete payment protocols due to
communications failures. Our NetPay server-side E-wallet can be used to provide a
similar capability.

The use of component-based approaches to building and extending enterprise and
web-based systems has become popular [16], [17], [18], [19], [21]. Many approaches
focus on enterprise business logic extension [16], [18], rather than a combination of
user interface and logic extensions [19], [20]. Our approach to adding NetPay to an
existing E-journal uses a similar technique to that we developed for adding collabora-
tive work components to an existing travel-planning application [20]. We plugged in
EJBs into the E-journal’s existing application server and annotated the E-journal’s
JSPs to make appropriate E-coin balance, article cost, credit checks and coin debits to
the NetPay EJBs. This allows for minimal or no code impact (none if using proxy JSP

pages) to the existing system’s infrastructure. The use of an EJB-based software archi-
tecture enables the application developer to work on the business logic aspects of the
application without having to be concerned with system-level issues, such as transac-
tions, security, multithreading, and so forth. In addition, the NetPay EJBs are com-
pletely separated from the particular domain knowledge of the web application, ena-
bling each enterprise bean to be reused in different EJB-based vendor systems via
plug-and-play with the existing vendor components. While our approach to adding
NetPay user interface support to existing J2EE-based vendor application JSPs is basic,
usability evaluation of this NetPay-enabled application has indicated it provides a
good user interface to users.

We are currently designing a portal infrastructure using web services that will allow
a NetPay-enabled vendor to act as a purchasing portal to non-NetPay supporting ven-
dors by redirecting page accesses to these vendors and charging the customers E-coins
in the process. This approach will allow for dynamic registration of vendors and sup-
port cross-vendor product searching. We are investigating approaches to using NetPay
for mobile information content micro-payment applications, both with a server-side E-
wallet and client-side E-wallet storage by the mobile device. Our other work focuses
on the development of tools to allow existing component-based applications to be
NetPay-enabled without any manual component programming, deployment and con-
figuration. We will apply these to experimenting with adding NetPay to other 3rd party
J2EE web applications.

8 Summary

We have described the design and development of software components to enable
NetPay to be seamlessly added to existing J2EE-based web applications. NeyPay
functionality is embodied in Enterprise JavaBean software components and JSP in-
cludes or proxies, allowing the existing application to be easily micro-payment en-
abled. Our NetPay EJBs use a CORBA infrastructure to communicate with customers’
client-side E-wallet applications, with a broker server, and with other vendor applica-
tion servers, whether J2EE-based or not. We have successfully added NetPay compo-
nents to as separately-developed J2EE-implemented E-journal application to demon-
strate our approach’s feasibility.

References

1. Blankenhorn, D.: Charging for Content, E-commerce Times.
http://www.ecommercetimes.com/perl/story/306.html.

2. Dai, X. and Lo, B.: NetPay – An Efficient Protocol for Micropayments on the WWW.
Fifth Australian World Wide Web Conference, Australia (1999)

3. Dai, X., Grundy, J. and Lo, B.: Comparing and contrasting micro-payment models for E-
commerce systems, International Conferences of Info-tech and Info-net (ICII), China
(2001)

4. Dai, X., Grundy, J.: Architecture of a Micro-Payment System for Thin-Client Web Appli-
cations. In Proceedings of the 2002 International Conference on Internet Computing, Las
Vegas, CSREA Press, June 24-27, 444--450

5. Furche A. and Wrightson, G.: SubScrip – An efficient protocol for pay-per-view payments
on the Internet, The 5th Annual International Conference on Computer Communications
and Networks, USA (1996)

6. Herzberg, A. and Yochai, H. : Mini-pay: Charging per Click on the Web, 1996
http://www.ibm.net.il/ibm_il/int-lab/mpay

7. Herzberg, A.: Safeguarding Digital Library Contents - Charging for Online Content. D-
Lib Magazine (1998), ISSN 1082-9873

8. Hwang, M-S., Lin, I-C. and Li, L-H.: A simple micro-payment scheme. Journal of Sys-
tems & Software, 55(3)(2001) 221--229

9. Manasse, M.: The Millicent Protocols for Electronic Commerce. First USENIX Workshop
on Electronic Commerce. New York (1995)

10. Rivest, R. and Shamir, A.: PayWord and MicroMint: Two Simple Micropayment
Schemes. Proceedings of 1996 International Workshop on Security Protocols, Lecture
Notes in Computer Science, Vol. 1189. Springer (1997) 69—87

11. Yen, S-M.: PayFair: a prepaid internet ensuring customer fairness micropayment scheme.
IEE Proceedings-E Computers & Digital Techniques, vol.148, no.6, Nov. 2001, pp.207-
13. Publisher: IEE, UK.

12. Ji, D-Y. and Wang, Y-M.: A micropayment protocol based on PayWord. Acta Electronica
Sinica, 30(2)(2002) 301—303

13. Sangjin, K., Heekuck, O.: An atomic micropayment system for a mobile computing envi-
ronment. IEICE Transactions on Information & Systems. E84-D(6) (2001), 709—716

14. DongGook, P., Boyd, C., Dawson, E.: Micropayments for wireless communications.
Information Security and Cryptology - ICISC 2000. Third International Conference. Pro-
ceedings (Lecture Notes in Computer Science Vol.2015). Springer-Verlag, Berlin, Ger-
many (2001), 192—205

15. McGarvey, R.: Micropayments enable teensy content purchases. Econtent, 24(1) (2001)
18—21

16. Allen, P.: Realising E-Business with Components. Addison-Wesley, October 2000.
17. Bichler, M., Segev, A., Zhao, J.L.: Component-based E-Commerce: Assessment of Cur-

rent Practices and Future Directions. SIGMOD Record 27(4)(1998) 7—14
18. Fingar, P.: Component-Based Frameworks for E-Commerce. Communications of the

ACM(2000)
19. Chong, N.S.T., Sakauchi, M.: e-CoBrowse: co-navigating the Web with chat-pointers and

add-ins - problems and promises. Parallel and Distributed Computing and Systems
2(2000) 803—808

20. Grundy, J.C., Wang, X., Hosking, J.G.: Building Multi-device, Component-based, Thin-
client Groupware: Issues and Experiences. In Proceedings of the 3rd Australasian User In-
terface Conference, Melbourne, Australia (2002) 28—30

21. Ryley, S.: Corporate portal development: a practical approach ensures real business bene-
fits. Business Information Review 18(2)(2001) 28—34

