Computer-aided dispatch system family architecture
and verification: an integrated formal approach
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Abstract: Software architecture is an important level of description for software systems. Formal
modelling techniques can be used to define and verify software architectures precisely. An
integrated formal approach to the architecture modelling and verification of a computer-aided
dispatch (CAD) system family, is presented. An incremental three-layer model, that is, architecture
style layer, generic system layer and customised system layer, is presented to capture the design of
the CAD system family. Critical CAD system properties in the architecture models are formally
verified by using the state and event-based proof techniques of the underlying specification
language. In summary, it is demonstrated that integrated formal techniques could be a good
candidate for modelling and verifying various levels of descriptions of software architectures.

1 Introduction

Software architecture is an important level of description
for software systems [1]. It represents the high-level struc-
ture of a system, which comprises the definitions of soft-
ware components involved, the external visible properties
of those components and the communications (relationships
and constraints) among the components [2]. The current
practice of software architecture mainly relies on diagram-
matic and textural descriptions. Several architectural
description languages (ADL) have been proposed, such as
Darwin [3] and Rapide [4]. These ADLs offer approaches
to describe software architectures explicitly as hierarchical
structures. Formal modelling techniques have also been
applied to the software architecture descriptions. The
well-defined semantics and syntax make them suitable for
precisely specifying and formally verifying software
architecture designs. Some researchers [5, 6] have used Z
to formalise the computational data/state aspects of soft-
ware architectures. Allen and Garlan [7] have also applied
a CSP-like notation (Wright) [8] to formalise the interactive
communication aspects of software architectures. Both
approaches are beneficial and provide some formal
foundations to software architecture modelling. We
believe that the recent advances in the integrated formal
methods [9, 10] may provide more promising solutions to
the problem.

In this paper, we demonstrate the approach of using the
integrated formal notation, that is, Timed Communicating
Object-Z (TCOZ) [11], to capture the software architecture
modelling and verification of a computer-aided dispatch
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(CAD) system family. TCOZ builds on the strengths of
object-Z [12, 13] in modelling complex data and state
with the strengths of TCSP [14, 15] in modelling process
control and real-time interactions. It is capable of capturing
both the data and computation states of the components, as
well as the interactive communication aspects among the
components. The class construct in TCOZ is an ideal encap-
sulation mechanism for composing and extending architec-
ture components. The synchronous and asynchronous
communication interfaces in TCOZ are well suited for
capturing various interactions between the components.
The network topology of TCOZ is a good mechanism to
depict the architectural configurations of a system.
Furthermore, TCOZ preserves a large part of both the
syntax and semantics of the two blending notations,
Object-Z and TCSP, hence it can potentially benefit from
existing reasoning systems of the two notations. With new
additional proof rules for the TCOZ constructs, critical
system properties specified in TCOZ architecture models
can be formally verified by using state and event-based
proof techniques [16]. In this paper, we also demonstrate
the formal reasonings towards the verification of a CAD
system architecture model.

CAD system is a generic family system that can provide
automatic dispatching of the requested tasks within their
critical timing requirements. In our research project,
‘Software Reuse Framework for Reliable Mission-Critical
Systems’ one goal was to develop the reuse-based design
and development methods of reliable CAD systems
(Supported by Singapore—Ontario Joint Research
Programme.). We have found that high-level reuse can be
best achieved through software architecture models. An
effective approach to reuse requires a generic CAD archi-
tecture that defines the overall structure and a common
base of customisable software assets to be reused across
CAD systems. In this paper, we apply TCOZ to represent
an incremental three-layered architecture model of the
CAD system family [17]. These three layers include the
following:

e Style: an architectural style for the CAD system family
describes the basic elements and communication patterns
in the system.
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e Generalisation: a generic CAD system architecture
model is built as a refinement of the style model and
specifies a complete architecture description of the
system. Critical system properties of the generic layer can
be formulated and proved from the architecture
specifications.

e Customisation: several specific CAD system architecture
models can be derived from the generic model.

The main benefits of having a three-layered approach are
reusability, separation of concerns and reliability [18]. The
upper layers describe the common patterns among the
family systems, that is, generic patterns of components
and their interactions, so that high-level relationships
among the components could be understood. The lower
layers refine the specific requirements within the new
domain, that is, specific topology of components and com-
munications, so that new systems can be built as variations
and extensions on the existing models. This allows us to
describe a system architecture as a collection of reusable
architectural elements and their communications. Formal
specifications of architecture models permit us to reason
about important properties at each desired level, which
further leads to reliable system implementations based on
the architecture designs.

2 TCOZ features

TCOZ [11] is an integration and extension of the Object-Z
[12, 13] and the TCSP [15] formal modelling notations,
for the most part preserving them as proper sub-languages
of the blended notation. The essence of this blending
is the identification of Object-Z operation specification
schemas with terminating CSP processes. Thus operation
schemas and CSP processes occupy the same syntactic
and semantic category. The primary specification
structuring device in TCOZ is the Object-Z class mechan-
ism. In this section, we briefly consider some architecture
description aspects of the TCOZ language. A detailed
introduction to TCOZ and its TCSP/Object-Z features
can be found elsewhere [11]. The formal semantics of
TCOZ is also documented in the work of Mahony and
Dong [19].

2.1 Channels, sensors and actuators

CSP channels are given an independent, first class role in
TCOZ. In order to support the role of CSP channels, the
state schema convention is extended to allow the declara-
tion of communication channels. If ¢ is to be used as a com-
munication channel by any of the operations of a class, then
it must be declared in the state schema to be of type Chan.
Channels are type heterogeneous and may carry communi-
cations of any type. Contrary to the conventions adopted for
internal state attributes, channels are viewed as shared
(global) rather than as encapsulated entities. This is an
essential consequence of their role as communication inter-
faces between objects. The introduction of channels to
TCOZ reduces the need to reference other classes in class
definitions, thereby enhancing the modularity of system
specifications.

Complementary to the synchronising CSP channel
mechanism, TCOZ also adopts a non-synchronising
shared variable mechanism. A declaration of the form s: X
sensor provides a channel-like interface for using the
shared variable s as an input. A declaration of the form s:
X actuator provides a local-variable-like interface for
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using the shared variable s as an output. Sensors and actua-
tors may appear either at the system boundary (usually
describing how global analogue quantities are sampled
from, or generated by the digital subsystem) or else
within the system (providing a convenient mechanism for
describing local communications that do not require
synchronisation). The shift from closed to open systems
necessitates close attention to issues of control, an area
that both Z and CSP are weak [20]. We believe that
TCOZ with the actuator and sensor can be a good candidate
for specifying open control systems. Mahony and Dong [21]
presented a detailed discussion on TCOZ sensor and
actuators.

2.2 Network topologies

The syntactic structure of the CSP synchronisation
operator is more suitable in the case of pipeline-like com-
munication topologies. When expressing more complex
communication topologies, it generally results in unaccep-
tably complicated expressions. In TCOZ, a graph-based
approach is adopted to represent the network topology
[11]. For example, consider that processes 4 and B commu-
nicate privately through the interface ab, processes 4 and C
communicate privately through the interface ac and
processes B and C communicate privately through the
interface bc. This network topology of 4, B and C may be
described by

H(A BB 00 ES g

Other forms of lax usage allow network connections with
common nodes to be run together, for example

H(A Lopdl oy

and multiple channels above the arrow, for example if
processes D and F communicate privately through the
channel/sensor-actuator df; and df, then

df, ,d
H(D{‘_éF)

2.3 TCOZ inference rules

TCOZ preserves a large part of both the syntax and
semantics of Object-Z and TCSP, hence can potentially
benefit from existing reasoning systems of the individual
notations. With new additional inference rules for the
TCOZ constructs, a proof system for TCOZ [16] can be
established to reason about both state and event properties
of a TCOZ specification.

2.3.1 State-oriented reasoning: TCOZ extends
Object-Z state aspects in two ways. First, the state schema
convention is extended to allow the declaration of object
communication interfaces that is, channels, sensors and
actuators. The second extension is that as well as operations
(terminating processes), non-terminating processes named
MAIN are introduced to represent the behaviour of active
classes. On the basis of Smith’s [22] extended W logic of
Object-Z, additional inference rules can be introduced
for the reasoning of the new TCOZ state constructs
such as MaIN, chan, sensor and actuator [16].
For example, TCOZ channel-state reasoning rule can be
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defined as follows:

A B AB
¢ : chan ¢ : chan a: A

b: B
MAIN = ..clz... MAIN = ...c7x...

MAIN = ...a <= b...

Alt1, ..ty : STATEF c €chan A MAIN - clz € X
Blt1,...,ty) : STATE & ¢ € chan
ABlti, . tn] = STATE - a € AN b€ B AMAIN - a~%s b

Blti, ., tn] : MAIN - c?r € X

lq]

The above defines that if classes 4 and B are
communicating through channel ¢, synchronisation will be
enforced on the input and outputs, that is, outputs from
A through ¢ will lead to the same typed inputs to B. The
proviso g defines the substitution in the form of
g=b=(Xi~ 1, ..., X~ 1),

2.3.2 Event-oriented reasoning: The approach taken in
the TCOZ notation is to identify operations as terminating
CSP processes and to model active objects as non-
terminating CSP processes. With operations given the
same semantics as processes, TCSP [15] primitives
are adopted in the class constructs with satisfaction of the
timed failure model that is restricted to the class constructs.
Furthermore, the combination of simple operations with
CSP operators makes it possible to represent true multi-
threaded computation at the operation level. Therefore the
satisfaction properties in a TCOZ specification, which
regard to TCSP properties are extended to be restricted
inside the local environment of a class context as follows.

A QOsat S(s,R) <= 4 ::V(s,R) € TF[[O]] » S(s, R)

It states that in a local class context, a process Q meets a
specification S(s, 8) if S holds for every timed failure (s, X)
associated with Q. On the basis of the Davies/Schneider’s
proof system for TCSP [15], additional inference rules
can be defined for the new TCOZ communication con-
structs such as DEADLINE, WAITUNTIL and Network
Topology [16]. For example, TCOZ DEADLINE reasoning
rule can be presented as follows.

A Q sat S(s,R)

A:: @ ¢ DEADLINE d sat (end(s) < d AV € o(s) A S(s,R | d))
V (end(s) > d A S({),(d,00) x £))

The above states that the DEADLINE process behaviours
are the same as the original process Q, but is constrained
to terminate no later than d. If it fails to terminate by time
d, it deadlocks. In this subsection, we briefly introduce the
proof system of TCOZ. For a detailed view of TCOZ infer-
ence rules, please refer to the TCOZ reasoning paper [16].

3 CAD system family and architecture style
3.1 Overview of CAD system family

CAD systems represent a family system that can provide
automatic dispatching of the requested tasks according to
their critical timing constraints. CAD systems are used by
the Police, Fire & Rescue, Health Service and in many
other contexts. Fig. 1 depicts a basic operational scenario
as well as the roles and elements of a CAD system for the
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Fig. 1 Operational scenario in CAD system for Police

Police. An Operator receives information about an incident
and informs a task Dispatcher. The Dispatcher examines the
‘Situation Display’ that shows a map of the area where the
incident happened. Then, the Dispatcher assigns a task of
handling the incident to a Police Unit, for example, a
Police Car that is closest to the place of incident. The
Police Unit approaches the place of incident and handles
the problem. The information about current and past
incidents is stored in the database.

At the basic operational level, CAD systems for Fire &
Rescue or Health Services are similar to CAD for Police —
basically, all these systems support the dispatch of units
to incidents. However, there are also differences across
those CAD systems. The specific context of the operation
(such as Police or Fire & Rescue) results in many variations
on the basic operational scheme. For example, CAD
systems differ in rules of how resources are assigned to
tasks, monitoring, reporting and timing requirements,
specific information to be stored in a database, system
component deployment strategies, reliability and avail-
ability requirements and so on. If we ignore commonalities,
each CAD system must be developed from scratch and
maintained as a separate product — an expensive and
inefficient solution. However, a reuse-based approach may
radically cut development and maintenance cost. An effec-
tive approach to reuse requires a generic CAD architecture
that defines the overall structure and a common base of cus-
tomisable software assets to be reused across the CAD
systems. CAD systems mentioned above form an important
Product Line developed by our industrial partner Singapore
Engineering Software Pte Ltd. However, we can further
extend the domain analysis [23] and view CAD systems
as instances of a general task-resource allocation problem.
Then we can observe a similar pattern in the CAD
systems mentioned above and the Teleservice and Remote
Medical Care System (TRMCS) [24] that supports tran-
sition patients from hospital care to home care. In fact, in
our examples of illustrating CAD architecture specifi-
cations, we shall show how a CAD system for TRMCS
can be derived from a common generic CAD architecture
model.

3.2 CAD system components and connectors

In architectural descriptions, the three basic elements are
components, connectors and configuration (structure) of
the system [5]. An architectural style defines the properties
that are shared by a family of systems. A style concentrates
on the commonalities of communication interfaces, inter-
action mechanisms and architectural configurations of a
family of systems but ignores the details of component
functionalities and communications.
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We have encountered many CAD systems in our project,
‘Software Reuse Framework for Reliable Mission-Critical
Systems’. From a high-level architectural view, the core
components and communication of these CAD systems
are listed as follows:

e Report unit: A group of reporting units serve as
information collectors for the central control unit.

e Control unit: A central control unit manages and
dispatches the tasks of the system. This unit makes crucial
decisions and assigns tasks to executable resources for
engagement against the emergencies. The central controller
communicates with all other main units of the system.

e Execute unit: A group of executing units execute the
tasks assigned by the control unit. All of them communicate
directly with the central control unit while working inde-
pendently from each other.

e Auxiliary unit: A group of auxiliary units assist the
central control unit or other main units by taking some
less important tasks such as collecting and storing auxiliary
information.

e CAD system style: A system level configuration acts as a
collection of related units that perform the desired function-
alities. An UML class representation of the components is
depicted in Fig. 2.

As pointed out by Garlan and Perry [25], components are
the primary elements for computation in an architecture
description. Each component has an interface specification
that defines its properties, which include the signature and
functionality of its resources together with global rela-
tion, performance properties and so on [26]. TCOZ views
components in terms of internal computations and inter-
actions with the rest of the system. The internal compu-
tations are context-independent, encapsulated behaviours
of the components, whereas the context-setting interac-
tion patterns are accomplished by the communication
interfaces.

Connector plays a very important role in describing the
communication patterns between the interactive com-
ponents in an architecture description [27]. In our approach,
we use implicit connectors to model and encapsulate the
corresponding communication patterns inside a component.
TCOZ provides a fixed set of connector types to describe
component interactions, that is, chans for handling synchro-
nous communication and sensor/actuators for handling
asynchronous communication. At the configuration level,
system components are attached (connected) together
through the TCOZ Network Topology construct, which
establishes the overall architecture structure. We can for-
mally specify the above components and style in TCOZ
as follows.

[Reportinfo) [Emergency report type
[AuzInfo) [Auxiliary information type’
[Task] [Task type’

— ReportUnit[X]

listenport : chan
reportport : chan
synavzport : chan
asynauxport : X sensor

MAIN = p R o [r : Reportinfo; a : Auzlnfo,t : Task] e
listenport?(self ,r) — (synauzport?(self,a) — Skip O
asynauzport?(self, a) — SKIP); reportport!lt — SKIP; R
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CAD System Style

Report Unit Control Unit Execute Unit Auxiliary Unit

Fig.2 CAD system style components

Note that in the architecture style level the focus is on the
identification of the commonalities of components and their
communication interfaces. As from the above, the inter-
action (communication) behaviour of the ReportUnit is cap-
tured by the implicit connectors and the non-terminating
process Main in the active object [28] (The u operator
indicates a recursive definition of a non-terminating
process.). The ReportUnit collects the device information
from the synchronous input channel listenport (e.g.
phones, monitors, alarms etc. for reporting the incidents)
and some additional information from both auxiliary syn-
chronous input channel synauxport and asynchronous
input sensor asynauxport (e.g. locations, time, etc. deter-
mined from the reports); generates reporting information
and pass it through the synchronous output channel report-
port to the Control Unit for the purpose of dispatch.

ControlUnit

reportport : chan
dispatchport : chan

MAIN = 1 C o (([t : Task] e reportport?t — Skip) O
([t : Task, e - ExecuteUnit] ® dispatchport!(e, t) — SKIP)); C

The above describes the basic communication pattern
related to the ControlUnit component. The ControlUnit
receives the reporting information from the synchronous
input channel reportport; generates proper tasks and dis-
patches them through the synchronous output channel dis-
patchport to the ExecuteUnit for the purpose of execution.

EzecuteUnit

dispatchport : chan

MAIN = i E e [t : Tusk] e dispatchport?(self,t) — SKIp; E

The ExecuteUnit receives the dispatched task infor-
mation from the synchronous input channel dispatchport
and performs the actual task execution.

AuziliaryUnit[ X

synauzport : chan
asynauzport : X actuator

MAIN = p A o [a : AuzInfo, r : ReportUnit] o ((synauzport!(r, a)
— SKIP) O (asynauzport!(r, a) — SKIP)); A

The AuxiliaryUnit provides the addition information to
other components through the synchronous output channel
synauxport and asynchronous output actuator asynauxport.
Note that the communications in the AuxUnit may be
synchronous or asynchronous, so we give two options in
the style.

Each component has its own implicit connectors for
communication with the rest of the system. The details of
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encapsulated behaviours of the components are deliberately
suppressed here in the architectural style, as each com-
ponent of the same type may have different computation
behaviours. In the MAIN operation of each component, we
only define the communication patterns.

3.3 CAD system configuration and style

A configuration is a collection of interacting component
instances and their attachments in the system. The instances
of components are distinguished from the component types.
An architectural style defines the common properties of a
family of systems, which are shared by any configuration
in the style. In our TCOZ approach, configurations are
specified by the Network Topology construct in a system
component and act as explicit attachments of the interactive
components that contain matching implicit connectors in
the communication.

_ CADStyle[X]

¢ :| ControlUnit

rs : F; | ReportUnit[X]
es: F, | EzecuteUnit

as : F | AuziliaryUnit[ X

MAIN = ||

( synauzrport,asynaurport

(a,r,e):asXrsxes ’
reportport dispatchport
r POTLP c i4 D! 6)

In the example above, all components comprise a CAD
system style. The Network Topology construct in the
MAIN operation clearly identifies the interactions among
the various components in the system, where the lines
connecting the components indicate the interactive
communication relationships between the components and
the labels on the lines correspond to the implicit connectors
(communication interfaces) used. For example, the auxili-
ary units communicate with the report units through the
synauxport channel and asynauxport sensor/actuator; the
report units communicate with the control unit through
the reportport channel; the control unit communicates
with the execution unit through the dispatchport channel.
These object interactions through the communication inter-
faces can also be visualised using the UML diagram as in
Fig. 3 (UML collaboration diagrams are used to give a
better and visual understanding of the communication pat-
terns specified by the TCOZ network topology in the
formal models.).

2: asynauxport

—_
1: synauxport
: Auxiliary Unit > : Report Unit
$ 3: reportport
: Execute Unit : Control Unit
<<K—

4: dispatchport
Fig. 3 CAD system style communication
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4  Generic architecture for CAD system family

In this section, we present a CAD system generic architec-
ture specified in TCOZ, which extends the architectural
style presented in the previous section. Unlike the style, a
generic model defines crucial computation and communi-
cation details of the components in the CAD system
family. On the basis of the ReportUnit, ControlUnit and
ExecuteUnit in the architectural style, we further refine a
generic CAD system into three main types of components:

e The emergency report receivers: obtain emergency
information, create detailed tasks and send the tasks to the
central dispatcher. This component extends the ReportUnit
from the CAD style.

e The central dispatcher: stores, updates and dispatches
tasks to related task executers according to the business
logic, such as timing constraints. This component extends
the ControlUnit from the CAD style.

o The task executers: execute the tasks that are dispatched
to them. The role of executers may vary in different CAD
systems, such as Police offices in Police system, hospitals
in medical system and so on. This component extends the
ExecuteUnit from the CAD style.

The hierarchical structure can be illustrated in Fig. 4.
Note that the Clock and Log are two auxiliary components
extended from the AuxiliaryUnit in the style model. They
offer time information and logging of important system
actions, respectively.

The subscriber’s roles (potential users of specific CAD
systems) also vary in different systems, from patients in
the medical system to case locations in the Police system.
As most CAD systems are time-critical, we make the
timing requirement an important feature in our generic
model. Furthermore, some type variants and common func-
tions were introduced for the purpose of easy customisation
into specific CAD systems. The computation behaviours of
components are self-encapsulated and the implicit connec-
tors are specified inside corresponding components. As
mentioned previously, a system can be viewed as any one
of its components interacting with the rest of the system
through the Network Topology attachments. Therefore it
is natural for us to study the overall system by analysing
the components individually first.

Auxiliary
Components

Log Clock

A Jodl

CAD System

i

Dispatcher

Receiver Executer

Main
Components

Fig. 4 Overall structure of a generic CAD system

IEE Proc.-Sofiw., Vol. 153, No. 3, June 2006



4.1 Clock

In order to record the system information at each particular
time, a calendar clock is constructed as follows.
Calendar-time type is defined as

CalT == Nyrx Nmn x Ndy x Nhr x Nmin x Ns

The clock stores the total elapsed seconds as some reference
date, and the function

cal : Ns — CalT

is used to convert the elapsed seconds to a calendar-time.

|detail of function omitted

— Clock
AugiliaryUnit| CalT][time/ asynauzport)

total : Ns

—Inc
Al(total, time)

total’ = total + 1s A time = cal(total)

MAIN = C o (Inc « DEADLINE 50ms) « WAITUNTIL 1s;

The Clock component extends the AuxiliaryUnit in the
CAD style, where its asynchronous actuator asynauxport
is renamed to time and generic type X is substituted by
the calendar-time type Cal7. Note that the time value
increases every second and the display screen updates in
less than 50 ms.

4.2 System logs

Most CAD systems require strict persistent repository of
data and history log. A generic active object of Log[X] is
defined as follows, where X is the data-structure type of
the records in the log.

— Log[X]
AuziliaryUnit[ X [record [ synauzport)

log : seq X

—Add
A(log)
z?7: X

log’ = log ™ (z?)

MAIN = L e[z : X] e record?z — Add; L

The Log component extends the AuxiliaryUnit in the
CAD style, where its synchronous channel synauxport is
renamed to record. The system logs consist of two types
of logs. One is for the incoming incident reports; and the
other for the dispatched tasks. These can also be customised
according to various requirements, respectively. The
content in the log file is modelled as a variant of type X,
which varies according to each particular system.

4.3 Emergency receiving unit

The system receives emergency reports from its environ-
ment. When the receiving unit of the system receives an
emergency report, it generates a Task from the reported
information ReportInfo by the function GenTask and
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sends the task to the central dispatcher for processing.

GenTask : ReportInfo — Task

[detail of function omitted]

— Receiver
ReportUnit[CalT||listen / listenport, record / synauzport,
time / asynauzport, login/ reportport)
WriteLog = [t : CalT; r; : ReportInfo] e time?t —
record!(t, GenTask(r;)) — SKIP
MAIN = R o [r; : Reportinfo] e listen?r; —
(login!( GenTask(r;)) — WriteLog); R

The Receiver component extends the ReportUnit in the
CAD style, where its synchronous channel listenport is
renamed to listen, synchronous channel synauxport
is renamed to record, asynchronous sensor asynauxport is
renamed to time, synchronous channel reportport is
renamed to login and generic type X is substituted by the
calendar-time type Cal7. The behaviour of the Receiver is
to collect the emergency information from the synchronous
input channel listen (e.g. phones, monitors, alarms etc. for
reporting the incidents); generate task information and
pass it through the synchronous output channel login to
the Dispatcher for the dispatch purpose, and at the same it
records the login information into the system log by the
WriteLog operation. While recording to log file, it obtains
the time information from the asynchronous input sensor
time and passes the log information through the synchro-
nous output channel record for the repository purpose.

4.4 Central dispatcher

All tasks will be stored and assigned through the
Dispatcher. It is the central and crucial unit of the system,
actively communicating with other components. Each
incoming task has its own severe level, which means it
has its own critical timing requirement for dispatching,
for example, a Fire & Rescue CAD system requires a fire
rescue unit to be sent to the location 5 min after the report
of the incident. In a generic way, we define a function
Taskr to denote the latest timing constraint before passing
a task to an executer.

Taskr : Task — T

A generic function pt is defined to purge the timeout
items from the original set into the second set correspond-
ing to the time elapsed and update the time stamps
accordingly.

[detail of function omitted’

=[X]
pt:(TXFX xT)) > (F(X xT) xFX)
m)_(_x T) & pt(t,s) =
({(e,to) s | to >t 0 (e 80— 8}, {(e,t0) 15| s < twe})

e.g. pt(2s,{(a,1s),(b,35s),(c,79)}) =({b, 15),(c,59)},{a})

For example, the above means that after the elapsing
of 2s, the time stamp of » and ¢ would become 1 and
5's, respectively, and the time out item « is purged into
the second set. The central Dispatcher component is
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defined as follows:

— Dispatcher
ControlUnit[login [ reportport, dispatch/ dispatchport)

ex : F, Executer
tasks : F(Task x T)
A

t:T

timeup : F Task

tasks # @ = 0 < t < min(ran tasks)

INIT
tasks = &

1

_Add
A(tasks)
task? : Task
t,7:T

task’ = fst(pt(t;7, tasks)) U (task?, Taskr(task?))
timeup’ = snd(pt(t;7?, tasks))

— Purge
A(tasks)

pt(t, tasks) = (tasks', timeup’)

AddTask = [task : (Task — dom tasks); t; : T] e login?task @t; — Add
Dispatch = [f : timeup — ex] o||| (4555, 0y dispatchl{e, task) — Skip
MAIN = u D o ([tasks = &) @ AddTask O

[tasks # @] o (AddTask >{t} (Purge; Dispatch))); D

The Dispatcher component extends the ControlUnit in
the CAD style, where its synchronous channel reportport
is renamed to login and synchronous channel dispatchport
is renamed to dispatch. The behaviour of the Dispatcher is
to receive the task-login information from the synchronous
input channel login and dispatch the tasks according to their
critical timing requirements through the synchronous output
channel dispatch to the execute units for the purpose of
execution.

The secondary attribute ¢ records the time value that is
less than or equal to the minimum time stamp in the task
set. This constraint is captured by the class invariant,
which must be preserved by all operations. Attribute
timeup stores all the timeout tasks after each purge oper-
ation. The behaviour of the MAIN process of the dispatcher
is basically either adding or dispatching tasks. If the task
set is empty, only adding is performed; whereas for the
non-empty task set, both adding and dispatching are
enabled. A Purge process is placed when element(s) of
task is timed out. A Dispatch operation is defined (in a flex-
ible way, i.e. any function f) to assign every timeout task to
an execution unit in parallel.

Note that the TCSP expression in this general form
a@t — P(t) is a process primitive, where a denotes the
event initially enabled by the process and ¢ denotes the
timing relative to the occurrence of event a. The expression
(a > P)>{1}Q describes the timed interrupt primitive,
where the process will try to perform a — P and would
pass control to Q if the event a has not occurred by time
t. According to this semantic, when tasks # (¥, if the
operation AddTask (when #; < ¢) is performed, right after
the operation, timeup = ¢ must hold because of the defi-
nition of the function pt and class invariant 0 < ¢ < min
ran tasks (simplified when tasks # ). This is the reason
for designing MAIN with Dispatch operation only after
Purge, which means that the dispatch will happen exactly
at the corresponding timing requirement of each task. It is
reasonable to assume that the time durations #,, 74 and ¢,
of the operations AddTask, Dispatch and Purge are far
less than ¢ or #; (as t,, t4, 1, < 1, t;). For instance, ¢ could
be in the scale of seconds and 7, might be in microseconds.
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In contrast, if the time durations such as 7, are considered,
the AddTask schema can be modified accordingly.

4.5 Executers

Tasks are dispatched to the executers for execution by the
central dispatcher. A dispatch log file keep the records of
all dispatched tasks. The task Executer component is
defined as follows.

— Executer
EzecuteUnit|dispatch/ dispatchport]

time : CalT sensor
record : chan

WriteLog = [t : CalT; task : Task] e time?t —

record!(t, task, self ) — SKIP
Driven = [task : Task] e dispatch?(self, task) — WriteLog
MAIN = p E e Driven; E

The Executer component extends the ExecuteUnit in the
CAD style, where its synchronous channel dispatchport is
renamed to dispatch. The behaviour of the Executer is to
receive the dispatched task from the synchronous input
channel dispatch; execute it and record the dispatched
information into the system log by the WriteLog operation.
While recording to log file, it obtains the time information
from the asynchronous input sensor time and passes the
log information through the synchronous output channel
record for the repository purpose.

4.6 Generic system architecture configuration

The overall system configuration is a composition of all
components that communicate with each other. We organise
the interactive relationships through the TCOZ network
topologies. This system component CADSystem plays the
role of explicitly connecting the implicit connectors inside
each corresponding components to establish the configur-
ation topology of the overall architecture structure.

—_ CADSystem
CADStyle|CalT][d/<c]

clock : Clock
inlog : Log[CalT x Task)]
dispatchlog : Log|CalT x Task x Ezecuter]

d € Dispatcher A d.ex = es
Vr:rserc Receiver

Ve :eseec€ FBreculer

{clock, inlog, dispatchlog} C as

MAIN = ( login d dispatch e;

(r,e):rsxes
inlog ~2222rdy p Bme, olocktine,. o record dispatchlog)

The CADSystem component extends the CADStyle
component in the CAD style, where its ControlUnit object
c is renamed to the Dispatcher object d and generic type X
is substituted by the calendar-time type Cal7. New instances
of auxiliary components such as clock, inlog and dispatchlog
are introduced to the system together with the constraints
upon them. From a communication point of view, the
CADSystem specifies that the receiver communicates with
the dispatcher through the login channel; the dispatcher
communicates with the executer through the dispatch
channel; the receiver communicates with the clock
through the time sensor/actuator; the receiver communi-
cates with the input log file through the record channel;
the executer communicates with the clock through the
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time sensor/actuator; the executer communicates with
the dispatch log file through the record channel. Similarly,
we could also use UML collaboration diagram to visualises
the configuration of the system defined in the formal model
as in Fig. 5.

5 CAD system architecture verification

From a safety critical perspective, the key point of the CAD
system architecture is to provide guaranteed time critical
service to all the valid tasks. This critical property can be
formally interpreted from the above TCOZ model as

Theorem:

CADSystem :: Vtask, : Task; ct, : CalT o

(cty, task,) € ran inlog.log = 3ct, : CalT; e : es; o

(ct,, task,, e) € ran dispatchlog.log

A (cal™ (cty) — cal”™(ct))) = Task,(task,)

(7]

The theorem simply states that any task which logged into
the system will be dispatched at its critical time require-
ment. In order to prove the validity of the Theorem P, the
first thing is to show that the Clock component in the
system correctly models the behaviour of a physical

timing device — the global clock. This property can be inter-
preted into the following timed failure specification.

Lemma:

Ly(s, R) = Clock :: Vtotal : Ns; t,,t, : Te
timelcal(total) livelt,, t|) = (¢, — t, = 18)
Note that the live expression is a specification macro for the
TCOZ actuator construct defined as follows
a live[t), t,) =Vt E [t;,t;)eaat t AVt : Te
t; <ty = —(aatt)At;>t,
= —(aatt))
This macro simply expresses that the event a is
continuously recorded in the trace as having occurred at

every point on a maximal interval I, where [ is in the
form of [z, ).

Proof: Base case: The specification is trivially satisfied by
STOP. Assuming the C sat Lo(s, R), it is sufficient to
show that

(Inc ® DEADLINE 50 ms) @ WartUNtiL 185C sat L(s, R)

. .

2: record%
3: login 4:dispatch

r:Receiver| — :Di her —>

5:time
1:time —

lock : Clock

% 6:record

dispatchlog : Log

Fig.5 Configuration of a generic CAD system
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Let
L,(s,R) = Clock ::Vtotal : Ns; ty,t, : Te
timelcal(total) live [t, t|) = (t; — t, € [0, ©))
L,(s,N) = Clock :: ¥ total : N's; t,,t, : Te
timelcal(total) live [t,, t,)
= (t, — 1, € [0,50ms))
The proof of [Lg] can be constructed as follows

Clock :: Inc sat Li(s,R)

[ Deadline |
Clock :: Inc @« DEADLINE 50 ms sat (end(s) < 50ms A
v €o(s) AL (s,R [ 50ms)) V (end(s)
> 50ms A Ly ({), (50 ms, 00) x =Y
ms A Ly((), (50ms, o0) x ) Weaken |
Clock :: Inc « DEADLINE 50ms sat La(s, R) ) )
[ WaitUntil |
Clock :: (Inc @ DEADLINE 50 ms) ¢ WAITUNTIL1s
sat ((end(s) > 1s A La(s,X)) V (end(s) < 1s
A La(s ™ (Ls, '), RU [end(s), L's) x T¥)))
[ Weaken ]
Clock :: (Inc @ DEADLINE 50 ms) ¢ WAITUNTIL1s
sat Lo(s,R)
Clock :: C sat Ly(s,R) -
[ Sequential |
Clock :: ((Inc « DEADLINE 50 ms) @ WAITUNTIL1s) g ¢
sat v € a(s) A Lo(s,RU[0,00) x {v'})
Vs, 80,tes=85"%AV &c(s)
A LO(Sl - <(t, ‘/)>7N [ty [05 t) X {‘/})
A L N)— ¢
o2 %)~V [ Weaken ]

Clock :: ((Inc « DEADLINE 50 ms) @ WAITUNTIL 1s) § C
sat Lo(s,N)

Note that we construct the proofs by applying TCOZ
inference rules at each step. For a detailed view of TCOZ
inference rules, please refer to the TCOZ reasoning paper
[16]. From the above, according to the recursion induction
rule, the behaviour specification Ly(s, R) is satisfied, there-
fore Lemma L, has been proved. O

After showing that the Clock component is consistent with
the global clock, we are now ready to prove the correctness of
Theorem P. First, Theorem P can be rewritten into state-
based and event/time-based properties as follows.

e No message lost: This property claims that no tasks
will be lost once they are in the system. It can be translated
into the statement that any task in the login log would be
eventually in the dispatched log

Theorem 1:
CADSystem :: V task : Task o
task € ran ran inlog.log
= task € ran ran dispatchlog.log [P]

¢ Dispatching at critical time range: This property claims
that all tasks in the system will be dispatched to an
execution unit at their required critical time range. It can
be translated into the statement that the duration from
login to the system to its dispatch of each task should be
exactly equal to its time requirement Tasky (task)

Theorem 2:
CADSystem :: ¥V task : Task;ty: T;e:es ®
logintask at t,
= dispatch\(e, task) at (t, + Tasky(task)) [P,]

As from above, Theorem P can be formally translated
into a data (state-based) property P; and a timing
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(event-based) property P,, which later can be proved by
the TCOZ inference rules.

5.1 Proof of Theorem P,

First, we use the induction rule to prove that the following
property holds by the Dispatcher class.

Lemma:

Dispatcher :: ¥V task : Task e (task, Task,(task)) € tasks
= dispatch.(e, task) € (Executer x Task) [P 1]

Proof: Initially: Dispatcher :: INIT + tasks = (¥, therefore
predicate [P ] holds (trivial).

Assume the pre-state of the operations in class Dispatcher
is true, which is [V task: Task e (task, Taskr (task)) €
tasks = dispatch.(e, task) € (Executer x Task)]. The post-
state of Dispatcher is depicted by two types of behaviours,
that is, AddTask and (Purge § Dispatch), which are
associated with the timeout constraint as follows:

e [fno new task is added after the minimum time stamp of
all tasks #, the (Purge ¢ Dispatch) operation will perform,
which will reduce the number of tasks in the tasks set.
According to the assumption, [P; ;] holds for the post-state.
o If a new task is added to the tasks set before ¢, by the
definition of the pf function, the time stamp of this particular
task will decrease in a monotonic manner as either the
AddTask or (Purge o Dispatch) operation would perform.
Thus the task will eventually be purged from the tasks set
and dispatched to the Executers. Therefore [P, ;] holds for
the post-state.

According to the induction rule, Lemma P; ; is proved.
Thus the proof of [P] can be constructed via state reasoning
rules as follows.

CADSystem :: STATE - d € Dispatcher A rs € F| Receiver
A tnlog € Log[CalT x Task]
Receiver :: STATE t listen, login, record € chan A
MAIN V- listen.task € Task = login.task € Task
A record. (¢, task) € (CalT x Task)
Dispatcher :: STATE + login € chan
Log[CalT x Task] :: STATE + record € chan

CADSystem = MAIN b 7 € rs A d <07 27207, inlog
[ Channel ]

Dispatcher :: MAIN & login.task € Task =
(task, Taskr(task)) € tasks A
Log[CalT x Task] :: MAIN + record.(t, task) €
(CalT x Task) = (i, task) € ranlog [P1.2]

CADSystem :: STATE +- d € Dispatcher A\ es € F, Executer
A dispatchlog € Log|CalT x Task x Ezxecuter)
Dispatcher :: MAIN = login.task € Task =
(task, Taskr(task)) € tasks
Dispatcher :: STATFE & dispatch € chan
Dispatcher =+ (task, Tasky(task)) € tasks =
dispatch.(e, task) € (Fzecuter x Task) [P14]
Ezecuter :: STATE + dispatch € chan

CADSystem = MAIN & ¢ € es A d <22P3%h, ¢

Ezecuter :: MAIN v dispatch.(e, task) € (Executer x Task)
Ezecuter :: STATE + record € chan A
MAIN t dispatch.(¢, task) € (Ezecuter x Task) =
record.(t, task, self ) € (CalT x Task x Executer)
Log|CalT x Task x Ezecuter] :: STATE | record € chan

CADSystem :: MAIN & ¢ € es A e <" dispatchlog

[ Channel |

[ Sensor ]

Log[CalT x Task x Ezecuter] :: MAIN
record.(t, task, €) € (CalT x Task x Ezecuter)
= (t, task, e) € ranlog [P1.3]
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Therefore Theorem P; can be clearly derived from P, ,
and P, 5 above as follows.

CADSystem :: STATE - inlog € Log[CalT x Task] A
dispatchlog € Log[CalT x Task x Ezecuter]

Log[CalT x Task] :: MAIN + record.(t, task) € (CalT x Task)
= (t, task) € ran log

Log[CalT x Task x Ezecuter] :: MAIN | record.(t, task, e) €
(CalT x Task x Executer) = (t, task, e) € ranlog

CADSystem :: + Vtask : Task e task € ranran inlog.log
= task € ranran dispatchlog.log

5.2 Proof of Theorem P,

Theorem P, can be interpreted as the following timed
specification in terms of the timed failure model.
P,(s, R)
= Dispatcher :: ¥ task : Task;t,: T;e:ese®
login?taskat t, = dispatch!(e, task)

at (ty + Tasky(task))

Proof: Base case: The specification is trivially satisfied by
STOP. Assuming the D sat P, (s, R), it is sufficient to show
that ([tasks = (] ® AddTask[J[tasks # (] ® AddTask > {¢}
(Purge § Dispatch)) § D sat P,(s, R).

Let P, 1, P>, be two time failure expressions represented
as follows.

P, (s, R) = Dispatcher :: ¥V task : Task; ty: T;e:es®
loginltask at ty = (ty <t A timeup
= J A —(dispatch(e, task) at t,))
P, (s, R) = Dispatcher :: ¥ task : Task;t,: Te:ese

(dispatchl(e, task) at t,
= (t, =t A timeup # A
dts C tasks e VY(task, t,), (task,, t,) E ts ®

(t; = t, =t A Tasky(task)) = Taskp(task,))))

In our model, the behaviour of adding and assigning valid
tasks is determined by the functions pz, Add and Purge
operations in the non-terminating process MAIN of the
class Dispatcher. Considering each non-recursive trans-
action trace of the MAIN process as one execution cycle,
the possible actions of the Dispatcher within a cycle are
as follows.

A, : AddTask when tasks = (J
A, : AddTask when tasks # J A f; <t

A : Purge § Dispatch when tasks # A f; =1

Therefore it is trivial to show that P,; and P,, are
satisfied by AddTask and (Purge § Dispatch), respectively.
Therefore the proof of Theorem P, can be constructed via
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event reasoning rules as follows.

Dispatcher :: ([tasks # @]  AddTask) sat P 1(s,RN)
Dispatcher :: ([tasks # @] ® (Purge § Dispatch)) sat Py (s, R)

Dispatcher :: ([tasks # @] o AddTask >{t} (Purge g Dispatch))
sat (begin(s) < t A Pa1(s,R))
V (begin(s) = t A Po1({),R]¢) A Paa((s,R) —t))

Dispatcher :: ([tasks # @] @ AddTask >{t} (Purge g Dispatch))
sat Pa(s,N)
Dispatcher :: ([tasks = @] @ AddTask) sat Py(s,R)

Dispatcher :: ([tasks = @] o AddTask O [tasks # @] & AddTask
>{¢} (Purge g Dispatch)) sat Pa{s,N) A Po({ ), N [ begin(s))

Dispatcher :: ([tasks = @] @ AddTask O [tasks # 2] ®
AddTask >{t} (Purge § Dispatch)) sat Ps(s,R)
Dispatcher :: D sat Pa(s,R)

Dispatcher :: ([tasks = &) o AddTask O [tasks # @] e
AddTask >{t} (Purge g Dispatch)) g D sat v’ & o(s)
A Pa(s,RU[0,00) x {v'})
V3si, st 0s=85"sAV €a(s1) A Pa(s1 ™ {(t;,V)),
RIGUID0, &) x {V}) A Pa{(s2,R) — &)

Dispatcher :: ([tasks = &) o AddTask O [tasks # @] e
AddTask >{t} (Purge g Dispatch)) 3 D sat Py(s,R)

[ Timeout |

[ Weaken |

| Bxternal |

[ Weaken |

[ Sequential

[ Weaken |

According to the recursion induction rule, the behaviour
specification P(s, R) is satisfied, therefore Theorem P, has
been proved. Thus from the proofs of P; and P,, we can see
that the critical timing requirement of the generic CAD
system architecture Theorem P is formally verified. O

6 CAD system architecture customisation

A generic system architecture must be easily customisable
to meet the requirements of specific systems. The customi-
sation includes customising computation behaviours of
components and customising architectural configuration in
terms of connectors. There are two common approaches
in achieving such customisations. One is to model the
generic architecture in as compact a manner as possible,
which includes only the intersection parts among all
system family members. In this way, specific system archi-
tectures can be derived from the generic model through
inheriting and expanding the components. The other
approach is to cover most common functionalities of the
system family in the generic model, and then model specific
system architectures through cutting down and modifying
relevant components.

The first approach is suitable for system families in which
most systems share not only the main structure but also
many component behaviour and communication details.
The second one, in a sense, is better for the system family
in which, among systems, there are only minor differences
in architectural configuration while the component inner
behaviours are not very interactive. Real-world systems
are usually complex and cannot be simply classified into
any one of the above two approaches. Therefore the
customisation approach might be a blend of the above
two approaches. Most CAD systems share common archi-
tecture features on a large scale. However, the types and
functionalities differ from system to system and need to
be specifically redefined into particular systems. We
demonstrate the customisation of the generic architecture
into specific systems through a TRMCS example.

6.1 CAD system for teleservices and remote
medical care

TRMCS [24] provides services for the transition of patients
from hospital care to home care. In the TRMC system, the
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ReportInfo includes the patient’s symptoms and the place of
the incident.

ReportInfo == Symptom x Location

The TRMCS consists of a number of help centres for
performing the emergency job execution. For the sake of
urgency, a task might be put up for open bid, and the help
centres compete to answer it. At the same time, the
system must guarantee that at least one help centre
responds. Therefore we offer two mechanisms for help
centres to be assigned tasks. First, the help centres are
aware of what tasks are available at the current time and
they can actively select tasks from the dispatcher.
Secondly, tasks are passively dispatched to the help
centers for execution in the case that some tasks are not
selected by any help centre within a certain deadline.
Thus the HelpCentre and Dispatchertryes components
that extend the Executer and Dispatcher components from
the generic CAD architecture model can be defined as
follows.

— HelpCentre
Ezecuter

d : Dispatcherrrycs
select, choose : chan

Select = [task : dom d.tasks] e select?task — chooseltask
— dispatch?(self , task) — WriteLog
MAIN = p H o (Select O Driven) g H

__ Dispatcherrrycs
Dispatcher

choose . chan

__ Delete
A(tasks)
task? : Task

tasks # &
pt(t;?, task? < tasks) = (tasks’, timeup’)

Assign = [task : tasks; e : ex; t; : T| o choose?(e, task)@t;
— dispatch!(e, task) — Delete

MAIN = p D o ([tasks = @] e AddTask O [tasks # ]
((AddTask O Assign) >{t} (Purge g Dispatch))) s D

By customising a task selection function into the system,
the TRMCS configuration is modelled with additional com-
munication and extended components as follows.

— TRMCSystem
CADSystem

d € Dispatcherrrics
Yh:esehc HelpCentre N h.d=d

MAIN = ( login d choose,dispatch h;

(r,h):rsXes ) .
inlog <"222mdy p e, clock<BT% T, dispatchlog)

Note that the Dispatcherrgmes and HelpCentre com-
ponents are also communicating through the synchronous
channel choose. From the above system architecture, by
means of active selection and passive assignment, the
tasks are dispatched within their critical timing requirement.
Thus, Theorem P is redefined into P’ as follows
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Theorem 3:

TRMCSystem :: N task, : Task; ct| : CalT o
(cty, task,) € ran inlog.log = Ict, : CalT; e : es; ®
(cty, task,, e) € ran dispatchlog.log
A (cal™(cty) — cal™(ct,)) < Tasky(task,) [P]

The above states that the dispatching of a task should be
performed within its timing requirement Tasky(task)
because of active selections, whereas in the generalised
CAD system this should perform exactly at Taskr (task).
Note that Theorem P’ can also be proved similarly as
demonstrated in Section 5. Hence, the TRMCS architecture
is customised from the generic CAD system model into its
own specific requirements.

7 Conclusion

In this paper, we have applied the integrated formal notation
TCOZ to the design and verification of an incremental three-
layer architecture model for the CAD system family, that is,
the style, the generalisation and the customisation. The CAD
style captures the most common interaction patterns among
the CAD family. The generalisation layer models the essen-
tial computational functionalities and communication of the
CAD systems. The customisation characterises the additional
specific requirements within each particular system. Thus
new systems are built as variations and customisations of
the up-level designs, and the whole family architecture is
depicted as an open-ended design for reuse.

We found that TCOZ could be a potential candidate for
the formal modelling of the software architecture design.
The class constructs in TCOZ are well suited for component
definitions. The communication interfaces, that is, channel,
sensor and actuator, act as implicit connectors for modelling
the communications between components. The network
topology is used as explicit attachment for connecting the
interactive components in defining the overall configuration
of the system. All these features may provide a more con-
sistent and flexible way of specifying software
architectures.

Furthermore, in this paper we also demonstrated the
verification of architecture properties via formal reasoning.
We applied both state and event-based proof techniques
for the verification of TCOZ architecture specifications.
Complex system properties are decomposed into state and
event-related properties and proved, respectively. In
summary, the paper demonstrates that integrated formal
modelling techniques (TCOZ) could provide a promising
solution for modelling and verifying various levels of
software architecture descriptions. As the verification
process presented in the paper is still manual-based, we
are currently investigating the embedding of TCOZ proof
rules into the theorem provers such as Isabelle/HOL [29]
for automatic proof assistance. In the future, we also plan
to apply our approach to the specification and verification
of software product line architectures [30].
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