
Copyright 2005 IEEE. Published in the Proceedings of 2005 Asia-Pacific Conference on Software Engineering, Taiwan. Personal use of this material is permitted. However, permission
to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted

component of this work in other works, must be obtained from the IEEE. Contact: Manager, Copyrights and Permissions / IEEE Service Center / 445 Hoes Lane / P.O. Box 1331 /
Piscataway, NJ 08855-1331, USA. Telephone: + Intl. 732-562-3966.

Improving Agile Software Development using eXtreme AOCE and Aspect-

Oriented CVS

Santokh Singh, Hsiao-Cheng Chen, Oliver Hunter, John Grundy, John Hosking
Computer Science Dept, University of Auckland, Private Bag 92019, Auckland, New Zealand

{santokh@cs, chsi022@ec, ohun002@ec, john-g@cs, john@cs}.auckland.ac.nz

Abstract

Currently there are no Concurrent Versioning Systems
(CVS) designed to properly support agile software
development. The existing CVS lacks user friendliness
and it requires users to be fully experienced with the
system before they can adequately use it. Also its
asynchronous style of merging often leads to code loss.
In this paper, we describe a novel CVS system, called
the Aspect-Oriented CVS (AOCVS) and our newly
derived agile software development methodology,
eXtreme Aspect-Oriented Component Engineering
(eXtreme AOCE). Unlike the general CVS which is used
for a vast variety of projects, AOCVS was designed and
developed specifically for eXtreme AOCE. Our CVS
tool merges the changes in a synchronous/real time
fashion; this in turn removes the hassle for the
developers on having to resolve merging conflicts. We
also describe how our implemented AOCVS can be used
to provide functionalities that can assist developers to
produce and distribute reusable code and to
communicate and manage aspect-oriented agile
projects more efficiently and effectively. Our novel agile
approach and tool allows software developers to use
the rich cross-cutting systemic concerns, their
behaviour and properties in aspect-oriented
components to refactor, maintain, add functionalities
and test complex software systems more easily, rapidly
and accurately.

1 Introduction

For a software project to be successful, it is vital and
crucial that an efficient and appropriate methodology be
employed and the right tools used [21, 9]. The
particular methodology used determines the efficiency
of the implementation process as well as the quality and
maintainability of the final product [2, 9, 21], while the
tools employed affects the effectiveness of the
developers concerned [20]. This paper provides the
formal description of the newly derived and novel
methodology called eXtreme AOCE and our newly
developed tool, called the Aspect-Oriented Concurrent
Versioning System, which we designed and developed
to support development using this methodology.

In the agile software engineering world eXtreme
Programming (XP) is thought to be the most well

known methodology [22]. Kent Beck [2] defined XP as
a light-weight methodology for small-to-medium-sized
teams developing software in the face of vague or
rapidly changing requirements. XP values
communication and simplicity of implementation [2, 9].
This methodology has the reputation to drive a team to
produce high quality and functioning code that meets
the requirement of the customers [2, 9, 13].

Compared to XP, Aspect-Oriented Component
Engineering (AOCE) [3, 10] is a relatively new
methodology and it focuses on building reusable
software systems with aspect-oriented components.
AOCE is a software development methodology that can
be used from inception to design, development,
deployment and subsequent maintenance. It constructs
components that use the rich cross-cutting concerns
called aspects as the building blocks of our software.
Examples of aspects include those for persistency,
security, performance and transaction processing [3, 10,
12, 15]. Aspectising components make them better
characterised and categorised, thereby producing highly
reusable, scalable, maintainable and understandable
software.

No matter which methodology is used on a project, a
software development team often requires some
degrees of support for collaboration of work [7, 11, 16].
Collaboration can be divided into two types,
synchronous and asynchronous collaboration [7, 11,
18]. Synchronous development is where multiple
developers work on the same document at the same
time [7, 18, 20] and asynchronous development is
where groups of users take a document, work on that
document and then try to merge their changes in a later
stage [4, 14, 19].

Concurrent Versioning System (CVS) is a tool that
is widely used to help projects to be collaborated
asynchronously [4, 14, 19]. CVS keeps history of all
versions of the project at each point in the development.
The users of CVS are able to upload or commit their
files to the CVS repository and also to download or
update the files onto their local computer [4, 14].

In the following sections we will explain the
motivation behind our work. We will then describe and
discuss in-depth the novel methodology that builds and
improves on traditional agile methods. We will also

describe and discuss a new tool to support software
development using this methodology.

2 Motivation

XP is a powerful and effective agile methodology
that is adaptable to project requirement change and it
focuses on producing systems that provide and only
provide the functions that are required by the customer
[2, 9, 13]. However, XP does not specifically have
support for code reusability and software cross-cutting
concerns, and the larger and more complex the software
system becomes the more critical these issues become.

AOCE on the other hand focuses on producing
quality and highly reusable components and it resolves
the cross-cutting problems by identifying, isolating and
utilising the aspects within the software components [1,
3]. However, AOCE on its own does not provide any
mechanism to support team management,
communication issues and coping with change.

Upon weighing the strengths and weaknesses of both
methodologies, we combined and further extended their
concepts; including using one methodology’s strengths
to counter the weaknesses in the other. We called this
new methodology eXtreme AOCE and it is extremely
useful and versatile.

eXtreme AOCE extends and uses all the features of
XP and has added support for the cross-cutting
concerns which are lacking in XP [1, 3]. This new
methodology will now drive a software development
team to produce more understandable, maintainable,
scalable and reusable code; and at the same time,
eXtreme AOCE will increase the business value of a
software development team by increasing reusable
components in their development library [1, 3, 17].

Figure 1 – Screenshot of a CVS

After the formulation and initial testing of eXtreme
AOCE, we realised that we needed to create a better
CVS system, which we called Aspect-Oriented CVS or
AOCVS, to support this methodology. Having
experienced CVS as a tool for keeping versions on
software projects, we found that it is easy to make
mistakes when using the system. Often these mistakes
are due to the fact that CVS does not have a user
friendly interface. A screenshot of the unfriendly and
unhelpful CVS user interface is shown in figure 1
above, and further it does not have an easy to
understand procedure of use. To compound to these
problems, many critical issues arise at the merging
stage, e.g. overwriting methods that were modified by
someone else thereby losing valuable information, as
CVS requires all users to be highly experienced with it
first in order to be able to just use it.

The idea of AOCVS was as such conceived through
necessity as every project requires the right tool that
can help make the development process more effective
and efficient, but the CVS just couldn’t support this for
eXtreme AOCE. AOCVS is designed to be an
alternative to CVS and to provide specifically for the
software development of projects done under the
eXtreme AOCE environment. With AOCVS we aim to
provide functions to remove the problems encountered
when merging changes, and at the same time support
cross-cutting issues and provide additional support for
project management, also AOCVS will present
eXtreme AOCE engineers a more user friendly and
comprehensible interface.

3 eXtreme AOCE

This newly formulated methodology combines and
extends both XP and AOCE concepts. eXtreme AOCE
recognises and identifies the weakness in both the
methodologies and addresses them. The following sub-
sections describe the eXtreme AOCE principles and its
practice.

3.1 eXtreme AOCE principles

eXtreme AOCE extends the 12 principles of XP and
modifies them to incorporate the characteristics of
AOCE so that it becomes more comprehensive and
efficient to use when developing large and complex
software systems. These principles are defined and
described below.

The first principle called the Aspect-Oriented
Planning Game, dictates that customers will carry out
the planning game with the development team as they
would in an XP environment [2, 9, 13], except that all
planning is done by taking aspects and their cross-
cutting properties into consideration as done in AOCE.
Another difference is that during the estimation phase,
the developers will be required to break down the
stories given to them into smaller aspect-oriented
stories which essentially dictate single aspect-oriented
components. For example, the story “A user may

register with the system and then login” will be broken
down by the developers into “A Security User
Authenticate component for register and login” and “A
Persistency Database access component for storing and
retrieving data on user information”. Developers will
then estimate the time required for each of the broken
down aspect-oriented stories and their sum total will be
the estimated time for the story from the customer.

We use this story decomposition technique to
improve the developer’s accuracy on cost estimation
and at the same time, provide the development team
with the fundamental ideas about what aspect-oriented
components need to be implemented.

The next principle is termed Small Aspect-Oriented
Releases, and is in line with the XP principles [2, 9,
13], but each release will consists of a number of
iterations that also consider the aspects and their
properties. The release will display the features, chosen
by the customer, provided by the implemented
components that were constructed in the iterations.

The third principle is called the Aspect-Oriented
Componentised System Metaphor which extends the
system metaphor principle from XP which demands
that developers use good naming convention [2, 9].
eXtreme AOCE further extends and reinforces this
principle by introducing the notion of components
richly cross-cut with aspects. With the use of aspects a
method can be better categorized and characterized, and
with the use of components, related operations can be
better grouped together and located.

The fourth principle, Simple Aspect-Oriented
Components Design states that each component should
be designed with minimum functions required to satisfy
the stories in the current iteration. Interface methods
that are relevant to the definition of the component but
not required by the current iteration maybe added to the
interface and must be commented out. The underlying
component classes must not implement the commented
out interface methods.

The fifth principle is named Continuos Aspect and
Components Testing, here unit tests are first created at
aspect level; each method published by a component
must pass the tests that were written for them. Every
time changes are made to a component the tests written
for that component will need to be rerun. The hierarchy
of tests listing from the bottom up are aspect testing,
component testing, component integration testing and
customer acceptance testing.

The sixth principle is called Aspect-Oriented
Components Refactoring. Refactoring is done at both
aspectual and component level. eXtreme AOCE
demands backward compatible refactoring, this means
the signature of the methods already published in the
component’s interface should not be modified even if a
method with similar function is to be created. The old
method should only be commented as “out dated”
rather than be deleted entirely.

The seventh principle, called Aspect-Oriented Pair
Programming, demands that each pair working under
the eXtreme AOCE environment focus their tasks at

aspects level. Each pair will only be required to work
on one method at a time thus allowing specific pairs to
focus and specialise on certain aspects. For example,
pairs familiar with database will be allowed to focus on
Persistency aspects while pairs who are familiar with
graphics can focus on User Interface aspect.

The eighth principle is Collective Aspect-Oriented
Code Ownership. No matter what type of aspect a pair
specialises in, they do not have the ownership of the
code, the development team owns the code. This allows
any pair to change any components and the methods
within the components as they see fit.

The ninth principle is Continuous Aspect-Oriented
Components Integration. Integration of code is
performed whenever a component has been modified,
with aspect-oriented concerns weaved in if required.
When a method within a component is changed the
code should be integrated. The tenth principle lays out
the 40-Hour AOCE Work Week concept. All
developers working under the eXtreme AOCE
environment are expected to stick to the 40 hours a
week work load. The eleventh principle is regarding the
On-site Customer, here the development team will
include one or more members who represent the
customer and they will dictate what features the product
should or should not have.

The last principle, Aspect-Oriented Components
Coding Standards, lays down the aspect-oriented
coding style to adhere to comment and name the
components, methods and aspects which the
development team itself will need to decide and agree
upon. It is very important to define the purpose and
function of a component the moment it is created. This
will increase the understandability and role of the
aspect-oriented component to any other eXtreme
AOCE pairs not directly involved in its construction.

3.2 The practice of eXtreme AOCE

Communication is the key to getting the most out of
eXtreme AOCE. When a pair receives a broken down
aspectised story, they must consult with other pairs to
check if there is a component which caters to the
requirement of the story. If such a component does
already exist, the pair will need to test and determine if
the component needs to be modified or extended to
satisfy the story. If no such component can be found,
then a new component will be designed and
constructed. Thus communication is essential in
eXtreme AOCE as this will eliminate the risk of
different pairs reinventing the wheel by duplicating
work already done. This will save both time and costs
besides effort, thus increasing productivity and
efficiency.

4 Aspect-oriented CVS

Our novel AOCVS had been developed to be a
system that will improve and streamline software
project development carried out using the eXtreme

AOCE methodology. It is a CVS that not only provides
the general CVS functions but also allows group
communication, management, synchronous merging
and improved eXtreme AOCE project support. AOCVS
has features that reduce the coding time and has the
synchronous merge function that solves some of the
original CVS problems that we discussed earlier.

AOCVS is a variation and extension of CVS,
therefore it also provides all the basic function that a
CVS supports. Since the target user group of AOCVS
are software developers who practise eXtreme AOCE,
AOCVS provides additional functions to support the
use of this methodology and for its software
implementation through agile techniques. All these
functions are described in the following subsections.

4.1 Basic functions

Just like a normal CVS, AOCVS allows a user to
upload or download files, commit changes, login and
logout, but it also has functions such as for search and
chat. The search function is for finding required
aspects, methods and keywords within the group’s files.
The chat function that is built-in helps developers and
users to communicate instantly within the whole group
or between smaller groups. We even tested this function
for instant communication within the members of a
particular pair doing eXtreme AOCE programming, and
discovered that the members of the pair need not be
seated side by side as the instant chat function allows
for instant communication and code access. As such,
distance in not a barrier when developers use our
AOCVS and the members of each pair may be
separated by any amount of space, as long as there is
web access between the two members they can do pair
programming.

4.2 Synchronous merge

Synchronous merging is the primary way that code
is merged within AOCVS. This is done by sending each
character typed in the section editing window to the
server which in turn broadcasts the change to each of
the clients that have a window open on that particular
section.

Synchronous merge was an idea obtained from the
features of other tools [18, 20] and it is incorporated
into AOCVS to address the drawbacks of the original
CVS caused by asynchronous merge. Asynchronous
merge can create conflict between two merging
versions of a file. Our synchronous merging function
solves this by allowing only one user to change a
section at a time, thereby enabling all changes to be
made automatically in real-time.

4.3 Section ownership

Each section in a file can only be edited by the
developer who has ownership on that section. The

users without ownership can only open the section as
read only copies.

A user with ownership has the power to transfer his
or her ownership onto another user, or simply release
that ownership. This is designed to simulate the
eXtreme AOCE coding environment whereby
developers work in pairs with one having the control of
the keyboard, the transfer of ownership simulates the
switch control of the keyboard between the pairs. This
design also allows developers to work in eXtreme
AOCE fashion even though they may be separated by
being in different locations.

4.4 Filtering function

Filtering functions, shown in figure 2 are provided to
allow the users to filter out undesired aspects, their
details and components from the project structure view.

Figure 2 - Aspect and component filtering window

Filtering functions help software developers by only

showing them what they need and want to see. For
example, if a developer is working on database code
then this user may only wish to view sections with
persistency aspects. This developer would un-tick all
aspects except persistency thus showing only the
relevant code and filtering everything else out.

As an eXtreme AOCE developer, this is very useful
because it clearly shows only the relevant aspects and
components. It can help speed up the process of
development due to not having to search through
irrelevant code. eXtreme AOCE developers would also
feel more comfortable because of the reduced clutter on
the screen.

4.5 Cross-cutting concerns

AOCVS allows the user to reference an existing
section of a file into another file. If a section is
referenced into more than one file, then updating any of
those sections will result in updating all the referenced
sections in all the files.

When a section is opened it will be displayed with
additional cross-cutting information, part of that

information lists the files which had referenced that
particular section. This feature provides developers
with additional useful information that can aid them on
deciding the course of action to take as regards multi-
referenced sections.

5 Implementation of AOCVS

The AOCVS is a tool we designed and developed
using eXtreme AOCE for supporting the eXtreme
AOCE methodology. We used .NET and Microsoft’s
technologies to implement our AOCVS system as we
were more familiar with these compared to Java and
J2EE. Also Visual Studio .NET allows for rapid
prototyping and has rich support for the libraries that
we needed. During the initial stage of AOCVS’s
development, only the AOCE methodology was used,
the intention was to build the system with advanced
code re-usability. However, due to the frequent
specification changes, complication of duplicated code
and time limitation, the methodology of eXtreme
AOCE was adopted to enhance the efficiency of
system’s development.

5.1 Architecture of AOCVS

In following the principle of eXtreme AOCE, the
AOCVS is constructed with independent and well
defined components. This makes the AOCVS software
highly re-usable and also allows for any future
maintenance and extension on the system to be done
with ease.

Each component within the system was designed to
perform a specific task with limited coupling with other
components. This setup allows the AOCVS to be
refactored more easily and also made the components
within the system to be more replaceable.

The AOCVS architecture shown in figure 3 can be
identified as composed of three main partitions, namely
the client, server and database. Each of these three
partitions has a vital entry point component, called the
NetMsgReceiver, AOCVS Webservice and
DBManager for the client, server and database
respectively. These components publish a list of
functions which the partition is capable of providing.
By having such components it further reduces the
coupling within the system and makes the system more
maintainable.

The maintainability of the system was apparent
during the course of the development stage. For
instance, the database consumed by the AOCVS was
switched from Microsoft Access to Microsoft SQL, and
later the structure within the database was overhauled
and redesigned completely, making major changes to
the AOCVS. But these changes only caused a minor
delay in the development process, giving credibility to
the comprehensiveness, efficiency and effectiveness of
developing with eXtreme AOCE.

Figure 3 - Simplified architecture of AOCVS

5.2 Database based CVS

Unlike traditional CVS, AOCVS stores everything
within the database; there are no physical files stored on
the server. The database currently used by the system is
Microsoft SQL. The rationale behind the database
design decision is to allow the system to search and
retrieve information more efficiently in comparison to
the traditional CVS and at the same time this allows the
system to take advantage of the fail safe, backup and
replication mechanism that are provided by the
Microsoft SQL database.

The normal CVS recognises each file as an entity
and keeps track of changes made to the file. By using
the database the AOCVS is able to break up the content
of files and store them as different sections, each
section is tracked and any changes made to each section
are recorded.

This use of database increased the effectiveness and
efficiency of versioning control, with the help of SQL
script language each section and its history is able to be
located, identified, created, and retrieved with ease.

The rationale behind recognising sections of file as
the lowest level entity is because it encourages and
enhances the practise of eXtreme AOCE programming
by allowing the users to focus their tasks on specific
sections for each release of AO iteration.

Each section stored in the database is labelled with
an identified aspect. These aspects increase the
understandability of the code and they are also the
fundamental support for the cross-cutting concern.

The uses of database on section storage enable
AOCVS to address the cross-cutting concern with ease.
Each section can be easily referenced into another file

or even the same file when stored under a different
specified aspect.

5.3 eXteme AOCE coding standard

The eXtreme AOCE methodology promotes highly
functional and better characterised and categorised
code. In order to achieve this, the implementation has to
follow a high quality coding standard. The AOCVS was
constructed with well defined sections embedded into
the system and tagged with appropriate aspects. Each
component’s interface within the AOCVS is well
commented to explain the purpose and function of the
component, an example of this is shown in figure 4.
These comprehensive procedures enhance the
understandability and reusability of the code and thus
allow the system to be refactored with ease.

Figure 4 - Sample code from MsgListener

component

5.4 Dynamic network update

One of the unique features of AOCVS is its
synchronous merge function, whereby each client is
able to see the changes made to a section in real time
fashion. In order to achieve this, a dynamic network
update function was implemented into the server of
AOCVS. The server of the AOCVS is a webservice and
it records the IP address and socket number on each of
the client as they connect to the server. Each of the
clients acts as a TCP/IP server and constantly listens to
network inputs. This allows the server to dynamically
choose which client to update and actively sends update
strings to the clients via TCP/IP connection.

Once the NetMsgReceiver Component receives a
TCP/IP input from the server it will then decode the
message and dispatch it to perform the appropriate
action. The dispatching of the messages received by the
client via TCP/IP is done by various Updater
components. This setup will also allow future
developers to add message dispatching functions of the
client with ease.

With the use of dynamic update functions embedded
in the AOCVS the ownership of each code section can

be transferred with ease. The AOCVS server keeps
record of all the opened sections and their current
owner. When a change of ownership occurs the server
will dynamically broadcast the change to the clients
that has the section opened. This simulates our eXtreme
AOCE coding environment and pairs can swap the
control by using the keyboard.

Whenever a section is modified, the changes made
will be broadcasted dynamically to all the interested
clients. But this function initially resulted in frequent
and excessive network data flow. Redesign and
refactoring was done using eXtreme AOCE to minimise
the data flow across the network. Components such as
FileToken and UserToken Managers reduced long
repetitive string information to 32 bits integer. These
added features increased the efficiency of our current
dynamic network updating function of the AOCVS.

5.5 XML encoding and decoding

Since the server of AOCVS is a webservice, XML
encoder and decoders were created for passing complex
structured information to and from the server. This has
great advantages over the other methods for passing
complex data such as passing formatted string, passing
array or continuous web method calls.

The use of XML like the one shown in figure 5
enables the data to be human readable and also allows
future developers to use other components to interact
with the data passed across the network.

Figure 5 - Sample XML used for complex data

6 Discussion

We have used and tested eXtreme AOCE for
developing large and complex software systems,
including developing the AOCVS system that we
described in this paper. There are certain minor areas
where the principles of XP and AOCE do not form a
complete fit, and we will discuss how eXtreme AOCE
cleverly resolves these issues. We found this novel new
methodology to be extremely useful, effective and
efficient, and possess many new features to support
agile programming. The AOCVS tool itself is a new
technology that is designed for supporting eXtreme
AOCE. Here we will discuss the issues surrounding
eXtreme AOCE and AOCVS, and also possible future
research and development in this area.

/// <summary>
/// This component defines an object that can receive
/// update msg and dispatch that message to perform the
/// desired tasks.
/// </summary>
public interface IMsgListener{

 /// <aspect> Transaction Processing </aspect>
 /// <summary>
 /// This method allows the component to receive input
 /// messages from other components. Upon receiving
 /// message the message should be decoded and
 /// update the correct fields.
 /// </summary>
 void TransationProcessing_ReceiveMsg(string msg,

int input1, int input2, int input3);
} <Group159>

 <folder name="ChatUpdater" id="1">
 <file name="IChatUpdater.cs" id="1">
 <section name="INIT" id="2">
 <aspect="Unclassified"/>
 <text>//still need to be created</text>
 </section>
 <section name="IChatUpdater" id="4">
 <aspect="Unclassified"/>
 <text>//will be done soon</text>
 </section>
 </file>
</Group159>

6.1 eXtreme AOCE issues and solutions

One of the key features of XP is its flexibility and its
ability to cope with changes made to the project scope,
therefore it is taboo for an XP development team to
plan and design to fine detail the structure of the system
they are designing for [2, 9, 13]; AOCE on the other
hand demands well designed interfaces for the
components up front. These two principles appear to
oppose each other [1, 3, 10, 15]. However, eXtreme
AOCE resolves these conflicts by simply going to the
root of the problem and addressing the logical and
fundamental mind sets of software developers when
implementing code. It is commonly acknowledged that,
eXtreme Programming or not, when implementing a
method, any responsible programmer must be aware of
the purpose and function of the method within the
software that is yet to be implemented. All XP
programmers are required to have the wider knowledge
as to what the main purpose of the whole system is, and
this knowledge from XP is use to feed the eXtreme
AOCE development process.

From the feed back of the developers who used
AOCE to develop software, it was discovered that if the
developers lack organisation and communication, i.e.
multiple different components with similar functions
may be produced. eXtreme AOCE solves this issue by
encouraging and enhancing the communication
between the developers with the practise of XP.

Another concern with eXtreme AOCE centres
around refactoring. XP encourages refactoring, but
during the refactoring process it may be necessary to
change the interfaces for the components [6] and this
could cause an adverse code change chain reaction.
However, this will not be an issue if the refactoring was
done in a backward compactable manner paying
attention to the aspects involved. It is our general
practise not to modify the signature of the existing
methods in a interface of exposed APIs, i.e. rather than
changing the method names, we create new methods
with new names and better and more efficient exposed
functionalities through eXtreme AOCE.

As eXtreme AOCE is a combination and extension
of both XP and AOCE methodology, it naturally
inherits some of the pros and cons from both
methodologies. As this combination also uses the
strength of one methodology to make up for the
weakness in the other, eXtreme AOCEA is far more
advanced and effective than using XP or AOCE alone.

6.2 Draw backs on AOCVS

As mentioned previously, AOCVS is a tool designed
especially for software development under the eXtreme
AOCE methodology. It can be used for normal XP or
AOCE development but not very well for other
methodologies besides these.

Since AOCVS targets software development,
information on formatting and fonts are discarded by
the system. This makes the use of AOCVS on non-

software projects very tedious, because it was not
designed to do this.

The use of AOCVS also differs greatly from the
traditional CVS and this may require some initial
relearning among the users overly familiar with CVS.

6.3 Future development for AOCVS

AOCVS is a newly developed tool, hence we have
many good ideas for its future development. Here we
discuss some of the ideas from our future development
brainstorm.

6.3.1 Portable plug-in. In following the current
style of usage of AOCVS, it would be better if the
engine of AOCVS can be embedded into a software
development tool such as Visual Studio .NET as a plug-
in. This would allow the developers to use AOCVS
purely for collaboration and use a software
implementation tool for compilation and coding
support.

The AOCVS itself is constructed with highly
portable components; therefore, with the help of the
web service based technology, AOCVS can be made
into a universal portable plug-in for various software
development tools and this would make it extremely
handy and extend its use.

6.3.2 Enhancing communication. Voice
communication and video steaming should also be built
into the AOCVS engine. Communication is the key to
collaboration and team work, therefore technologies
such as these will further increase the efficiency of the
eXtreme AOCE software developers.

6.3.3 Probing. One of the most interesting and
promising idea from the future development brainstorm
is the idea of “probing”. The concept of this idea is to
probe into the files on the client’s machine and detect
changes made to the files. This idea opposes the
concept of AOCVS of having only one copy of the file,
but this idea would free the developers from having to
upload and download files and at the same time being
able to store the files on their local machine.

7 Summary

Our eXtreme AOCE methodology extended XP with
the support for cross-cutting concerns and enhanced
understandability, reusability and quality of the
implemented code. By using eXtreme AOCE to drive a
software project, the development team will benefit
with added business value by building up more and
more reusable aspect-oriented components in their
software library.

The tool that we designed and implemented to
lubricate development using the eXtreme AOCE
methodology is the AOCVS. Unlike traditional CVS,
AOCVS targets specifically at software project done
using the eXtreme AOCE methodology. It provides rich

features to search and filter based on aspects and
components. AOCVS simulates the pair programming
environment with the function to transfer the editing
control on a section inside a file. Synchronous merge
style is the primary way changes to a file are merged on
AOCVS, this function is an alternative to the traditional
asynchronous merge done in CVS and it removes the
hassle for developers having to deal with versioning
difference at merge time.

Our work with eXtreme AOCE shows that it
improves the agility of the agile software development,
and coupled with the support from AOCVS it enables
developers to work with greater effectiveness and
efficiency.

8 Acknowledgements

We would like to thank the anonymous reviewers for

their helpful suggestions. We also wish to thank all
members of the eXtreme AOCE Group for their
comments.

9 References

[1] Grundy, J., Panas, T., Singh, S. and Stöckle, H., An
Approach to Developing Web Services
with Aspect-oriented Component Engineering, NCWS03,
2003

[2] Beck, K., eXtreme Programming eXplained – embrace
change, published by Addison Wesley, 2000

[3] Singh, S., Grundy, J. and Hosking, J., Developing .NET
WebService-based Applications with Aspect-Oriented
Component Engineering, AWSA’04, Australia.

[4] CVS – Concurrent Versions System: The open standard
for version control, 2003, https://www.cvshome.org/

[5] Allen, p., and Frost, S., Component Based Development
for Enterprise Systems: Applying the Select Perspective,
Addison-Wesley, 1998.

[6] Fowler, M., Refactoring: Improving the Design of
Exisiting Code, published by Addison Wesley, 1999; ISBN
0201485672

[7] Qu, C. and Nejdl, W., Construction a Web-based
Asynchronous and Synchronous Collaboration Environment
Using WebDAV and Lotus Same Time, 2001\

[8] Grundy, J.C. and Hosking, J.G., In Engineering plug-in
software components to support collaborative work, Software
–Practice and Experience, 2002; vol. 32, pp. 983-1013.

[9] Beck, K. and Andres, C., eXtreme Programming
eXplained – embrace change, second edition, published by
Addison Wesley, 2004

[10] Grundy, J., Multi Perspective Specification, Design
and Implementation of Software Components using Aspects,
In International Journal of Software Engineering and
Knowledge Engineering. Vol. 10, No. 6 (2000) 713-734,
World Scientific Publishing Company.

[11] Li, S.F., Fraser, Q.S., and Hopper, A., Integrating
Synchronous and Asynchronous Collaboration with Virtual
Network Computing, Internet Computing, May/June 2000,
26-33

[12] Kiczales et al, Aspect-oriented Programming, In Proc.
Of the 1997 European Conf. on Object-Oriented
Programming, Finland (June 1997), Springer-Verlag, LNCS
124.

[13] Beck, K. and Fowler, M., Planning Extreme
Programming, published by Addison Wesley, 2001

[14] Cederqvist et al, Version Management with CVS,
published by Network Theory Limited, 1992

[15] Grundy, J.C., Supporting aspect-oriented component-
based systems engineering, In Proceedings of 11th
International Conference on Software Engineering and
Knowledge Engineering, Kaiserslautern, Germany, June 16-
19 1999, KSI Press, pp. 388-395.

[16] Berliner, B., CVSII: Parallelizing Software
Development, 1990, USENIX 1990 Technical Conference

[17] Frakes, W. and Fox, C., "Sixteen questions about
software reuse", Communications of the ACM, 1995,
38(6):75-87, 1995.

[18] Miles, V.C., McCarthy, J.C., Dix, A.J., Harrison, M.D.
and Monk, A.F., Reviewing Designs for a Synchronous-
Asynchronous Group Editing Environment, 1993, In
Computer Supported Collaborative Writing Ed. M. Sharpless.
Springer-Verlag. Pp 137-160

[19] Dix, A.J. and Miles, V.C., Version Control for
Asynchrous Group Work, 1992, YCS 181, Department of
Computer Science, University of York, YO1 5DD

[20] Collaborative Editing for Text Editor, 2004,
http://docsynch.sourceforge.net/

[21] Garmus, D. and Herron, D., Function Point Analysis:
Measurement Practices for Successful Software Projects,
published by Addison Wesley, 2000

[22] Abrahamsson, P., Extreme Programming: First Results
from a Controlled Case Study, 1993, 29th EUROMICRO
Conference “New Waves in System Architecture”
(EUROMICRO’03)

