
Multiagent and Grid Systems – An International Journal 2 (2006) 455–471 455
IOS Press

Reasoning support for Semantic Web
ontology family languages using Alloy

Hai H. Wanga,∗, Jin Song Dongb, Jing Sunc and Jun Sunb

aDepartment of Computer Science, The University of Manchester, UK
E-mail: hai.wang@cs.manchester.ac.uk
bSchool of Computing, National University of Singapore, Singapore
E-mail: {sunj, dongjs}@comp.nus.edu.sg
cDepartment of Computer Science, The University of Auckland, New Zealand
E-mail: j.sun@cs.auckland.ac.nz

Received 28 November 2005

Revised 8 May 2006

Accepted 5 July 2006

Abstract. Semantic Web (SW), commonly regarded as the next generation of the Web, is an emerging vision of the new
Web from the Knowledge Representation and the Web communities. To realize this vision, a series of techniques has been
proposed. Semantic Web Ontology Langauge (OWL) and its extension Semantic Web rule Language (SWRL) and Semantic
Web Logic Language (SWRL-FOL) are some of the most important outputs from the SW activities. However the existing
reasoning and consistency checking tools for those languages are primitive. This paper proposes using the existing formal
modelling tool, in particular Alloy, to provide an automatic reasoning service for the Semantic Web ontology family languages
(OWL/SWRL/SWRL-FOL).

Keywords: Semantic Web, Alloy, OWL, SWRL, FOL

1. Introduction

The power of the Semantic Web [1], as the next generation of the Web, will be realized when software agents are
able to understand the Web content, process the information and exchange the results with other software agents.
Adding logic to the Web is one of the key requirements. This logic must be powerful enough to describe complex
properties of web resources but not so complicated that agents could be tricked by being asked to consider a paradox.
To achieve these two contradictory requirements, researchers attempt to adopt the layered approach, where the upper
layer is extended from the lower layer with enhanced expressive power. This allows that different applications can
choose the logic language suiting their needs most.

The bottom layer is Web Ontology Language (OWL) [14]. OWL, a recommendation by the World Wide Web
Consortium (W3C), is the latest standard to define the ontology. It is based on Description Logic (DL). Although
OWL adds considerable expressive power to the Semantic Web, to retain the decidability of key inference problems
in OWL DL and OWL Lite, OWL has its expressive limitations. Certain desired properties can not be expressed for
some applications. Semantic Web Rule Language (SWRL) [9] extends OWL by combining the OWL DL and OWL
Lite with the Unary/Binary Catalog sub-languages of the Rule Markup Language. It introduces a new kind of axiom,

∗Corresponding author: Hai H. Wang, School of Computer Science, The University of Manchester, M13 9JPL, UK. Tel.: +44 161 275 0686;
Fax: +44 161 275 6204; E-mail: hai.wang@cs.manchester.ac.uk.

ISSN 1574-1702/06/$17.00 © 2006 – IOS Press and the authors. All rights reserved

456 H.H. Wang et al. / Reasoning support for Semantic Web ontology family languages using Alloy

named Horn clause rules, to OWL DL. Recently, Semantic Web Rule Language First Order Logic (SWRL-FOL) [15]
has been proposed to further extend the SWRL to handle unary/binary first-oder logic.

Reasoning can be useful at many stages during the design, maintenance and deployment of ontology. Using the
reasoning service provided by Semantic Web reasoners, software agents can autonomously infer new knowledges
from the given knowledges and perform different tasks. For example, Pizzafinder, 1 as a small application developed
by our research group, demonstrates how the reasoner could be used by a web software agent for their application.
Pizzafinder uses the Pizza Ontology, and a reasoner to dynamically generate pizza toppings and pizza topping
categories. The user can include toppings that they would like on their pizza and exclude any toppings that they
do not want on their pizza. The description logic reasoner is used to determine if the choices that have been made
contradict each other – for example, choosing to include Jalapeno Pepper topping, but choosing to exclude all hot
toppings – the choices are automatically adjusted to modify any decisions that could potentially lead to contradictions
and inconsistent results.

Because autonomous software agents may perform their reasoning and come to conclusions without human
supervision, it is essential that the shared ontology is consistent. However, since the Semantic Web technology is
still in the early stage, the reasoning and consistency checking tools are primitive. The existing OWL reasoning
tools such as FaCT [8] and RACER [6] have been developed specifically for the decidable description logic, which
are based on tableaux algorithm. They are far from perfect. Furthermore, currently there does not exist a tableaux
algorithm that can support the reasoning of SWRL-FOL, or even SWRL. Hence, it would take some effort and
time for people to research into new algorithms and build new tools to support SWRL and SWRL-FOL reasoning.
However, as it can been foreseen that it is critical and urgent to provide some reasoning service to SWRL and
SWRL-FOL in order to make them to be integrated into ontology languages hierarchy and to have their impacts on
the practical web applications.

Alternatively, rather than developing new algorithms and tools, a light-weight approach to provide reasoning
service which can complement existing OWL reasoners and support SWRL and SWRL-FOL is to customize and
reuse some existing tools. After decades of research and development, some mature formal modelling/reasoning
tools have been established successfully. These tools could well be adopted to reasoning about OWL, SWRL and
SWRL-FOL.

This paper proposes to develop a reasoning environment using the software modelling language Alloy and its
Analyzer [11] for web ontology families language. It complements the existing OWL reasoning tools like RACER,
and also supports the newly extended SWRL and SWRL-FOL.

The rest of the paper is organized as follows. Section 2 briefly introduces the OWL, SWRL, SWRL-FOL and Alloy.
In section 3, we present the Alloy semantics for the OWL/SWRL/SWRL-FOL language and the transformation from
the ontologies into their corresponding Alloy models. Section 4 presents a case study to demonstrate the reasoning
processes of SWRL-FOL ontology models in the Alloy Analyzer. Section 5 concludes the paper and discusses the
future work.

This paper is substantially extended and revised from the early conference paper ‘Reasoning Support for SWRL-
FOL Using Alloy’ [19].

2. Backgrounds

2.1. Semantic Web overview

2.1.1. Semantic Web and OWL
The Semantic Web is a vision for a new kind of Web with enhanced functionality which will require semantic-

based representation and processing of Web information. W3C has proposed a series of technologies that can be
applied to achieve this vision. The Semantic Web extends the current Web by giving the web content a well-defined
meaning, better enabling computers and people to work in cooperation. XML is aimed at delivering data to systems

1http://www.co-ode.org/downloads/pizzafinder/.

H.H. Wang et al. / Reasoning support for Semantic Web ontology family languages using Alloy 457

Table 1
OWL constructs (partial)

OWL constructs Description

OWL class classes
OWL property properties
OWL subclass[C] subclasses of C
OWL subproperty[P] subproperties of P
instanceof[C] instances of the OWL class C

that can understand and interpret the information. XML is focused on the syntax (defined by the XML schema or
DTD) of a document and it provides essentially a mechanism to declare and use simple data structures. However
there is no way for a program to actually understand the knowledge contained in the XML documents.

Resource Description Framework (RDF) [12] is a foundation for processing metadata; it provides interoperability
between applications that exchange machine-understandable information on the Web. RDF uses XML to exchange
descriptions of Web resources and emphasizes facilities to enable automated processing. The RDF descriptions
provide a simple ontology system to support the exchange of knowledge and semantic information on the Web.
RDF Schema [2] provides the basic vocabulary to describe RDF documents. RDF Schema can be used to define
properties and types of the web resources. The advent of RDF Schema represented an early attempt at an SW
ontology language based on RDF.

OWL [14] is a standard (W3C recommendation) for expressing ontologies in the Semantic Web. The OWL
language facilitates greater machine understandability of Web resources than that supported by RDFS by providing
additional constructors for building class and property descriptions (vocabulary) and new axioms (constraints), along
with a formal semantics. OWL consists of three sub-languages: OWL Lite, OWL DL and OWL Full, with increasing
expressiveness. OWL Lite and DL are decidable, but OWL Full is generally not. An OWL ontology consists of
classes, properties and individuals. Classes are interpreted as sets of objects that represent the individuals in the
domain of discourse. Properties are binary relations that link individuals, and are interpreted as sets of tuples, which
are the subsets of the cross product of the objects in the domain of discourse. OWL classes fall into two main
categories – named classes and anonymous classes. Anonymous classes are formed from logical statements. They
contain the individuals that satisfy the logical description. Anonymous classes may be further sub-divided into
restrictions and logical class expressions. We summarize some essential OWL constructs in Table 1. To be simpler,
informal OWL syntax has been used here. For example, OWL class denotes the OWL construct “Class” .

2.1.2. SWRL
Although OWL includes a relatively rich set of class constructors, the language provided for expressing properties

is much weaker. SWRL [9] intends to overcome the expressive restriction of OWL properties by extending OWL
with some form of “rule language”. SWRL is based on a combination of the OWL DL and OWL Lite sub-languages
of the OWL Web Ontology Language with the Unary/Binary Catalog sub-languages of the Rule Markup Language.
SWRL introduces a high-level abstract syntax for Horn-like rules in both the OWL DL and OWL Lite sub-languages
of OWL. SWRL extends OWL by also allowing rule axioms, i.e., by adding the construct:

axiom ::= rule

A rule axiom consists of an antecedent and a consequent, each of which consists of a set of atoms which could
be class membership (C(x)), property membership (P(x,y)) or individual in/equalities(differentFrom(x,y)/sameAs(x,
y)). Informally, a rule means that if the antecedent holds (is “true”), then the consequent must also hold. A simple
example of the rules could be used to express the knowledge that “if ?x1 is a child of ?x2 and ?x2 is a brother of ?x3,
then ?x3 is an uncle of ?x1”. Informally, this rule could be written as:

hasChild(?x2,?x1) ∧ hasBrother(?x2,?x3)
⇒ hasUncle(?x1,?x3)

458 H.H. Wang et al. / Reasoning support for Semantic Web ontology family languages using Alloy

2.1.3. SWRL-FOL
SWRL-FOL [15] extends SWRL axiom to arbitrary first-order formula over unary and binary predicates. It

extends SWRL with “assertion” axioms that contain first-order sentences, i.e.

axiom ::= assertion

Assertions assert first-order sentences, where no free variables are allowed in the formulae. For example an axiom
could be used to express the knowledge that “for all the person ?x1 if s/he is a ‘wealthy Parent’, then s/he has at least
one child ?x2 who is a millionnaire.”. Informally, this axiom could be written as:

∀?x1 | wealthyParent(?x1) ⇒
∃?x2 | hasChild(?x1,?x2) ∧ millionnaire(?x2)

We can see from the above example that by introducing first-order formulas, more complex logical statements can
be expressed in SWRL.

2.1.4. Existing reasoning tools for Semantic Web
Ontology reasoning tools have been built alongside the development of ontology languages. The rest of this

subsection will introduce a few of these tools.
Cwm (Closed world machine) [18] is a general-purpose data processor for the Semantic Web. Implemented in

Python and command-line based, it is a forward chaining reasoner for RDF.
Triple [17] is a RDF query, inference and transformation language. It does not have a built-in semantics for RDF

Schema, but it allows semantics of languages to be defined with rules on top of RDF. This feature of Triple facilitates
data aggregation as users can perform RDF reasoning and transformation under different semantics. The Triple tool
supports OWL through external OWL reasoners such as FaCT and RACER.

FaCT (Fast Classification of Terminologies) [8], developed at University of Manchester, is a TBox (concept-level)
reasoner that supports automated concept-level reasoning, namely class subsumption and consistency reasoning. It
does not support ABox (instance-level) reasoning. It is implemented in Common Lisp and comes with a FaCT
server, which can be accessed across network via its CORBA interface. Given an OWL ontology, it can classify the
ontology (performs subsumption reasoning) so as to reduce redundancy and detect any inconsistency within it.

RACER, the Renamed ABox and Concept Expression Reasoner [6], implements a TBox and partial ABox
reasoner for the description logic ALCQHIR+(D)− [7]. It can be regarded as (a) a Semantic Web inference engine,
(b) a description logic reasoning system capable of both TBox and ABox reasoning and (c) a prover for modal logic
Km. In the Semantic Web domain, RACER’s functionalities include developing ontologies (creating, maintaining
and deleting concepts, roles and individuals); querying, retrieving and evaluating the knowledge base, etc. It supports
OWL and RDF.

The FaCT and RACER are the most well accepted OWL reasoners. However, they still have many limitations,
such as both of them can only flag an OWL class is inconsistent without providing any explanation. The debugging
task is left to the user. Furthermore, there is very limited datatype support, such as integer and string. Also FaCT does
not provide any ABox reasoning. RACER can only partially support ABox reasoning. Alloy approach proposed in
this paper can complement FaCT and RACER [3].

Currently, there is not a well accepted system supporting SWRL, and only few prototypes has been developed.
There is no reasoning tool supporting SWRL-FOL yet.

2.2. Alloy overview

Alloy [11] is a structural modelling language based on first-order logic, for expressing complex structural and
behavioral constraints. Alloy treats relations as first class citizens and uses relational composition as a powerful
operator to combine various structured entities. The essential constructs of Alloy are as follows:

– Signature: A signature (sig) paragraph introduces a basic type, a collection of relations (called field), and a set
of constraints on their values. A signature may inherit fields and constraints from another signature.

– Function: A function (fun) captures behavior constraints. It is a parameterized formula that can be “applied”
elsewhere.

H.H. Wang et al. / Reasoning support for Semantic Web ontology family languages using Alloy 459

– Fact: Fact (fact) imposes global constraints on the relations and objects. A fact is a formula that takes no
arguments and needs not to be invoked explicitly.

– Assertion: An assertion (assert) specifies an intended property. It is a formula whose correctness needs to be
checked, assuming the facts in the model.

The Alloy Analyzer is a tool for analyzing models written in Alloy. Given a finite scope for a specification, Alloy
Analyzer translates it into a propositional formula and uses SAT solving technology to generate instances that can
satisfy the facts and properties expressed in the specification.

3. Alloy semantics for OWL/SWRL/SWRL-FOL

This section presents the Alloy semantics for OWL, SWRL and SWRL-FOL languages,which forms the foundation
of the reasoning environment. Due to limited space, only part of semantic model has been presented here. A
complete Alloy semantics for these languages can be found at http://www.cs.man.ac.uk/˜hwang/swrlfol.als.

3.1. Alloy semantic for OWL constructs

3.1.1. Basic concepts
The semantic model for OWL is encoded in the module OWL. Users only need to import this module to reason

about OWL ontology in Alloy.

module OWL

All the things described in the Semantic Web context are referred to as web resources. A basic type Resource
is defined as:

sig Resource {}

Other concepts such as classes and properties defined later are extended from the Resource. Property, which
is a kind of Resource itself, relates Resource to Resource.

disj sig Property extends Resource
{sub_val: Resource -> Resource}

“disj” is a keyward from Alloy for denoting the disjointness. Each Property has a relation sub val from set
<Property, Resource, Resource> with type <Resource, Resource, Resource> (since in Alloy subsignature
does not introduce a new type). This relation can be regarded as a RDF statement, i.e., a triple of the form <property
(or predicate), subject, value (or object)>.

The class corresponds to the generic concept of type or category of resource. Each Class maps a set of resources
via the relation instances, which contains all the instance resources. The keyword disj is used to indicate the Class
and Property are disjoint.

disj sig Class extends Resource {instances: set Resource}

The OWL also allows the use of XML Schema datatypes to describe (or define) part of the datatype domain. Alloy
supports Integer and String. Apart from these there are no predefined types in Alloy, Datatype has been treated as a
special Class, which contains all the possible datatype values in the instances relation.

disj sig Datatype extends Class {}

3.1.2. Class elements
The subClassOf is a relation between classes. The instances in a subclass are also in the super-classes. A

parameterized formula (a function in Alloy) is used to represent this concept.

fun subClassOf(csup, csub: Class)
{csub.instances in csup.instances}

The disjointWith is a relation between classes. It asserts that there are no instances common with each other.

fun disjointWith (c1, c2: Class) {no c1.instances & c2.instances}

460 H.H. Wang et al. / Reasoning support for Semantic Web ontology family languages using Alloy

3.1.3. Property restrictions
The allValuesFrom construct states that all instances of the class c1 that have the values of property P all belong

to the class c2.

fun allValuesFrom
(p: Property, c1: Class, c2: Class)
{all r1, r2: Resource |

r1 in c1.instances =>
r2 in r1.(p.sub_val) =>

r2 in c2.instances}

A hasValue function states that all instances of the class c1 have the values of property P as resource r. The r
could be an individual object or a datatype value.

fun hasValue (p: Property, c1: Class, r: Resource)
{all r1: Resource | r1 in c1.instances => r1.(p.sub_val) = r}

A MaxCardinality function states that all instances of the class c1 have at most N distinct values for the property
P. Alloy supports some integer operations.

fun maxCardinality (p: Property, c1: Class, N: Int)
{all r1: Resource| r1 in c1.instances <=>

r1.(p.sub_val) <= int N }

3.2. Boolean combination of class expressions

The intersectionOf function defines a relation between a class c1 and a list of classes clist. The List is defined in
the Alloy library. The class c1 consists of exactly all the objects that are common to all class expressions from the
list clist.

fun intersectionOf (clist: List, c1: Class)
{all r: Resource| r in c1.instances <=>

all ca: clist.*next.val | r in ca.instances}

The unionOf function defines a relation between a class c1 and a list of classes clist. The class c1 consists of
exactly all the objects that belong to at least one of the class expressions from the list clist. It is analogous to logical
disjunction;

fun unionOf (clist: List, c1: Class)
{all r: Resource| r in c1.instances <=>

some ca: clist.*next.val| r in ca.instances}

3.2.1. Property elements
The subPropertyOf construct states that psub is a sub-property of the property psup. This means that every pair

(subject,value) that is in psup is also in the psub.

fun subPropertyOf (psup, psub: Property)
{psub.sub_val in psup.sub_val}

The domain function asserts that the property P only applies to instances of the class c.

fun domain (p: Property, c: Class)
{(p.sub_val).Resource in c.instances}

The inverseOf function shows two properties are inverse.

fun inverseOf (p1, p2: Property) {p1.sub_val = ˜(p2.sub_val)}

All other OWL constructs can be defined in a similar manner. Please refer to the complete OWL Alloy semantics
online.

H.H. Wang et al. / Reasoning support for Semantic Web ontology family languages using Alloy 461

Table 2
Alloy semantic for the atoms

Atom Alloy representation

C(x) ‘x in C.instances’
P (x, y) ‘(x->y) in P.sub val’
sameAs(x, y) ‘x = y’
differentFrom(x, y) ‘x! = y’

Table 3
Alloy Semantic for SWRL-FOL

SWRL-FOL formula Alloy semantics

and(C1 . . . Cn) fact {C1 && . . . && Cn }
or(C1 . . . Cn) fact {C1 || . . . || Cn}
neg(C) fact {not C}
implies(C1 C2) fact {C1 => C2}
equivalent(C1 C2) fact {C1 <=> C2}
forall(V1 . . . Vn C) fact {all V1, . . . , Vn: Resource | C}
exists(V1 . . . Vn C) fact {some V1, . . . , Vn: Resource | C}

3.3. Alloy semantic for SWRL extension

SWRL extends OWL by adding the rule axioms. A rule axiom consists of an antecedent and a consequent, each
of which consists of a set of atoms. Atoms can be of the following forms, where C is an OWL description, P is an
OWL property, and x,y are either variables, OWL individuals or OWL data values.

– C(x): Informally, it holds if x is an instance of the class description C.
– P(x,y): It holds if x is related to y by property P.
– sameAs(x,y): It holds if x is interpreted as the same object as y.
– differentFrom(x,y): It holds if x and y are interpreted as different objects.

Table 2 shows how the above atoms can be modelled in Alloy.
As mentioned before, a rule means that if the antecedent holds, the consequent must also hold. It can be modelled

as a universally quantified fact in the form of implication. For example the following rule axiom (where a 0 . . . an

are atoms)

Implies(Antecedent(a1, . . . , an) Consequent(a0))

will be modelled as:

fact { a_1 && ... && a_n => a_0 }

3.4. Alloy semantic for SWRL-FOL extension

SWRL-FOL extends SWRL with assertion axioms that contain first-order formulas. Table 3 presents the Alloy
semantic for different SWRL-FOL formulas.

The above defines the basic transformation guidelines from the SWRL-FOL into their corresponding Alloy
semantics. We will demonstrate the actual transformation process in the following section.

4. OWL/SWRL/SWRL-FOL to Alloy transformation

The previous section presented Alloy semantics for OWL, SWRL and SWRL-FOL, which forms the foundation
for the reasoning environment. To be able to perform the automatic reasoning task using Alloy Analyzer, a Java
program has been developed for the automatic transformation from an OWL/SWRL/SWRL-FOL knowledge file (in
XML format) into its corresponding Alloy model.

A set of translation rules are developed in the following presentation.

462 H.H. Wang et al. / Reasoning support for Semantic Web ontology family languages using Alloy

4.1. OWL class translation

C ∈ OWL class
static disj sig C extends Class{}

An OWL class C will be transferred into a scalar C, constrained to be an element of the signature Class.

4.2. OWL property translation

P ∈ OWL property
static disj sig P extends Property{}

An OWL property p will be translated into a scalar P, constrained to be an element of the signature Property.

4.3. Instance translation

x ∈ instancesof[Y]
static disj sig x extends Resource{} fact{ x in Y .instances}

An OWL individual x of class Y will be translated into a scalar x, constrained to be an element of the signature
Resource. x is a subset of Y.instances.

4.4. Other OWL translations

Other OWL constructs can be easily translated into the Alloy functions defined in the previous section. For
example the following rule shows how to translate the OWL subclass relation into Alloy code.

subclass[X, Y], X ∈ OWL class, Y ∈ OWL class
fact {subClassOf(X, Y)}

4.5. SWRL and SWRL-FOL translation

The transformation of SWRL rules follows the semantics defined in Table 2. The variable x and y will be bound
by some universal quantifiers. The SWRL rule can be modelled as a universally quantified fact in the form of
implication.

Similarly, the transformation of SWRL-FOL follows the semantics presented in Table 3. More translation rules
can be found from [19] and the web site http://nt-appn.comp.nus.edu.sg/fm/alloy/introduction.htm.

4.6. Translation example

The translation rules have been implemented in a Java program. The following OWL ontology defines two classes
animal and plant which are disjoint. The eats and eaten by are two properties, which are inverse to each other.
The domain of eats is animal. The carnivore is a subclass of animal which can only eat animals. The ontology is
given in a syntax similar to the “DL syntax” given in [10].

Class (animal)
Class (plant)
DisjointClasses(animal plant)
ObjectProperty(eaten by)
ObjectProperty(eats

domain (animal))
InverseProperties(eats eaten by)
Class (carnivore complete animal

restriction(eat allValuesFrom animal))
Class (herbivore complete animal

restriction(eat allValuesFrom plant))

H.H. Wang et al. / Reasoning support for Semantic Web ontology family languages using Alloy 463

This fragment ontology can be transformed by the tool into the following Alloy segment.

module animal
/*import the defined library module */
open SWRL-FOL
/* plant and animal are translated to two class instances. The key
word static is used to a signature containing exactly one element.*/

static disj sig plant, animal extends Class {}

/* The disjoin element was translated into fact in Alloy */
fact {disjointWith(plant, animal)}

/* eats, eaten_by are translated to two property instances */
static disj sig eats, eaten_by extends Property {}
fact {inverseOf(eats, eaten_by)}
fact {domain(eats, animal)}

static disj sig carnivore extends Class{}
fact{subClass(animal, carnivore)}
fact{allValuesFrom(eats, carnivore, animal)}
static disj sig herbivore extends Class{}
fact{subClass(animal, herbivore)}
fact{allValuesFrom(eats, herbivore, plant)}

The transformation of SWRL rules follows the semantics defined in Table 2. The variable x and y will be bound
by some universal quantifiers. The SWRL rule can be modelled as a universally quantified fact in the form of
implication. For example the following rule axiom

hasParent(?x1,?x2) ∧ hasBrother(?x2,?x3) ⇒
hasUncle(?x1,?x3)

will be modelled as:

fact {all x1, x2, x3: Resource |
(x1->x2) in hasParent.sub_val &&
(x2->x3) in hasBrother.sub_val =>

(x1->x3) in hasUncle.sub_val}

The transformation of SWRL-FOL follows the semantic presented in Table 3. After transforming the ontologties
to the Alloy model, the consistency of the OWL/SWRL/SWRL-FOL ontology can be checked and some reasoning
can be done readily.

5. Reasoning OWL/SWRL/SWRL-FOL ontology with Alloy Analyzer

Reasoning is one of the key tasks for Semantic Web applications. It can be useful at many stages during the
design, verification, maintenance and deployment of web ontology. In this section, we show that different Semantic
Web reasoning tasks can be accomplished by using the Alloy Analyzer.

5.1. Standard OWL reasoning tasks

There are two different levels of checking and reasoning in OWL, the conceptual level and the instance level.
At the conceptual level, the class properties and subclass relationships can be reasoned. At the instance level, the
membership checking (instantiation) and instance property reasoning can be done.

464 H.H. Wang et al. / Reasoning support for Semantic Web ontology family languages using Alloy

Fig. 1. Inconsistence example.

5.1.1. Class property checking
It is essential that the ontology shared between autonomous software agents is conceptually consistent. Reasoning

with inconsistent ontologies may lead to erroneous conclusions. An OWL class is deemed to be unsatisfiable
(inconsistent) if, because of its description, it cannot possibly have any instances. This section gives some examples
of inconsistent ontology that can arise in ontology development, and demonstrate how these inconsistencies can be
detected by the Alloy Analyzer. For example, another class tastyPlant which is a subclass of plant and eaten by
the carnivore is defined. There is an inconsistency since by the ontology definition carnivores can only eat animals.
Animals and plants are disjoint.

Class (tastyPlant partial plant
restriction(eat by allValuesFrom(carnivore)))

We translate the ontology into an Alloy program, add some facts to remove the trivial models (like every type
is empty set) and load the program into the Alloy Analyzer. The Alloy Analyzer will automatically check the
consistency. AA attempts to find a model – a binding of the variables to values – that makes for the formulas (the
formulas translated from the OWL model) true. If no such model can be build, it means that the model has been
over constrained, i.e, there are some contradiction (inconsistency) in the model.

In the example, it can be concluded that there is an inconsistency in the animal ontology since Alloy can not find
any solutions satisfying all facts within the scope (Fig. 1). Note that when Alloy can not find a solution, it may be
due to the scope being too small. By picking a large enough scope, “no solution found’ is very likely to mean that an
inconsistency has occurred. AA tried to constructs a model which satisfied all asserted axioms. If no such a model
could be build (“no solution found”), then there are some contradicted axioms in the model.

Besides discovering the existence of an inconsistency in ontology, tracing where the inconsistency arises from is
also crucial for a reasoning tool to be practical. The existing OWL reasoners like FaCT and RACER can only flag
the inconsistent class without providing any explanation. The debugging process is left to users. Without any tool
support, identifying the conflicting knowledge could be frustrating. One possible systematic technique for finding
the causes of inconsistent ontology is to manually remove individual knowledge information until the culprit is
identified. This task can be lengthy and dangerous.

In Alloy, the “unsatisfied core” [16] functionality of recent SAT solvers was utilized and it supports core
extraction, a new analysis technique that helps to discover over-constraint in declarative models. This functionality
can provide some assistance for the user to trace the inconsistency.

H.H. Wang et al. / Reasoning support for Semantic Web ontology family languages using Alloy 465

Fig. 2. Tracing the inconsistency.

Extracting the unsatisfiable core of a CNF formula, that is a subset of the clause set sufficient to cause a
contradiction, has been developed recently by satisfiability solvers [16]. In the latest version of Alloy, the declarative
model analysis has been cast as satisfiability instances and the unsatisfiable core has been mapped back onto the
model. In other words, a user can identify the parts of model responsible for producing the unsatisfiable CNF core.
Those parts, by themselves, suffice to produce an over-constraint, and their identification can help the user find the
over-constraint. Using this functionality, the portions of the ontology which contradict each other can be traced
readily. In the animal example, suppose a new class named funnything was defined to be a subclass of both animal
and plant classes. It is easy to see that there is an inconsistency since the class animal and plant are disjoint. Alloy
can automatically identify a set of knowledge which makes the ontology unsatisfiable (Fig. 2). The unsatisfiability
maybe due to the fact that funnything is a subclass of animal, funnything is a subclass of plant or animal and plant
are disjoint classes, and so on.

5.1.2. Subsumption reasoning
The task of subsumption reasoning is to infer an OWL class is the subclass of another OWL class. That is for

every instances of one OWL class, it is an instance of another OWL class as well. Using AA, the subsumption
relationship between classes can be checked automatically. The relationship between the fish, shark and dolphin has
been used as an example to demonstrate this kind of reasoning task. In the animal ontology a property breathe by
is defined. The fish is a subclass of the animal which breathe by the gill.

ObjectProperty(breathe by)
Class (gill)
Class (fish complete animal

restriction(breathe by allValuesFrom gill))

Since the purpose of this paper is to demonstrate ideas, the ontology has been kept simple. In reality there are
some animals such as frogs and toads, which can respire by use of gills when they are young and by lungs when
they reach adult stage. Also cases like that the animals which respire by use of the pharyngeal lining or skin, like
newborn Julia Creek dunnarts have not been considered. A class shark, a subclass of carnivore which breathe by
the gill, has also been defined.

466 H.H. Wang et al. / Reasoning support for Semantic Web ontology family languages using Alloy

Fig. 3. Subsumption example.

Class (shark)
Class (fish complete animal

restriction(breathe by allValuesFrom gill))

Several of the classes were upgraded to be defined when their definitions constituted both necessary and sufficient
conditions for class membership, e.g., an animal is a fish if and only if it breathes by the gill. Additional subclass
relationships can be inferred, i.e., the shark is also a subclass of fish. We transfer this ontology into an Alloy
program and make an assertion that the shark is a subclass of fish. The Alloy analyzer will check the correctness
of this assertion automatically (Fig. 3). The Alloy Analyzer checks whether an assertion holds by trying to find a
counterexample. Note that “no solution" means no counterexample found, in this case, it strongly suggests that the
assertion is sound. To make it more interesting, classes dolphin and lung are defined. Dolphins are a kind of animal
which breathe by lungs. The classes gill and lung are disjoint.

Class (lung)
DisjointClasses(lung gill)
Class (dolphin complete animal

restriction(breathe by allValuesFrom lung))

Suppose an assertion that the dolphin is a kind of fish is made, the Alloy Analyzer will refute it since some
counterexample was found (Fig. 4). If the fact that dolphin is a fish is added in the module, the AA will conclude
that an inconsistency has arisen.

5.1.3. Debugging uncompleted ontology
Information in OWL is gathered into ontologies, which can then be from different parties and stored as documents

in the World Wide Web. Some knowledge may be missing in the ontology. Reasoning about uncompleted ontologies
may lead to some unexpected results. We refer to the situation that because of some unavailable knowledges, the
reasoners had inferred some unexpected knowledges which is different with natural facts. We need some tools to
help the users to trace what is the missed knowledge causing the untrue conclusion that has been drew. AA checks

H.H. Wang et al. / Reasoning support for Semantic Web ontology family languages using Alloy 467

Fig. 4. Dolphin is not a fish.

the assertion by generating counterexamples – structures or behaviors for which an expected property does not hold;
from a counterexample, it is usually not too hard to figure out what is wrong. Looking at the counterexamples
may provide some hints to the user on why the expected result does not hold and what knowledge is missing. For
example, to show the OWL class dolphin and shark are disjoint, Intuitively, this is a correct statement since dolphin
breathes by the gill while shark breathes by the lung. Gill and lung are disjoint. When the following assertion is
added to Alloy, surprisingly AA concludes it is wrong.

assert disjointDS
{disjointWith(shark, dolphin)}

By looking at the counterexamples graph, it has been noticed that all the counterexamples (an animal which is
both a shark and a dolphin) generated by AA have empty values for the property breath by. In fact this unexpected
result comes from the semantic of allValuesFrom construct in OWL. An OWL semantic can not deduce from
a allValuesFrom restriction alone that there actually is at least one value for the property. An allValuesFrom
restriction for a property is trivially satisfied for an instance that has no value for that property at all. The
allValuesFrom restriction demands that all values of the property belong to a class, and if no such values exist, the
restriction is trivially true. That is the reason why AA finds out the common instance, which does not breathe at all,
for the class dolphin and class shark. To remove this expected result, extra knowledge needs to be added, e.g., an
animal must breathe by something.

5.1.4. Instantiation
Instantiation is one of the main contributions for reasoning over OWL ontology using Alloy. Currently some

successful OWL reasoners like FaCT are designed for description logic (DL) T-box reasoning, which lacks support
for instances. In Alloy every expression denotes relations. The scalars will be represented by singleton unary
relations – that is, relations with one column and one row. The instance level reasoning can be supported readily in
Alloy.

Instantiation is a reasoning task which tries to check if an individual is an instance of a class. For example, two
resources aFeralAnimal and aMeekAminal are defined as the instances of class animal. aGill is an instance of
class gill. aFeralAnimal eats aMeekAnimal and breathes by aGill. People may want to check if aFeralAnimal is
a carnivore and a fish.

468 H.H. Wang et al. / Reasoning support for Semantic Web ontology family languages using Alloy

Individual(aMeekAnimal type(animal))
Individual(aGill type(gill))
Individual(aFeralAnimal type(animal) value(breathe by aGill)

value(eats aMeekAnimal))

We translate the ontology into an Alloy program and make an assertion as following:

static disj sig aFeralAnimal, aMeekAnimal extends Resource{}
static disj sig aGill extends Resource{}
fact {aFeralAnimal in animal.instances &&

aMeekAnimal in animal.instances}
fact {aGill in gill.instances}
fact {(aFeralAnimal->aMeekAnimal) in eats.sub_val}
fact {(aFeralAnimal->aGill) in breathe_by.sub_val}
assert isFishCarnivore

{(aFeralAnimal in fish.instances)
&& (aFeralAnimal in carnivore.instances)}

check isFishCarnivore for 15

AA concludes that this assertion is correct.

5.1.5. Instance property reasoning
Instance property reasoning (often regarded as knowledge querying) is important in Semantic Web applications. It

is a task to query some properties with individuals. Since one of the promising strengths of Semantic Web technology
is that it gives the agents the capability to do more accurate and more meaningful searches. The agent can answer
some questions for which the answers are not explicitly stored in the knowledge base.

For example, the emerge early and emerge later are two properties, which are inverse to each other. Animal A
emerges earlier than B if the species of A emerge earlier than the species of B on the earth. emerge early is transitive.
Three animal instances firstDinosaur, firstApe and firstHuman are defined. firstDinosaur emerge early than
firstApe and firstApe emerge early than firstHuman. One possible question people may ask is whether firstHuman
is emerge later than firstDinosaur. With the assistance of Alloy reasoner, such questions can be answered.

fact{TransitiveProperty(emerge_early)}
static disj sig firstDinosaur, firstApe,

firstHuman extends Resource{}
fact { firstDinosaur in animal.instances

&& firstApe in animal.instances
&& firstHuman in animal.instances}

fact {(firstDinosaur->firstApe) in emerge_early.sub_val}
fact {(firstApe->firstHuman) in emerge_early.sub_val}
assert hum {(firstHuman->firstDinosaur) in emerge_later.sub_val}
check hum for 14

AA concludes that this assertion is correct.

5.2. SWRL/SWRL-FOL related reasoning

Besides of being capable to support the standard reasoning tasks on OWL, such as performing consistency
checking, subsumption and instantiation reasoning automatically, moreover, Alloy can also check more complicated
ontology properties expressed by the newly extended languages such as SWRL/SWRL-FOL. In this section, we
demonstrate how Alloy can be used to reasoning the SWRL-FOL ontologies.

A family relationship web ontology example is used here to illustrate the reasoning process. The following
fragment of ontology first defines two OWL classes, Person and twinParent that represents the set of per-

H.H. Wang et al. / Reasoning support for Semantic Web ontology family languages using Alloy 469

son who are the parents of twins, and three OWL object properties, i.e., hasChild, brotherSister and
sameBirthTime. Secondly, the ontology class wealthyParent introduces the set of parents who have a child
who is a millionnaire. Thirdly, two SWRL-FOL axiomatic assertions are defined to provide inference for the
brotherSister and twinParent relationships. Lastly, the ontology class wealthyTwinParent is defined
as a parent being both wealthyParent and twinParent.

Class (Person partial)
Class (twinParent partial Person)
Class (millionnaire partial Person)
ObjectProperty(hasChild)
ObjectProperty(brotherSister)
ObjectProperty(sameBirthTime)
Class (wealthyParent complete Person

restriction(hasChild someValuesFrom(millionnaire)))
Assertion(forall I-variable(x1) I-variable(x2)

(equivalent (exists (I-variable(x3)
(and(hasChild(x3,x1) hasChild(x3,x2)
differentFrom(x1,x2))))

(brotherSister(x1, x2)))))
Assertion(forall I-variable(x1)

(equivalent (exists (I-variable(x2)
(exists (I-variable(x3)
(and(brotherSister(x2, x3) sameBirthTime(x2, x3)
hasChild(x1, x2))))))

(twinParent(x1)))))
Class (wealthyTwinParent complete wealthyParent twinParent)

From the above, it is noticed that two SWRL-FOL axioms were asserted. The first assertion shows that if two
distinct people have a same parent, then they are brothers or sisters. The second assertion in the above ontology
shows that if two people are brothers or sisters, and they have the same birth time, then their parents are twin-parents.
Furthermore, suppose some instances of the above ontology are asserted into the knowledge base as follows.

Individual(Tom type(person)
type(complementOf(wealthyTwinParent))
value(hasChild Jerry)
value(hasChild Jim))

Individual(Jerry type(millionnaire) value(sameBirthTime Jim))
Individual(Jim type(person))
DisjointWith(Jim Jerry)

We transform the above ontology (in XML format) into its Alloy model 2 using our transformation program.
Similar as reasoning OWL, the Alloy Analyzer can automatically perform different reasoning tasks for

SWRL/SWRL-FOL. For example, it can detect that there is an inconsistency in the above ontology example, as the
Alloy Analyzer can not find any ontology instances (solutions) satisfying all facts within the scope.

In this family ontology example, the inconsistency comes from the fact that Tom has been inferred as an instance of
both the class wealthyParent and the class twinParent. However, there is a piece of knowledge in the model
that explicitly indicates that Tom is not an instance of the wealthyTwinParent class, which contradicts to the
inferred conclusion. As discussed before, with the assistance of Alloy Analyzer’s “unsatisfiable core” functionality,
the debugging process of identifying the source of inconsistency in the ontology becomes much more handy to the
users.

2Due to the space limit, the complete Alloy model of the above family relationship ontology example can be found at http://www.cs.man.ac.
uk/˜hwang/FAMILY.als.

470 H.H. Wang et al. / Reasoning support for Semantic Web ontology family languages using Alloy

5.3. Discussion

The correctness of the translation has been verified by many different test cases. A same problem has been sent
to existing SW tools, theorem provers and Alloy; the same conclusions are drawn. Furthermore, the OWL has well
defined semantics in first order logic and Alloy is also based on the first-order logic. The soundness of the translation
can also be proved easily. In the early work [13], it shows that the consistence between the Alloy Semantic for the
Semantic Web languages and the original OWL semantic (Alloy has been regarded as a subset of Z). Formal proving
this consistence is beyond the scope of this paper.

6. Related works and conclusion

This paper presented a reasoning environment for the Semantic Web ontology family languages (OWL/SWRL/
SWRL-FOL). There are four main contributions of the paper. Firstly, it defines a semantic encoding for the
OWL/SWRL/SWRL-FOL constructs in the Alloy first-order language. Secondly, it presents a systematic transforma-
tion tool from the OWL/SWRL/SWRL-FOL ontology (in XML) into its corresponding Alloy model. Thirdly, with
the assistance of Alloy Analyzer, it has been demonstrated that the consistency of an ontology model can be checked
automatically and different kinds of reasoning tasks can be supported. Our approach complements with existing
OWL reasoners by providing full automatic debugging aids and instance level reasoning. Furthermore, SWRL-FOL
is a newly proposed extension to OWL, and to our best of knowledge, so far there is no existing reasoning support
for SWRL-FOL prior to this work. Finally, the paper also demonstrates a light-weight formal methods approach to
the web ontology domain. Alloy was chosen over other reasoning tools because it is based on first-order relational
logic and relations between Web resources are the focus issues in the Semantic Web context. Furthermore, Alloy
has an impressive automatic tool support, the Alloy Analyzer, where automated generation of finite set of ontology
instances, creation of counter-examples on assertions, and identifying the source of inconsistencies in the model are
made available. Usual ontology tools such as FACT and RASER can detect errors in an ontology model, but may
not be able to point out where the error is. Alloy approach provides the ontology “surgery” like capability to pin
point the errors in the model with counter-examples or contradictory constraints. This is a highly complementary
approach to Semantic Web reasoning. The approach has been successfully applied to a recent military ontology [5].

It has indeed been realized that there is a limitation on the scalability of the current Alloy Analyzer in reasoning
large ontology models. The approach presented here can only deal with the ontologies with relatively small size.
Based on the same idea, authors also attempt to use the theorem prover, i.e. Z/EVES, to reason the SW ontology [4].
The theorem prover can handle large sized ontologies, but it requires the user’s interaction. Here authors do not claim
that Alloy is the only and best formal tool to reason over SW ontologies, but authors do claim that it is an effective
attempt with certain novel and irreplaceable advantages like full automation and promising debugging assistance.
In fact, it is unlikely in the near future that both expressive and automatic tool will be developed. Currently, it is
desirable if the strength from different ontology reasoning tools can be integrated. [3] presented the methodology
of checking ontologies using tools RACER, Z/EVES and AA in conjunction. This approach has been successfully
applied for reasoning a real life military ontology.

In the future, it has been planned to integrate the current Alloy Analyzer reasoning facilities into our
OWL/SWRL/SWRL-FOL transformation tool by connecting it to the Alloy API interfaces. In addition, we also
plan to extend the transformation tool with the editing and designing functions for the ontology models, so that
it will become an integrated development environment for the web ontology modelling, which includes design,
transformation and reasoning functions in one coherent tool support.

Acknowledgements

This work was supported in part by the HyOntUse Project (GR/S44686) funded by the UK Engineering and
Physical Science Research Council.

H.H. Wang et al. / Reasoning support for Semantic Web ontology family languages using Alloy 471

References

[1] T. Berners-Lee, J. Hendler and O. Lassila, The Semantic Web, Scientific American, May 2001.
[2] D. Brickley and R.V. Guha, (eds), Resource description framework (rdf) schema specification 1.0. http://www.w3.org/TR/2000/CR-rdf-

schema-20000327/, March, 2000.
[3] J.S. Dong, C.H. Lee, Y.F. Li and H. Wang, A combined approach to checking web ontologies, in The 13th ACM International World Wide

Web Conference (WWW’04), ACM Press, May 2004, 714–722.
[4] J.S. Dong, C.H. Lee, Y.F. Li and H. Wang, Verifying DAML+OIL and Beyond in Z/EVES, in Proc. The 26th International Conference on

Software Engineering (ICSE’04), Edinburgh, Scotland, May 2004, 201–210.
[5] J.S. Dong, J. Sun, H. Wang, C.H. Lee and H.B. Lee, Analysing Web Ontology in Alloy: A Military Case Study, in Proc. 15th International

Conference on Software Engineering and Knowledge Engineering: SEKE’2003, San Francisco, USA, July 2003, 542–546.
[6] V. Haarslev and R. Möller, RACER system description, Lecture Notes in Computer Science 2083 (2001), 701–705.
[7] V. Haarslev and R. Möller, Practical Reasoning in Racer with a Concrete Domain for Linear Inequations, in: Proceedings of the International

Workshop on Description Logics (DL-2002), I. Horrocks and S. Tessaris, eds, Toulouse, France, April 2002, CEUR-WS.
[8] I. Horrocks, The FaCT system, Tableaux’98, Lecture Notes in Computer Science 1397 (1998), 307–312.
[9] I. Horrocks, P.F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof and M. Dean, SWRL: A Semantic Web Rule Language Combining OWL

and RuleML. Available: http://www.daml.org/2003/11/swrl/, 2003.
[10] I. Horrocks, P.F. Patel-Schneider and F. van Harmelen, From SHIQ and RDF to OWL: The making of a web ontology language, J of

Web Semantics 1(1) (2003), 7–26.
[11] D. Jackson, Micromodels of software: Lightweight modelling and analysis with Alloy. Available: http://sdg.lcs.mit.edu/alloy/book.pdf,

2002.
[12] O. Lassila and R.R. Swick, (eds), Resource description framework (rdf) model and syntax specification. http://www.w3.org/TR/1999/REC-

rdf-syntax-19990222/, Feb, 1999.
[13] D. Lucanu, Y.F. Li and J.S. Dong, Institution Morphisms for Relating OWL and Z, in The 17th International Conference on Software

Engineering and Knowledge Engineering (SEKE’05), Taipei, Taiwan, July 2005.
[14] D.L. McGuinness and F. van Harmelen, OWL Web Ontology Language Overview. Available: http://www.w3c.org/TR/owl-features/, 2004.
[15] P.F. Patel-Schneider, P. Hayes, I. Horrocks and F. Harmelen, A Proposal for a SWRL Extension to First-Order Logic. Available:

http://www.daml.org/2003/11/swrl/, 2004.
[16] I. Shlyakhter, R. Seater, D. Jackson, M. Sridharan and M. Taghdiri, Debugging Overconstrained Declarative Models Using Unsatisfiable

Cores, in Proc. 18th IEEE International Conference on Automated Software Engineering (ASE 2003), Montreal, Quebec, Canada, October
2004, 94–105.

[17] M. Sintek and S. Decker, TRIPLE – A query, inference, and transformation language for the Semantic Web, in: The Semantic Web — ISWC
2002. Proceedings of the First International Semantic Web Conference, volume 2348 of Lect. Notes in Comput. Sci., I. Horrocks and J.
Hendler, eds, Springer-Verlag, Sardinia, Italy, June 2002, 364–378.

[18] T. Berners-Lee, cwm – a general purpose data processor for the Semantic Web. http://www.w3.org/2000/10/swap/doc/cwm, 2004.
[19] H. Wang, J.S. Dong and J. Sun, Reasoning Support for SWRL-FOL Using Alloy, in 17th International Conference on Software Engineering

and Knowledge Engineering (SEKE’05), Taipei, Taiwan, July 2005.

Authors’ Bios

Hai H. Wang obtained Bachelor (1st class honors) and PhD degrees from the School of Computing, National
University of Singapore (NUS) in 2001 and 2004. He worked as a Research Assistant in the School of Computing at
NUS from 2001–2003. Since 2004 he has been in the School of Computer Science at The University of Manchester
where he worked as a Research Associate. His main interests include Software Engineering, Formal Methods
Ontology and Semantic Web.

Jin-Song Dong received Bachelor (1st class honors) and PhD degrees in Computing from University of Queensland
in 1992 and 1996. From 1995–1998, he was a Research Scientist at the Commonwealth Scientific and Industrial
Research Organisation in Australia. Since 1998 he has been in the School of Computing at the National University
of Singapore (NUS) where he is currently Associate Professor and Assistant Dean. He is a Steering Committee
member of the International Conference on Formal Engineering Methods (ICFEM) and the Asia Pacific Software
Engineering Conference (APSEC) series.

Jing Sun is a lecturer at the Department of Computer Science, The University of Auckland, New Zealand. He
obtained his PhD degree from the Department of Computer Science, National University of Singapore in March
2004. Dr. Sun’s research interests include Software Engineering, Formal Methods and Semantic Web.

Jun Sun received the BSc degree from the School of Computing, National University of Singapore (NUS) in 2002.
Since then he has been pursuing the PhD degree in software engineering from NUS. As of July 206, he is a research
fellow in the department of Computer Science at NUS.

