
Validating Semistructured Data Using OWL

Yuan Fang Li1,�, Jing Sun2, Gillian Dobbie2, Jun Sun1, and Hai H. Wang3,��

1 School of Computing, National University of Singapore, Singapore
{liyf, sunj}@comp.nus.edu.sg

2 Department of Computer Science, The University of Auckland, New Zealand
{j.sun, gill}@cs.auckland.ac.nz

3 Department of Computer Science, University of Manchester
hai.wang@cs.manchester.ac.uk

Abstract. Semistructured data has become prevalent in both web applications
and database systems. This rapid growth in use makes the design of good
semistructured data essential. Formal semantics and automated reasoning tools
enable us to reveal the inconsistencies in a semistructured data model and its in-
stances. The Object Relationship Attribute model for Semistructured data (ORA-
SS) is a graphical notation for designing and representing semistructured data.
This paper presents a methodology of encoding the semantics of ORA-SS in the
Web Ontology Language (OWL) and automatically validating the semistructured
data design using the OWL reasoning tool - RACER. Our methodology provides
automated consistency checking of an ORA-SS data model at both the schema
and instance levels.

Keywords: Semistructured Data, Semantic Web, OWL, Formal Verification.

1 Introduction

Semistructured data has become prevalent in both web applications and database sys-
tems. It acts as a hinge technology between the data exchanged on the web and the
data represented in a database system. This rapid growth in use makes the design
of good semistructured data essential. Many data modeling languages [1, 3, 5, 10] for
semistructured data have been introduced to capture more detailed semantic informa-
tion. The Object Relationship Attribute model for Semistructured data (ORA-SS) [4, 9]
is a semantic enriched graphical notation for designing and representing semistructured
data [8, 9, 11]. The ORA-SS data model not only reflects the nested structure of semi-
structured data, but also distinguishes between object classes, relationship types and
attributes. The main advantages of ORA-SS over other data models is its ability to ex-
press the degree of an n-ary relationship type, and distinguish between the attributes
of relationship types and the attributes of object classes. This semantic information is

� The author would like to thank Singapore Millennium Foundation (SMF) for the financial
support.

�� This work was supported in part by the CO-ODE project funded by the UK Joint Information
Services Committee, the HyOntUse Project (GR/S44686) funded by the UK Engineering and
Physical Science Research Council.

J.X. Yu, M. Kitsuregawa, and H.V. Leong (Eds.): WAIM 2006, LNCS 4016, pp. 520–531, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Validating Semistructured Data Using OWL 521

essential, even crucial for semistructured data representation and management, but it is
lacking in other existing semistructured data modeling notations.

A major concern in designing a good semistructured data model using ORA-SS for
a particular application is to reveal any possible inconsistencies at both the schema
and instance levels. Inconsistencies at the schema level arise if a customized ORA-SS
schema model does not conform to the ORA-SS notation. Inconsistencies at the instance
level arise if an instance document is not consistent with its ORA-SS schema definition.
For example, an inconsistency that might arise at the schema level is the specification
of a ternary relationship between only two object classes. An inconsistency that might
arise at the instance level is a many to many relationship between elements when a
one to many relationship is specified in the schema. These two aspects of validation
are essential in the semistructured data design process. Thus, the provision of formal
semantics and automated reasoning support for validating ORA-SS semistructured data
modeling is very beneficial.

Recent research on the World Wide Web has extended to the semantics of web con-
tent. More meaningful information is embedded into the web content, which makes it
possible for intelligent agent programs to retrieve relevant semantic as well as structural
information based on their requirements. The Semantic Web [2] approach proposed by
the World Wide Web Consortium (W3C) attracts the most attention. It is regarded as
the next generation of the web. The Ontology Web Language (OWL) is an ontology
language for the Semantic Web. OWL can provide not only the structural information
of the web content but also meaningful semantics for the information presented. The
aim of this paper is to encode the semantics of the ORA-SS notation into the Web On-
tology Language (OWL) and automatically verify the semistructured data design using
the OWL reasoning tool RACER [6].

The reason that we chose OWL to fulfil our goal is due to the nature of the semistruc-
tured data and its strong connections to web technologies. Semistructured data is typi-
cally represented using eXtensible Markup Language (XML). XML is a commonly used
exchange format in many web and database applications. The introduction of the Seman-
tic Web is to overcome the structure-only information of XML, and to provide deeper
semantic meanings to the data. The ORA-SS data model is a semantically enriched data
modeling language for describing semistructured data. From the point of capturing more
semantic information in semistructured data, OWL and ORA-SS are two approaches that
fulfil the same goal, where the former is rooted from the web community and the latter
has its basis in the database community. We believe that Semantic Web and its reasoning
tools can contribute to the verification phase of the semistructured data design.

In this paper, we propose a methodology to validate semistructured data design using
OWL and its reasoner RACER. Firstly, we define an ontology model of the ORA-SS
data modeling language in OWL. It provides a rigorous semantic basis for the ORA-SS
graphical notation and enable us to represent any ORA-SS data model and its instances
in OWL. Furthermore, RACER is used to perform the automated verification of the
correctness in a semistructured data design. Our approach is able to provide automatic
consistency checking on large semistructured data models and their instances.

The remainder of the paper is organized as follows. Section 2 briefly introduces
the background knowledge for the semistructured data modeling language ORA-SS,



522 Y.F. Li et al.

Semantic Web ontology language OWL and its reasoning tool RACER. Section 3
presents OWL semantics of the ORA-SS notation and its data models. Section 4 demon-
strates a case study on a complete ontology reasoning process for verifying semistruc-
tured data design. Examples of both class-level reasoning and instance-level reasoning
are presented. Finally, Section 5 concludes the paper.

2 Background

2.1 The ORA-SS Data Modeling Language

The Object Relationship Attribute model for Semistructured data (ORA-SS) data mod-
eling language [4, 9] consists of four basic concepts: object class, relationship type,
attribute and reference. It represents these concepts through four diagrams: schema di-
agram, instance diagram, functional dependency diagram and inheritance diagram. We
will focus on the schema and instance diagram in this paper since they are sufficient for
our purposes. A full description of the ORA-SS data modeling language can be found
in [4, 9].

– An object class is like an entity type in an ER diagram, a class in an object-oriented
diagram or an element in an XML document. The object classes are represented as
labeled rectangles in an ORA-SS diagram.

– A relationship type represents a nesting relationship among object classes. It is de-
scribed as a labeled edge by a tuple (name, n, p, c), where the name denotes the
name of relationship type, integer n indicates degree of relationship type, p repre-
sents participation constraint of parent object class in relationship type and c repre-
sents participation constraint of child object class in relationship type.

– Attributes represent properties and are denoted by labeled circle. An attribute can be
a key attribute which has a unique value and represented as a filled circle. Other types
of attributes include single valued attribute, multi-valued attribute, required attribute,

cs, 2, 4:n, 3:8

cp, 2, 0:5, 1:n

code

course

title

laboratory

grade

lecture
theatre

cs
venue
exam

prerequisite

*

name feedbackstaff

cst

preferred
area

tutor

number

name
number
student

home

number street name

hostel

name

sport club

join date

sportname

sm, 2, 1:n, 1:n

sm

member

sh, 2, 1:1, 1:n

cst, 3, 1:1, 1:n

student

student

Fig. 1. The ORA-SS Schema Diagram of a Course-Student data model



Validating Semistructured Data Using OWL 523

composite attribute, etc. An attribute can be a property of an object class or a property
of a relationship type.

– An object class can reference another object class to model recursive and symmetric
relationships, or to reduce redundancy especially for many-to-many relationships. It
is represented by a labeled dashed edge.

For the design of semistructured data, an ORA-SS schema diagram constrains the
relationships, participations and cardinalities among the instances of the object classes
in a semistructured data model. For example, Fig. 1 represents an ORA-SS schema di-
agram of a Course-Student data model. In the diagram, each course has code,
title, exam venue as its attributes. A relationship type cs, which indicates the
relationship between a course object class and a student object class is binary, and
each course consists of 4 to many students and each student can select 3 to 8 courses.
The student object class in the cs relationship type has a reference pointing to its
complete definition. The grade attribute is an attribute belonging to the cs relation-
ship type. Based on the above schema definition, two levels of validation can be carried
out. Firstly, consistency checking can be performed to determine whether the defined
schema model is correct with respect to the ORA-SS language. Secondly, consistency
checking can be performed to determine whether a particular instance of semistruc-
tured data satisfies the defined ORA-SS schema model. Hence automated tool support
for validating the consistency in an ORA-SS data model would be highly desirable.

2.2 Semantic Web – OWL and RACER

Description logics are logical formalisms for representing information about knowledge
in a particular domain. It is a subset of first-order predicate logic and is well-known for
the trade-off between expressivity and decidability.

The Web Ontology Language (OWL) [7] is the de-facto ontology language for the
Semantic Web. It consists of three increasingly expressive sublanguages: OWL Lite, DL
and Full. OWL DL is very expressive yet decidable. As a result, core inference prob-
lems, namely concept subsumption, consistency and instantiation, can be performed
fully automatically. In OWL, conceptual entities are organized as classes in hierarchies.
Individual entities are grouped under classes and are called instances of the classes.
Classes and individuals can be related by properties. We will be using a synatx similar
to that presented in [7].

RACER, the Renamed ABox and Concept Expression Reasoner [6], is a reasoning
engine for ontologies languages DAML+OIL and OWL. It implements a TBox and
ABox reasoner for the description logic ALCQHIR+(D)− [6]. It is fully automated
for reasoning over OWL Lite and DL ontologies.

3 Modeling ORA-SS Data Design Models in OWL

In this section, we show the modeling of ORA-SS schema and instance diagrams as
OWL ontologies in three parts. Firstly, we define the ORA-SS ontology in Section 3.1,
which contains the OWL definitions of essential ORA-SS concepts. Secondly, in the
next 3 subsections, we show how individual schema diagram ontology can be con-
structed based on the ORA-SS ontology. Finally, in Section 3.5, we show how instance
diagrams can be represented in OWL.



524 Y.F. Li et al.

Our modeling approach can be regarded as a methodology for creating the OWL rep-
resentation of ORA-SS diagrams. By strictly following this methodology, a lot of poten-
tial modeling errors can be avoided, which will become more evident as we present the
approach below. To effectively illustrate the modeling approach, the schema diagram in
Fig. 1 is used as a running example.

3.1 The ORA-SS Ontology

The ORA-SS ontology1 contains the OWL definitions for ORA-SS concepts such as
object class, relationship type, attribute, etc. We will model these definitions as OWL
classes. The basic assumption here is that all named OWL classes are by default mu-
tually disjoint, which is implied in the ORA-SS diagrams. Essential properties are also
defined in the ontology. This ontology, with a namespace of ora-ss, can be used later
to define ontologies for ORA-SS schema diagrams.

Entities. As each object class and relationship type can be associated with attributes
and other object classes or relationship types, we define an OWL class ENTITY to
represent the super class of both object class and relationship type. The OWL class
structure is shown as follows.

ENTITY � �
OBJECT � ENTITY

RELATIONSHIP � ENTITY

ATTRIBUTE � �
ENTITY � ATTRIBUTE = ⊥
OBJECT � RELATIONSHIP = ⊥

It may not seem very intuitive to define relationship types as OWL classes. In ORA-
SS, relationship types are used to relate various object classes and relationship types, it
might be natural to model relationship types as OWL properties. However, there are two
reasons that we decide to model relationship types as OWL classes. Firstly, the domain
of ORA-SS relationship types can be relationship types themselves, which describes
the relationships of ternary and more. Secondly, classes and properties in OWL DL are
disjoint. In our model, a relationship type class consists of instances which are actually
pointers to the pairs of object classes or relationship types that this relationship relates.

As ORA-SS is a modeling notation for semistructured data, we need to cater to un-
structured data. We define a subclass of ATTRIBUTE called ANY as a place holder to
denote any unstructured data appearing in a model. In ORA-SS, a composite attribute is
an attribute composed of other attributes. We also define it as a subclass of ATTRIBUTE.

ANY � ATTRIBUTE

ANY � CompositeAttribute = ⊥
CompositeAttribute � ATTRIBUTE

Properties. A number of essential properties are defined in the ora-ss ontology.

Properties Among Entities
In ORA-SS, object classes and relationship types are inter-related to form new relation-
ship types. As mentioned above, since we model relationship types as OWL classes, we
need additional properties to connect various object classes and relationship types.

1 Available at http://www.comp.nus.edu.sg/˜liyf/ora-ss/ora-ss.owl

http://www.comp.nus.edu.sg/~liyf/ora-ss/ora-ss.owl


Validating Semistructured Data Using OWL 525

Firstly, this is accomplished by introducing two object-properties, parent and child,
which map a RELATIONSHIP to its domain and range ENTITYs. The following state-
ments define the domain and range of parent and child. As in ORA-SS, the domain of
a relationship (parent) can be either an object class or another relationship type, i.e., an
ENTITY. The range (child) must be an OBJECT. These two properties are functional as
one relationship type has exactly one domain and one range node. Moreover, we assert
that only relationship types can have parents and child but object classes cannot.

≥ 1 parent � RELATIONSHIP

� � ∀ parent.ENTITY

� �≤ 1 parent

≥ 1 child � RELATIONSHIP

� � ∀ child.OBJECT

� �≤ 1 child

RELATIONSHIP � ∀ parent.ENTITY RELATIONSHIP � ∀ child.OBJECT

Secondly, we define two more object-properties: p-ENTITY-OBJECT and
p-OBJECT-ENTITY. These two properties are inverse of each other and they serve
as the super properties of the properties that are to be defined in later ontologies of
ORA-SS schema diagrams. Those properties will model the restrictions imposed on the
relationship types.

The domain and range of p-ENTITY-OBJECT are ENTITY and OBJECT, respec-
tively. Since the two properties are inverse, the domain and range of p-OBJECT-ENTITY
can be deduced.

p-OBJECT-ENTITY = (−p-ENTITY-OBJECT)

≥ 1 p-ENTITY-OBJECT � ENTITY

� � ∀ p-ENTITY-OBJECT.OBJECT

ENTITY � ∀ p-ENTITY-OBJECT.OBJECT

≥ 1 p-OBJECT-ENTITY � OBJECT

� � ∀ p-OBJECT-ENTITY.ENTITY

OBJECT � ∀ p-OBJECT-ENTITY.ENTITY

Properties Between Entities and Attributes
First of all, we define an object-property has-ATTRIBUTE, whose domain is ENTITY
and range is ATTRIBUTE. Every ENTITY must have ATTRIBUTE as the range of
has-ATTRIBUTE.

≥ 1 has-ATTRIBUTE � ENTITY

� � ∀ .has-ATTRIBUTE.ATTRIBUTE

ENTITY � ∀ has-ATTRIBUTE.ATTRIBUTE

For modeling the ORA-SS candidate and primary keys, we define two new ob-
ject properties that are sub-properties of has-ATTRIBUTE. We also make the property
has-primary-key inverse functional and state that each ENTITY must have at most one
primary key. Moreover, we restrict the range of has-candidate-key to be ATTRIBUTE.

has-candidate-key � has-ATTRIBUTE

� � ∀ has-candidate-key.ATTRIBUTE

ENTITY �≤ 1 has-primary-key

has-primary-key � has-candidate-key

� �≤ 1 has-primary-key−



526 Y.F. Li et al.

3.2 Object Classes

In this subsection, we present how ORA-SS object classes in a schema diagram are rep-
resented in OWL. Moreover, we will discuss how object class referencing is modeled.

Example 1. The schema diagram in Fig. 1 contains a number of object classes 2.

course � OBJECT

student � OBJECT

hostel � OBJECT

· · ·

tutor � OBJECT

sport club � OBJECT

home � OBJECT

· · ·
Referencing. In ORA-SS, an object class can reference another object class to refer to
its definition, which we say that a reference object class references a referenced object
class. In our model, we model the reference object class a sub class of the referenced
object class. If the two object classes are of the same name, the reference object class
is renamed. By doing so, we ensure that all the attributes and relationship types of the
referenced object classes are reachable (meaningful). Note that there are no disjointness
axioms among the reference and referenced object classes.

Example 2. In Fig. 1, the object class student is referenced by object classes student and
member. Hence, we rename the reference student to student 1 and add the following
axioms in to the model.

student � OBJECT student 1 � student member � student

3.3 Relationship Types

In this subsection, we present the details of how ORA-SS relationship types are modeled
in OWL. Various kinds of relationship types, such as disjunctive relationship types and
recursive relationship types are also modeled. We begin with an example to show the
basic modeling of relationship types.

For example, Fig. 1 contains 5 relationship types, namely cs, sh, sm, cp and cst. The
relationship type cs is bound by the parent/child properties as follows. We use both
allValuesFrom and someValuesFrom restriction to make sure that only the intended
class can be the parent/child class of cs.

cs � ∀ parent.course

cs � ∃ parent.course

cs � ∀ child.student 1

cs � ∃ child.student 1

Auxiliary Properties. As discussed in Section 3.1, for each ORA-SS relationship type
we define two object-properties that are the inverse of each other.

Example 3. Take cs as an example, we construct two object-properties:
p-course-student and p-student-course. Their domain and range are also defined.

p-student-course = (−p-course-student)

p-course-student � p-ENTITY-OBJECT

≥ 1 p-course-student � course

� � ∀ p-course-student.student 1

p-student-course � p-OBJECT-ENTITY

≥ 1 p-student-course � student 1

� � ∀ p-student-course.course

2 For brevity reasons, the class disjointness statements are not shown from here and onwards.



Validating Semistructured Data Using OWL 527

Participation Constraints. One of the important advantages that ORA-SS has over
XML Schema language is the ability to express participation constraints for parent/child
nodes of a relationship type. This ability expresses the cardinality restrictions that must
be satisfied by ORA-SS instances.

Using the terminology defined previously, ORA-SS parent participation constraints
are expressed using cardinality restrictions in OWL on a sub-property of
p-ENTITY-OBJECT to restrict the parent class Prt. Child participation constraints can
be similarly modeled, using a sub property of p-OBJECT-ENTITY.

Example 4. In Fig. 1, the constraints captured by the relationship type cs state that a
course must have at least 4 students; and a studentmust take at least 3 and at most
8 courses. The following axioms are added to the ontology. The two object-properties
defined above capture the relationship type between course and student.

course � ∀ p-course-student.student 1

course �≥ 4 p-course-student

student 1 � ∀ p-student-course.course

student 1 �≥ 3 p-student-course

student 1 �≤ 8 p-student-course

Disjunctive Relationship Types. In ORA-SS, a disjunctive relationship type is used
to represent disjunctive object classes, where only one object can be selected from a set
of object classes. To model this in OWL, we will create a dummy class as the union
of the disjoint classes and use it as the range of the object-property representing the
relationship type. Together with the cardinality constraint that exactly one individual of
the range can be selected, the disjunctive relationship type can be precisely modeled.

Example 5. In Fig. 1, sh is a disjunctive relationship type where a student must live in
exactly one hostel or one home, but not both. We use the following OWL statements to
model this situation. Note that p-student-sh is an object-property that maps student to
its range class home hostel, which is the union of hostel and home.

hostel � OBJECT

home hostel = hostel 
 home

home � OBJECT

� � ∀ p-student-sh.home hostel

hostel � home = ⊥
≥ 1 p-student-sh � student

Given the above definitions, the disjunctive relationship type sh in the schema dia-
gram can be modeled as follows.

student � ∀ p-student-sh.home hostel student �= 1 p-student-sh

3.4 Attributes

The semantically rich ORA-SS model notation defines many kinds of attributes for
object classes and relationship types. These include candidate and primary keys, single-
valued and multi-valued attributes, required and optional attributes, etc. In this subsec-
tion, we will discuss how these attributes can be modeled.

Example 6. The schema diagram in Fig. 1 includes attributes such as code, title and
exam venue, which are all sub classes of ATTRIBUTE.



528 Y.F. Li et al.

Modeling of Various Definitions. As OWL adopts the Open World Assumption [7]
and an ORA-SS model is closed, we need to find ways to make the OWL model capture
the intended meaning of the original diagram. The following are some modeling tricks.

– For each ENTITY, we use an allValuesFrom restriction on has-ATTRIBUTE over the
union of all the ATTRIBUTE classes this ENTITY has in the ORA-SS model to denote
the complete set of attributes it holds.

Example 7. In the running example, the object class student has student number and
name as its attributes.

student � ∀ has-ATTRIBUTE.(student number 
 name)

– Each entity (object class or relationship type) can have a number of attributes. For
each of the entity-attribute pairs in an ORA-SS schema diagram, we define an object-
property, whose domain is the entity and range is the attribute.

Example 8. In Fig. 1, the object class sport club has an attribute name. It can be
modeled as follows.

≥ 1 has-sport club-name � sport club

� � ∀ has-sport club-name.name

has-sport club-name � has-ATTRIBUTE

sport club � ∀ has-sport club-name.name

Required and Optional Attributes. We use cardinality restrictions of respective
object-properties on the owning ENTITY to model the attribute cardinality constraints
in the ORA-SS model. The default is (0:1). We use a cardinality ≥ 1 restriction to state
a required attribute.

Single-Valued vs. Multi-valued Attributes. Single-valued attributes can be modeled
by specifying the respective object-property as functional. Multi-valued attributes, on
the contrary, are not functional. An attribute is by default single valued.

Primary Key Attributes. For an entity with a primary key attribute, we use an all-
ValuesFrom restriction on the property has-primary-key to constrain it. Since we have
specified that has-primary-key is inverse functional, this suffices to show that two dif-
ferent objects will have different primary keys. Moreover, for every attribute that is the
primary key attribute, we assert that the corresponding object property is a sub property
of has-primary-key.

Disjunctive Attributes. Similar to the treatment of disjunctive relationship types, we
create a class as the union of a set of disjunctive attribute classes. Together with the
cardinality ≤ 1 restriction, disjunctive attributes can be represented in OWL.

3.5 Instance Diagrams in OWL

The representation of ORA-SS instance diagrams in OWL is a straightforward task. As
the name suggests, instance diagrams are semistructured data instances of a particular
ORA-SS schema diagram. The translation of an instance diagram to an OWL ontology
is done by the following 3 steps:



Validating Semistructured Data Using OWL 529

1. Defining individuals and stating the membership of these individuals, by declaring
them as instances of the respective OWL classes of object classes, relationship types
and attributes defined in the schema diagram ontology.

2. For each OWL class, we state that all its instances are different from each other.
3. By making use of the object-properties defined in the schema diagram ontology, we

state the relationships among the individuals.

4 Reasoning About ORA-SS Instance Models

In this section, we demonstrate the validation of ORA-SS schema and instance diagrams
using OWL and RACER. We will again use Fig. 1 as the running example.

4.1 Validation of Schema Diagram Ontologies

In order to ensure the correctness of an ORA-SS schema diagram, a number of proper-
ties have to be checked, such as:

– The parent of a relationship type should be either a relationship type or an object
class, where the child should only be an object class.

– The parent of a higher-degree relationship type (higher than 2) must be a relationship
type.

– An object class or relationship type can have at most one primary key, which must be
part of the candidate keys.

To manually check the validity of a given schema diagram against these constraints
is a highly laborious and error-prone task. By following the methodology presented in
this section systematically, a lot of potential violation of the above constraints can be

Fig. 2. Schema inconsistency detected by RACER



530 Y.F. Li et al.

avoided. Moreover, the highly efficient OWL reasoners such as RACER can check the
consistency of ORA-SS schema diagrams in OWL fully automatically. For example,
suppose that in the case study, the child of relationship type cs is mistakenly put as cst
instead of student 1. Hence, the axiom � � ∀ child.OBJECT is violated. This error
can be picked up by RACER automatically, as shown in Fig. 2. Three classes, cs, cst
and tutor are highlighted as inconsistent. Classes cst and tutor are inconsistent because
they are both related to cs using existential or cardinality restrictions. Other types of
checking can be similarly performed.

It can be seen from Fig. 2 that the detection of inconsistencies in the ORA-SS schema
ontology by RACER is quite efficient. On a Pentium IV 2.4GHz machine with 1GB
memory, the consistency checking by RACER took only 0.75 second.

4.2 Validation of Instance Diagram Ontologies

After transforming an ORA-SS instance diagram into an OWL ontology. Validation of
the consistency of the instance ontology can be done fully automatically by invoking
ontology reasoners capable of ABox reasoning. We will use RACER to demonstrate the
checking of the above ontology using a few examples.

– Entity/attribute cardinality constraints
In Fig. 1, each instance of relationship type cst has exactly one tutor. Suppose that in
the instance ontology, cs1 is mapped to two tutors, tutor1 and tutor2 by cst.

〈cs1, tutor1〉 ∈ p-cs-tutor 〈cs1, tutor2〉 ∈ p-cs-tutor

– Primary key related properties
Suppose that by accident, two students, student4 and student5, are both assigned to
the same student number.

〈student4, student number 4〉
∈ has-student-student number

〈student5, student number 4〉
∈ has-student-student number

By using RACER And RacerPorter (a graphical front-end of RACER) together, the
instance ontology is detected to be inconsistent automatically in the above two cases. In
each case, RACER takes less than 1 second to conclude the incoherence of the ontology.

5 Conclusion

In this paper, we explored the synergy between the Semantic Web and the database mod-
eling approaches in the context of verifying semistructured data design. We demonstrate
the approach of using the OWL and its reasoning tool for the consistency checking of
the ORA-SS data model and its instances. The advantages of our approach lie in the fol-
lowing perspectives. Firstly, we defined a Semantic Web ontology model for the ORA-
SS data modeling language. It not only provides a formal semantic for the ORA-SS
graphical notation, but also demonstrates that Semantic Web languages such as OWL
can be used to capture more semantic information of a semistructured data. Further-
more, such a semantics can be adopted by many Semantic Web applications that use the



Validating Semistructured Data Using OWL 531

ORA-SS semistructured data model. Secondly, ontology reasoning tool was adopted to
perform automated verification on a semistructured data model. The RACER reasoner
was used to check the consistency of an ORA-SS schema model and its instances. We
illustrated the various checking tasks through a Course-Student example model. In
our previous work, we used the Alloy Analyzer for the validation of the ORA-SS data
model. The main advantage of our current OWL approach over this is that consistency
checking on large ORA-SS models are made feasible, as one of the shortcomings of the
current Alloy Analyzer is its limited abilities on verifying large-scale models. More-
over, as Semantic Web reasoners employ highly optimized tableaux-based algorithms,
the performance in terms of time is also significantly better than Alloy Analyzer.

References

1. V. Apparao, S. Byrne, M. Champion, S. Isaacs, I. Jacobs, A. L. Hors, G. Nicol, J. Robie,
R. Sutor, C. Wilson, and L. Wood. Document Object Model (DOM) Level 1 Specification.
http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/.

2. T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific American,
284(5):35–43, 2001.

3. P. Buneman, S. B. Davidson, M. F. Fernandez, and D. Suciu. Adding Structure to Unstruc-
tured Data. In ICDT ’97: Proceedings of the 6th International Conference on Database
Theory, pages 336–350. Springer-Verlag, 1997.

4. G. Dobbie, X. Wu, T. Ling, and M. Lee. ORA-SS: Object-Relationship-Attribute Model for
Semistructured Data. Technical Report TR 21/00, School of Computing, National University
of Singapore, Singapore, 2001.

5. R. Goldman and J. Widom. DataGuides: Enabling Query Formulation and Optimization
in Semistructured Databases. In M. Jarke, M. J. Carey, K. R. Dittrich, F. H. Lochovsky,
P. Loucopoulos, and M. A. Jeusfeld, editors, VLDB’97: Proceedings of 23rd International
Conference on Very Large Data Bases, pages 436–445. Morgan Kaufmann, 1997.

6. V. Haarslev and R. Möller. Practical Reasoning in Racer with a Concrete Domain for Lin-
ear Inequations. In I. Horrocks and S. Tessaris, editors, Proceedings of the International
Workshop on Description Logics (DL-2002), Toulouse, France, Apr. 2002. CEUR-WS.

7. I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. From SHIQ and RDF to OWL:
The making of a web ontology language. J. of Web Semantics, 1(1):7–26, 2003.

8. T. Ling, M. Lee, and G. Dobbie. Applications of ORA-SS: An Object-Relationship-Attribute
data model for Semistructured data. In IIWAS ’01: Proceedings of 3rd International Confer-
ence on Information Integration and Web-based Applications and Serives, 2001.

9. T. W. Ling, M. L. Lee, and G. Dobbie. Semistructured Database Design. Springer, 2005.
10. J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and J. Widom. Lore: A Database Manage-

ment System for Semistructured Data. SIGMOD Record, 26(3):54–66, 1997.
11. X. Wu, T. W. Ling, M. L. Lee, and G. Dobbie. Designing Semistructured Databases Using

the ORA-SS Model. In WISE ’01: Proceedings of 2nd International Conference on Web
Information Systems Engineering, Kyoto, Japan, 2001. IEEE Computer Society.

http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/

	Introduction
	Background
	The ORA-SS Data Modeling Language
	Semantic Web -- OWL and RACER

	Modeling ORA-SS Data Design Models in OWL
	The ORA-SS Ontology
	Object Classes
	Relationship Types
	Attributes
	Instance Diagrams in OWL

	Reasoning About ORA-SS Instance Models
	Validation of Schema Diagram Ontologies
	Validation of Instance Diagram Ontologies

	Conclusion


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




