
XML-Based Static Type Checking
and Dynamic Visualization for TCOZ

Jin Song Dong, Yuan Fang Li, Jing Sun, Jun Sun, and Hai Wang

School of Computing,
National University of Singapore

{dongjs,liyuanfa,sunjing,sunjun,wangh}@comp.nus.edu.sg

Abstract. Timed Communicating Object Z(TCOZ) combines Object-Z’s
strengths in modelling complex data and state with TCSP’s strengths in mod-
eling real-time concurrency. Based on our previous work on the XML environ-
ment for TCOZ, this paper firstly demonstrates the development of a type checker
for detecting static semantic errors of the TCOZ specification, then illustrates a
transformation tool to automatically project TCOZ models into UML statechart
diagrams for visualising the dynamic system behaviour.
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1 Introduction

The main stimulus for the inception of formal specification techniques is to precisely
describe software and system requirements so that tools can be applied to perform
checking and analysis on the formal requirement models. Various formal notations are
often combined for modelling large and complex systems which may have intricate
system states and complex concurrent and real-time behavior. Timed Communicating
Object Z (TCOZ) [8] builds on the strengths of Object-Z [4, 12] in modeling complex
data and state with the strengths of TCSP [10] in modeling process control and real-time
interactions. Our previous works on ZML (Z [15] family on the Web through XML) [14,
13] have been focusing on displaying formal specifications on the web and projecting
TCOZ models to UML class diagrams. This paper reports on the developments of a type
checking and UML statechart visualization tools for TCOZ.
There have been previous works on type checking Z and Object-Z. For example, Wiz-
ard [5] is a LATEX-based type checker for Object-Z. Our type checking tool aims to check
TCOZ (including Z and Object-Z) specifications with XML as an input format.
UML can be used for visualizing formal specification models. For the purpose of vi-
sualizing the static properties of TCOZ specification, we have previously developed a
transformation tool from TCOZ to UML class diagram [13]. The second part of this
paper aims to develop the techniques and tools for visualizing TCOZ behaviour speci-
fications (mainly TCSP) by transforming TCOZ models into UML statechart diagrams.
Brooke and Paige [3] have recently developed a tool-supported graphical notation for
TCSP. The difference between Brooke and Paige’s approach and ours is that we use
existing graphical notations instead of creating new ones.
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The remainder of the paper is organized as follows. Section 2 briefly introduces the
technical background: the TCOZ notation and XML/XMI. Section 3 provides the over-
all design of the type checker and outlines type hierarchy and typing rules. Section 4
develops the proper projection rules for transforming TCOZ models to UML statecharts
and illustrates the development of the automatic projection tools using JAVA. Section 5
presents a case study of the project, showing the working and output of the type checker
and visualization in UML statechart diagrams. Section 6 concludes the paper and com-
ments on possible future work directions.

2 Technical Background

2.1 TCOZ

Timed Communicating Object Z (TCOZ) builds on the strengths of Object-Z and TCSP.
The syntactic structure of TCOZ is similar to Object-Z. A TCOZ document consists of
a sequence of definitions, including type and constant definitions in the usual Z style.
TCOZ varies from Object-Z in the structure of class definitions, which may include CSP
channel and process definitions.
In the remainder of this subsection, some important features of TCOZ are briefly in-
troduced. A detailed introduction can be found elsewhere [8]. The formal semantics of
TCOZ is also documented in [6].

Active Object
In TCOZ, active objects have their own thread of control, while passive objects are
controlled by other objects in a system. An identifier MAIN is used to represent the
behavior of active objects of a given class. The MAIN operation is optional in a class
definition. It only appears in a class definition when the objects of that class are active
objects.

Interface: Channels, sensors and actuators
Channel is one of the most important concepts in CSP and it is given an independent,
first class role in TCOZ. The class state-schema convention (mechanism in Object-Z)
is extended to allow the declaration of communication channels. If c is to be used as a
communication channel by any of the operations of a class, then it must be declared in
the state schema to be the type of chan, for example in, out in the above example. One
thing special about channel is that channels are type heterogeneous and may carry com-
munications of any type. Contrary to the conventions adopted for internal state entities,
channels are viewed as shared rather than as encapsulated entities, that is, channels are
commonly used to carry information between TCOZ classes.
Complementary to the synchronizing CSP channel mechanism, TCOZ also adopts a non-
synchronizing shared variable mechanism [7]. A declaration of the form s : X sensor
provides a channel-like interface for using the shared variable s as an input. A declaration
of the form s : X actuator provides a local-variable-like interface for using the shared
variable s as an output.

Network Topology
The syntactic structure of the CSP synchronization operator is convenient only in the case
of pipe-line like communication topologies. Expressing more complex communication
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topologies generally results in unacceptably complicated expressions. In TCOZ, a graph-
based approach is adopted to represent the network topology. For example, consider that
processes A and B communicate privately through the interface ab, processes A and C
communicate privately through the interface ac, and processes B and C communicate
privately through the interface bc.
This network topology of A, B and C may be described by

‖(A ab✛✲ B; B bc✛✲ C; C ca✛✲ A).

2.2 XML and XMI

Our previous work [14] has used XML and XML schema to define a standard exchange
format for Z-family languages (Z, Object-Z and TCOZ). An XML Schema file was
created for describing the structure of the Z-family languages in XML. It defines the
contents of all elements, the order and cardinality of sub-elements, and data types of
some of the elements.
XMI (XML Metadata Interchange) is an industry standard for storing and sharing object
programming and design information, allowing developers of distributed systems to
share object models and other metadata over the Internet. Three key industry standards,
XML (eXtensible Markup Language), UML (Unified Modelling Language) and MOF
(Meta Object Facility), are integrated in XMI. XMI marries the OMG and W3C metadata
and modelling technologies [1]. Rational Rose 2001 from OMG which supports XMI
can generate UML diagrams once it imports XMI documents, and it can also export XMI
documents for any existing UML diagrams as well. This is very useful for our work since
we only need to generate the proper XMI from a TCOZ specification in XML format.
The syntax definition of XMI for UML is specified in XMI 1.1 RTF UML DTD [1].
This DTD file defines all entities and XMI syntax signatures for UML. An XMI file
validated by UML.DTD version 1.3 has the following structure:

<?xml version = ’1.0’ encoding = ’ISO-8859-1’ ?>
<XMI xmi.version=’1.1’ xmlns:UML=’//org.omg/UML/1.3’>

<XMI.header> ... </XMI.header>
<XMI.content>

<UML.Model>
<UML.StateMachine> ... </UML.StateMachine>

</UML.Model>
<UML:Diagram> ... </UML:Diagram>

</XMI.content\>
</XMI>

XMI.header contains general information like the UML.DTD version. UML StateMa-
chine is the most important part of UML.content, which contains information about
Statechart. UML : Diagram is used to display the UML diagrams. It contains the exact
position of every displayable unit in the UML diagram.
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3 Type Checker Design and Typing Rules

3.1 High-Level Design

In order to parse the TCOZ languages in XML format, we need to parse the entire XML
file. A compiler approach was taken. A handcrafted1 front end of a complete compiler
was written, which includes modules like the scanner, the symbol table, the expression
parser, the predicate parser and other miscellaneous utility modules. This type checker
has a handcrafted front end of a compiler. A top-down, or recursive descent approach is
taken for two reasons. The first reason is that both DOM and SAX parsers parse an XML
file from the root element, which is the top element, down to the bottom elements. The
other reason is simplicity; the recursive descent approach is easier to understand and to
build. The class diagram of the project is illustrated in Figure 1.

Fig. 1. Class diagram of the project

The two major functionalities of the type checker are to check syntax errors and to check
static semantic errors in the TCOZ specifications in XML format. In the normal case, the
program works as a 2-pass parser. When a forward declaration is present and recognized
by the type checker, the XML document will be parsed again. At startup, the program
takes a list of XML files as parameters. For each file, it calls the Xerces XML parser to

1 Except for the Xerces XML Parser, no other parsing packages, utility functions such as Lex,
YACC or JavaCC are used.
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parse it and look for syntax errors. If there is any syntax error, the parser flags it then skips
the file. If there is no syntax error, the program parses the file again, traversing through
the structure to check for type errors. Upon encountering a type error, the program flags
it, re-synchronizes itself and continues, until it finishes parsing all the files in the list.
The TCOZ type checker has been designed in a way to support modularity and reusability.
It is organized into Java packages.

3.2 Type Hierarchy and Rules

Figure 2 represents the hierarchy of types defined in the project. A utility class FormCode
is also constructed. It has a set of constant definitions, each with a unique integer value
identifying one of the types. The hierarchy consists of 10 types and their relationships
as discussed below.
Type is the super class in the hierarchy and all other types inherite from Type, such
as EnumType, RecordType, RelationType, and so on. ClassType defines a class as a
type with inheritances.
Smith has developed type rules for Object-Z classes [11]. For example, given a generic
state definition of class A[X1, ..., Xn], the state schema rule can be defined as follows:

[d1, ∆d2 | p]

A[t1, ..., tn] :: STATE = [↑ STATE; b � d1; b � d2; | b � p] �
[ q ]

A[t1, ..., tn] :: �

Fig. 2. Class hierarchy of the package TYPING
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STATE refers to the state definition of a class, ↑ STATE stands for the inherited state
definitions from its super classes, and the proviso q is in the form of q ≡ b = (| X1 ❀

t1, ..., Xn ❀ tn |) where ti is the actual parameter substituted to Xi through substitution
operator �. Other type rules for operation schema and inheritance can be found in [11].
We extend Smith’s work with extra type rules for additional TCOZ constructs. For
example, the ChannelType inherits Type. Variables declared of ChannelType are used
for inter-process communications. There are three kinds of channels: channel, sensor
and actuator. A simple synchronized communication (Channel) typing rule for a generic
network topology definition of classes A, B and AB, can be defined as follows:

A

c : chan
...

MAIN =̂ ...c!x...

B

c : chan
...

MAIN =̂ ...c?x...

AB

a : A; b : B
...

MAIN =̂ ...a c✛✲ b...

A[t1, ..., tn] :: STATE � c ∈ chan ∧ MAIN � c.x ∈ X
B[t1, ..., tn] :: STATE � c ∈ chan
AB[t1, ..., tn] :: STATE � a ∈ A ∧ b ∈ B ∧ MAIN � a c✛✲ b

[ q ]
B[t1, ..., tn] :: MAIN � c.x ∈ X

The above states that if class A and B are communicating through channel c, synchro-
nization will be enforced on the input and outputs, i.e., outputs from A through c will lead
to inputs to B. The typing rules for the asynchronous communication (sensor/actuators)
can be similarly developed.
RecordType, SetType and SequenceType can have no names associated with them; in
other words, they can be anonymous types. The special scalar type dummyType is used
in two ways. Firstly, it is used to signal type errors when parsing predicates, expressions
and declarations. If the typing is correct, boolType boolean (for predicate) or respective
data type (for expression and declaration) is returned; or else dummyType is returned.
Secondly, it is used as the base type for empty sets or sequences, since an empty set can
be subset of a set of any type.
Now we have finished the discussion on the development of a type checker for detecting
static semantic errors for TCOZ specifications in XML format. Next we will discuss the
development of an automatic tool for transforming TCOZ dynamic behaviour models
to UML statecharts via XMI.

4 TCOZ to UML Statechart Projection

As a requirement specification of software systems, TCOZ models are precise and elegant
but difficult to read and interpret by software engineers without relevant mathematical
background. In comparison, the most popular graphical notation, UML, is much easier to
understand and widely accepted by the industry. Our key idea for using UML statechart
to visualize TCOZ is:
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– States of UML Statechart are identified with TCOZ processes (operations) and the
state transition links are identified with TCOZ events /guards.

In TCOZ, behavior of a class is specified by the operations as processes. Figure 3 shows
the detailed transformation rules from TCOZ behaviour models to UML statecharts.

Fig. 3. UML projection rules

The projection rules for automatically translating TCOZ models (in XML) to UML
Statecharts (in XMI) is implemented by a JAVA application. The following discusses
the algorithm and implementation steps.

Step One: Preparation

At this stage, the XML file is read in and parsed class-by-class, operation-by-operation.
A tag named processexpr is associated with each operation, which identifies the compu-
tational logic of the operation. The processexpr follows the grammar defined for TCOZ
operation expressions. processexpr is divided into 13 types 2. The activities preformed
by the preprocessor are:

– Build up the operation table for each class.
2 For detail information about fully annotated operation expressions, please refer to

http://nt-appn.comp.nus.edu.sg/fm/zml/zml.xsd.
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– Associate each class with its corresponding super class. One class may have more
than one super class and it may invoke operations defined in different super classes.

– Build up the variable table for each class.
– For each operation, identify its processexpr. Check whether the operation invokes

other operations. If not, mark this operation as a simple operation and generate
the proper string representation of this operation. Otherwise, identify the type of the
processexpr. For each type of processexpr, gather the important information for that
type. For example, if the type is networktopology, identify what are the active objects
and what are communication channels. For processexpr contained in processexpr,
do the same recursively.

Step Two: Generation

For each active object, a new XMI file is created with the necessary header information.
A top level composite state named ‘op’ is added to the Statemachine. An initial state
(pseudostate) is added to the top-level composite state. A Main operation matches to
a main state in the Statechart, which is the first state besides the initial state. Starting
from the main operation, we syntactically analyze the processexpr based on the type
information and generate proper states for each operation.
One challenge here is that at some point we may not know which projection rules could
be used. For example, if some other operation is invoked by Main, shall we model the
called operation as a simple state or a composite state? (At this point, we may not be able
to find out whether the called operation will consequently invoke other operations.) One
simple solution is to model all called operations as composite states and later replace
those unnecessary composite states by simple states.

Step Three: Simplification

After the a complete Statechart is generated, the simplification process involves:

– Remove unnecessary simple states. “Unnecessary simple states” means state that
are temporarily added into the statechart.

– Remove trivial composite states. “trivial composite state” means composite states
that have one or even no substates.

Step Four: Layout

At this stage, we need to calculate the exact positions of all the states, transitions and
events/guards in a diagram. The following formulas are used to calculate the width and
height of a composite state. Given W the width, H the height, M the number of simple
states in the composite state, N the number of composite states in the composite state.
WSimple is the default width of any simple state. HSimple is the default height of any
simple state. W1, · · · WN are width for each composite state in this composite state.
H1, · · · , HN is the height for each composite state in this composite state. S is the default
horizontal space between states. K is the default vertical space between states. P is the
width (or height) of any pseudostate and Q is the width (or height) of any final state.
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W = max{(√
M + 1

) ∗ (WSimple + S) , W1, W2, · · · , WN} + 4S + P + Q
H = (

√
M + 1) ∗ (HSimple + K) + (H1 + H2 + · · · + HN) + N ∗ K

Note that the calculation is done in a bottom-up manner since the size of the outer
composite state depends on the size of the inner one. Once we know the width and
height, we place simple states at the top (

√
M simple states per row) and composite

states at the bottom (one per row).

5 Case Study: Light Control System

In this section, we firstly present a TCOZ LCS (Light Control System)3 model. Then
we use this model to test our type checker and transformation tool to UML statechart.
The LCS system composes of RoomController and RoomDevices. RoomController con-
trols the whole system. RoomDevices consists of lights and motion detectors. The TCOZ
specification for LCS is given as follows. Illmination is an abstract type, Percent is de-
fined as Percent == {0} ∪ 10..100

Light

dim : Percent actuator; on : B

TurningOn =̂ dim := 100; on := true
TurningOff =̂ dim := 0; on := false

The Light class has two operations, TurningOn and TurningOff .

ControlledLight
Light

button, dimmer : chan

ButtonPushing =̂ button?1 → ([dim > 0] • TurningOff ✷

[dim = 0] • TurningOn)
DimChange =̂ [n : Percent] • dimmer?n → ([on] • dim := n ✷

[¬ on] • Skip)
Main =̂ µ N • (ButtonPushing ✷ DimChange); N

The ControlledLight is a subclass of Light. Two extra operations are defined:
ButtonPushing and DimChange. Any occupant can manually turn on or turn off the
light using ButtonPushing or the system will automatically adjust the illumination using
DimChange. For each light, a CSP channel button is defined to capture the status of the
button. The other channel dimmer is used to communicate with the system controller.

3 LCS is an intelligent embedded control system. It can detect the occupation of the building,
then turn on or turn off the lights automatically. It is able to adjust illumination in the building
according to the outside light level. The full specification model can be found at: http://nt-
appn.comp.nus.edu.sg/fm/zml/xml-web/light.xml
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The RoomContrller controls both MotionDetector (for detecting any movement in the
room) and ControlledLight by sending proper signals on channel motion and dimmer.
(The MotionDetector definition is omitted due to space limitation.)

RoomController

dimmer, motion : chan
odsensor : Illumination sensor
absenT : T

olight : Illumination

... [behaviour part is omitted]

5.1 Static Type Checking

Object-Z related type errors can be detected in a similar way as Wizard. The follow-
ing example illustrates that the type checker spots TCOZ channel-related error and
reports it. In the Main operation of class LCS, processes m and r (belonging to classes
MotionController and RoomController respectively) communicate via a common chan-
nel called motion; r and l (belonging to ControlledLight) also communicate via another
common channel called dimmer. Assuming that in class RoomController, the channel
motion is renamed to movement and there is no other change to the specification:

RoomController

dimmer : chan
movement : chan [Changed!]
...

...

As a result, the processes m and r cannot communicate any more since they no longer
share a common channel. This is captured by the type checker as follows.

Error! LCS.xml: 305: Identifier not found Symbol: motion
Location: SymTabNode: RoomController >>

Class Definition [Class Type: RoomController]

Error! LCS.xml: 305: No common channel defined!
Symbol: motion Location: SymTabNode: Main >> Class Operation

OF SymTabNode: LCS >> Class Definition [Class Type: LCS]

LCS.xml parsed 2 times.

2 errors.
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5.2 Dynamic UML Visualizing

In this subsection we will show how to apply projection techniques and the tool to
generate a proper UML statechart from the LCS formal model. For controlledLight, we
start from the Main operation since Main is the state that starting state leads to. By
mapping the TCOZ notations to a Statechart diagram, a rough statechart is generated
as shown in the left part of figure 4. After that, we apply projection rules to operation
DimChange and ButtonPushing and get the final statechart as shown in the righthand
side of figure 4.

Fig. 4. Statechart for ControlledLight

6 Conclusions

The first contribution of the paper is the development of a syntax and static semantic
checker for the TCOZ language in XML format, using a compiler approach. As TCOZ is
a super set of Object-Z and Z, the type checker can also be used to type check Object-Z
and Z specifications in XML format.
For the purpose of visualizing TCOZ behaviour model, the second part of the paper
defined a set of projection rules for transforming a TCOZ model to UML statechart and
demonstrated the implementation steps for the tool development.
In summary, this paper presents some ‘light-weight’ tool support for the TCOZ integrated
formal specification technique. One future work on the type checker is to extend its
capabilities with the techniques from ESC [9]. Looking at even more ‘heave-weight’
tools support, i.e. model checking and theorem proving, one further work is to translate
TCOZ to timed automata so that tools like UPPAAL [2] can be used to check other
TCOZ properties. We are currently also investigating the encoding of TCOZ notation in
theorem provers such as HOL/Isabelle for automatic verification.
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