
Formal Specification-based Online Monitoring

Hui Liang
School of Computing

National University of Singapore
lianghui@comp.nus.edu.sg

Jin Song Dong
School of Computing

National University of Singapore
dongjs@comp.nus.edu.sg

Jing Sun
Department of Computer Science

The University of Auckland
j.sun@cs.auckland.ac.nz

Roger Duke
School of ITEE

The University of Queensland
rduke@itee.uq.edu.au

Rudolph E. Seviora
Department of Electrical and Computer Engineering,University of Waterloo

seviora@swen.uwaterloo.ca

Abstract

With current trends towards more complex software
system and use of higher level languages, a monitoring
technique is of increasing importance for the areas such
as performance enhancement, dependability, correctness
checking and so on. In this paper, we present a formal
specification-based online monitoring technique. The key
idea of our technique is to build a linking system, which
connects a specification animator and a program debugger.
The required information about dynamic behaviors of the
formal specification and concrete implementation of a tar-
get system is obtained from the animator and the debugger.
Based on those information, the judgement on the consis-
tency of the concrete implementation with the formal speci-
fication will be provided. Not embedding any instrumenta-
tion code into the target system, our monitoring technique
will not alter the dynamic behavior of the target system. An-
imating the formal specification, rather than annotating the
target system with extra formal specifications, our monitor-
ing technique separates the implementation-dependent de-
scription of the monitored objects and the formal require-
ment specification of them.

1. Introduction

Monitoring techniques gather information about a com-
putational process as it executes. And monitoring systems
are increasingly seen as a viable solution to areas which
are of growing concern, such as performance enhance-

ment, dependability, performance evaluation, security and
so on [19]. Moreover, current trends toward more complex
programs and use of higher level languages make software
monitoring more and more important for those areas. Mon-
itoring an application to ensure the consistency with high-
level requirement specifications is an efficient approach for
correctness checking and it can also be used to detect run-
time errors or as a verification technique. Recently, there
has been increasing attention from the research community
to the design of monitors which can be used to assure the
correctness of a system at runtime [18, 17, 15, 10, 14].
Those monitoring approaches usually add instrumentation
code to the program to collect interesting data at runtime.
Adding instrumentation code is itself a difficult task in-
volving all the complexities of programming. Moreover,
it generally leads to changes in the program. And it raises
the possibility that through collecting information to ana-
lyze target system behavior, the monitoring system is ac-
tually altering that behavior of the target system. This is
referred as Heisenberg effect for software [19]. In some
of the above approaches, monitoring is achieved by anno-
tating the concrete implementation with extra formal spec-
ifications. Therefore, another main drawback of the above
monitoring techniques is the lacking of separation between
the concrete implementation of target systems and the high-
level requirements specification of them.

In this paper, we propose a formal specification-based
online software monitoring technique. Formal specifica-
tions present a clear, precise and unambiguous description
of the required behaviours of the target system. Although
the process of creating formal specification might be la-

Proceedings of the 11th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS'06)
0-7695-2530-X/06 $20.00 © 2006

Formal

Specification

Inconsistency
report

&

User’s decision

Execution

sequences

Specification-based Monitoring System

Specification
Animator

Monitoring

Module

Debugging

Module

Concrete
Implementation

Figure 1. Formal specification-based online monitoring.

borious and time-consuming, formal specification can con-
tribute a great deal to system validation, software verifica-
tion and software testing. Moreover, we believe that ab-
stract formal requirements specification can also contribute
a lot to software monitoring. With the assumption that
there exists formal specification for the monitored objects,
the key idea of our approach is to build a linking system
(monitoring module) which connects a specification anima-
tor and a program debugger. As shown in Figure 1, in
our specification-based monitoring approach, a specifica-
tion animator is used to exhibit the dynamic behavioural
properties of the formal specification; a debugger is used to
extract the information about the dynamic behaviour of the
concrete implementation. The monitoring module (linking
system) will dynamically check the consistency of the con-
crete implementation with the formal specification.

The main characteristics of our monitoring technique are
as follows:

• Not embedding any instrumentation codes to the target
system.

• Not annotating the target system with any formal spec-
ifications.

The rest of the paper is organized as follows. Section
2 introduces the Z specification language with a queue
system as example and also presents background infor-
mation on specification animation. Section 3 describes
the formal specification-based online monitoring technique
and discusses a few key issues in the development of a
specification-based monitoring system. In Section 4, the
monitoring technique is applied to the railway track line
automatic locking scheme of a railway system. Section 5

reviews some related work. Section 6 concludes the paper
and discusses the future works.

2. Background

2.1. The Z specification language

The Z specification language has been a widely accepted
formal language for specifying the behaviours of software
and hardware systems. Based on set theory and first or-
der predicate logic, Z is a model oriented specification lan-
guage. It models a system by describing its states and the
ways in which the states can be changed. This modelling
style makes Z not only a good match to imperative, proce-
dural programming languages but also a natural fit to object-
oriented programming [9]. Actually, the Z specification lan-
guage includes two parts: the mathematical language and
the schema language [24]. The schema language can be
used to structure and compose descriptions, making it pos-
sible to build big schemas from small ones.

size == 10

Queue
items : seq N

#items ≤ size

InitQueue
Queue′

items′ = 〈〉

Enqueue
ΔQueue
item? : N

#items < size ∧ items′ = items � 〈item?〉

Proceedings of the 11th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS'06)
0-7695-2530-X/06 $20.00 © 2006

Dequeue
ΔQueue
item! : N

#items > 0
item! = head items ∧ items′ = tail items

DupOneinTail
ΔQueue
item! : N

#items > 1 ∧ #items < size
item! ∈ ran items ∧ item! �= head items

items′ = items � 〈item!〉

The Z specification above describes a queue system
which is a First In First Out(FIFO) queue in nature, but
with the addition of the DupOneinTail operation. The
DupOneinTail schema describes an operation that selects
an item, which is not the first element, from the queue ran-
domly and adds it to the end of the queue. It is obvious
that DupOneinTail is a nondeterministic operation because
there will be more than one possible results for the execu-
tion of it when there are more than two items in the queue.
This queue system will be used as an example in Section 3
to explain our specification-based monitoring technique and
system.

2.2. Specification animation

Specification animation exhibits the dynamic be-
haviourial properties of formal specification. It not only
gives the specification designers a way to test whether their
specifications behave as expected, but also validates the be-
haviour of formal specifications with the end users. The
specification animation technique has been used to assist
systematic validation of formal specifications [12, 13].

In the last decade, several animation tools have been de-
veloped for executing and interpreting formal specifications
automatically. For example, PiZA [8] is an animator for Z,
and Possum [6, 7] is an animator for Z and Z-like specifi-
cation language. The animation tool used in our monitoring
system is Jaza [21]. It is an animator for Z, which has a
strong support for quantifiers and various less-often-used Z
constructors(such as μ, λ, θ terms). It provides more effi-
cient and convenient evaluation of schemas on ground data
values; and it has the ability to search for example solu-
tions of a schema or predicate. Jaza supports at least twelve
different representations of set. And this makes it more ad-
vanced in its execution than other animators for Z. More-
over, Jaza can handle not only unpredictable performance
characteristics but also nondeterministic schemas.

3. Formal specification-based online monitor-
ing

This section describes our formal specification-based on-
line monitoring technique. Section 3.1 presents an overview
of the monitoring technique. Section 3.2 describes a moni-
toring system that we have developed for demonstrating the
technique. Section 3.3 discusses a few key issues which we
encountered in the development of the specification-based
monitoring system.

3.1. Overview of the monitoring technique

Given a concrete implementation and formal specifica-
tion, our formal specification-based monitoring technique
dynamically checks the consistency of the concrete imple-
mentation with the formal specification.

The overall picture of the monitoring technique has been
shown in Figure 1. With the specification animator, our
specification-based monitoring technique gets the informa-
tion about the dynamic behavioural properties of the formal
specification through specification animating; and with the
debugging module, the information about the dynamic be-
haviour of the concrete implementation is gathered through
program debugging. Taking the execution sequences pro-
vided by the user as input, the monitoring module con-
trols the specification animator and debugging module so
that the concrete implementation is run in parallel with the
animation of the formal specification. Meanwhile, based
on the information obtained from the specification anima-
tor and debugging module, the monitoring module provides
judgement on the consistency of the concrete implementa-
tion with the formal specification. If any inconsistency is
found, it will be reported to the user. Given the inconsis-
tency report, the user needs to make a decision about how
to deal with such an inconsistency. Then, the monitoring
system will continue its work according to user’s decision.

In our monitoring technique, the monitoring module
functions as an external observer of the target system.
Moreover, the monitoring module is designed to monitor the
target system and respond in a timely manner while the tar-
get system is running. This means that our monitoring tech-
nique not only gathers information, but also dynamically
interprets the gathered information and responds appropri-
ately. Therefore, it is an online monitoring technique [19].

3.2. Specification-based monitoring system

To demonstrate our specification-based monitoring tech-
nique, we have implemented a specification-based mon-
itoring system. The monitoring system works with the
formal specification written in Z formal language and the
concrete implementation programmed in Java programming

Proceedings of the 11th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS'06)
0-7695-2530-X/06 $20.00 © 2006

language. In our monitoring system, the animator used for
animating the specification is Jaza [21], the debugger used
for extracting required information from the execution of
Java program is jdb [1]. jdb is the debugger supplied by Sun
in the Java Developer’s Kit (JDK); and it is implemented us-
ing the Java Debugger API.

The monitoring system can work in two different modes:
debugging mode and running mode. After the formal speci-
fication and concrete implementation have been loaded to
the monitoring system, the system will extract the oper-
ations and state variables defined in the formal specifica-
tion, and the methods and class variables defined in con-
crete implementation. The user needs to match the oper-
ations defined in the formal specification with correspond-
ing methods defined in the concrete implementation; and
do the same to the state variables and corresponding class
variables.

In the debugging mode, after matching the opera-
tions/state variables in specification and methods/class vari-
ables in implementation, the user inputs all of the meth-
ods which are expected to be executed into the monitoring
system as a whole sequence; and the system will automati-
cally generate the sequence of corresponding running com-
mands for the animator. Then, the system starts the dynamic
checking of the behaviourial results of the implementation
against the behaviourial results of the specification anima-
tion. In the debugging mode, our specification-based moni-
toring system can serve as an effective dynamic test execu-
tion and test result checking tool.

In the running mode, after matching the operations/state
variables in the specification with the methods/class vari-
ables in the implementation, the user chooses the execu-
tion step by indicating the methods to be executed and in-
putting parameters(if necessary). The commands for exe-
cuting corresponding operations will be automatically gen-
erated for the animator. The monitoring system will then
check the running result of the implementation execution
with the corresponding specification animation result to fig-
ure out whether there is an inconsistency. In the running
mode, the user indicates what will be executed next in a
step-by-step way. Thus, the system can achieve the on-the-
flying monitoring of concrete implementations against for-
mal specifications. In the running mode, the user guided
execution sequence selection can be easily adapted to con-
nect to a runtime execution system to achieve the real-time
monitoring of reactive safety-critical systems.

3.3. Key issues related to the monitoring system

Mappings between concrete implementation and for-
mal specification. The formal specification of a soft-
ware/hardware system usually describes the system at a
high level of abstraction with a formal language. Some-

times, the specification is not executable [5], but it is gen-
erally very expressive and includes many rich abstract data
types. The abstract data types in a specification have no data
representation specified, the implementations of their oper-
ations are also kept abstract [16]. To implement the spec-
ification, those abstract data types must be implemented
by the existing data types in the programming language.
There may be various potential concrete representations in
the implementation for an abstract data type in the spec-
ification. For example, in the specification of the queue
system displayed in Section 2.1, the type of state variable
items is sequence. Suppose the programming language
we use to implement the queue is Java, we may use the
java.util.Vector or ArrayList classes to imple-
ment the abstract data type sequence.

To monitor whether the concrete implementation is
consistent with the formal specification, the first thing that
needs to be done is to map the variables, data types and
operations in formal specifications with their corresponding
counterparts in concrete implementations. Our monitoring
system automatically extracts the operations and state vari-
ables defined in the formal specifications, and the methods
and class variables defined in concrete implementations;
and it also provides the users with the mechanism to finish
the mapping.

Inconsistency between concrete implementations and
formal specifications. If the concrete implementation is
not consistent with the formal specification, the monitoring
system will detect and report such an inconsistency. What
should the monitoring system do after an inconsistency has
been revealed? If we let the animator keep running, all of
the subsequent judgement will apparently be inconsistent
due to the carry-over of inconsistency from the previous ex-
ecution. Therefore, we propose two choices to the user. The
first choice is to stop the monitoring process whenever an
inconsistency is detected, and let the user to fix the problem
in the implementation. However, this choice will reduce the
effectiveness of the system as only one inconsistency can
be found at a time. The second choice is to reinitialize the
animator with the corresponding execution result from the
implementation to keep the animation and the implementa-
tion in the same state before the next operation/method is
executed. This choice is based on the assumption that the
execute result of the implementation is correct.

class Queue {
private Vector queue;
Queue () {

queue = new Vector();
}
public void enQueue (Object item) {

queue.addElement(item);
}

Proceedings of the 11th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS'06)
0-7695-2530-X/06 $20.00 © 2006

public Object deQueue () {
Object obj = null;
int last;
if (!queue.isEmpty()) {

obj = queue.lastElement();
last = queue.size();

queue.removeElementAt(last-1);
} return obj;

}
public Object dupOneinTail() {

int n, i; Object obj = null;
n = queue.size();
if(n>1){

i = (int)(n*Math.random());
obj = queue.elementAt(i);
queue.addElement(obj);

} return obj;
}

}

For example, the Java code above is supposed to
implement the queue system which is specified by the Z
specification displayed in Section 2.1. After loading the
specification and implementation to the monitoring system
and finishing necessary mapping between the specification
and implementation, we start the monitoring process. As
shown in Figure 2, after the execution of the operation of
deleting an item from the queue, the monitoring reports an
inconsistency and points out that the operation Dequeue
is not implemented correctly. When we checked the
above Java code, we found that the method deQueue
actually deletes the last item from the queue, not the first
one, while the specification demands that the operation
Dequeue delete the first item from the queue. When the
monitoring system reports an inconsistency, it provides
the two choices:(1) stop monitoring, (2) reinitialize the
animator with the corresponding execution result from the
implementation, as shown in Figure 2. If we choose to
reinitialize the animator, the state variable items will be
set to 〈2, 3〉 before the next operation is executed and the
monitoring system can continue working. Alternatively, we
can choose to stop monitoring, and fix the problem in the
implementation.

Nondeterministic operations in the specification. An is-
sue that complicates the matter is specification nondeter-
minism, i.e. the specification may involve the definition
of nondeterministic operations, the execution of which may
lead to more than one possible results. When encountering
a nondeterministic operation in the specification, the anima-
tor will present a legal but stochastic result. However, the
implementation is always deterministic. It may present a
result that is legal to the specification but different from that
of the animator. If the monitor only performs simple com-

Figure 2. Inconsistency Appears.

parison of the two results, it will definitely make a wrong
judgement. Therefore, how to make the monitoring sys-
tem judge correctly in a nondeterministic situation is one of
the major challenges of the specification-based monitoring
technique. A possible solution for handling such nondeter-
minism is to make the animator present all the possible legal
results and let the monitoring system take all of them into
consideration when comparing the results between the im-
plementation and the specification to avoid misjudgement.
However, this approach may be time consuming and may
considerably increase space complexity when the number
of possible results are large.

Our specification-based monitoring system provides a
mechanism for the user to indicate whether an operation is
deterministic or nondeterministic. When a nondeterministic
operation is encountered, the animator presents one possible
result at a time. The monitoring system compares the result
from specification animation with the corresponding result
from implementation execution. If they are consistent, the
system will decide that the implementation of this opera-
tion is correct. If not, the animator will continue to present
another different possible result, the monitoring system will
perform another comparison, the monitoring system will re-
peat the above process till the results are consistent or all of
the possible animation results are presented. In the latter
case, where the result from implementation is not consis-
tent with any of the possible results from the animator, the
system will make the judgement that the operation is not im-
plemented correctly according to the formal specification.

From the Z specification of a queue system displayed in
Section 2.1, we know that the operation DupOneinTail is

Proceedings of the 11th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS'06)
0-7695-2530-X/06 $20.00 © 2006

Figure 3. Handle nondeterminism.

a nondeterministic operation. There would be more than
one possible results for a single execution of it. In Figure
3, it can be seen that method dupOneinTail, which is sup-
posed to implement the operation DupOneinTail, appears
twice in the execution sequence. When it is executed for
the first time, it selects “5”, which is the last element of the
queue, and attaches it to the tail of the queue. This is al-
lowed by the specification and the animator certainly finds
a corresponding result that matches it. The monitoring sys-
tem will not report any inconsistency. It only changes the
color of the result in the window to indicate that the op-
eration DupOneinTail is nondeterministic. However, when
the method dupOneinTail is executed for the second time,
it selects “2”, which is the head of the queue, and attaches
it to the tail of the queue. This should not be allowed ac-
cording to the specification. The animator exhausts all the
possible legal results and could not find a match. Therefore,
the monitoring system concludes an inconsistency at this
time. By examining the original implementation displayed
in Section 3.3.2, we find that the inconsistency is indeed
caused by the dupOneinTail method which does not imple-
ment one of the preconditions (i.e., the selected item can not
be the head of the queue) in the specification.

4. Case study – railway track line automatic
blocking scheme

In this section, we demonstrate the application of our
specification-based monitoring technique with the railway
track line automatic blocking scheme [3] of a railway con-

trol system. Due to the inherent characteristics of a reactive
safety-critical system, it should be monitored by an inde-
pendent monitoring system which can make quick and pre-
cise determination whether the observed behaviours are ac-
ceptable or not. Our monitoring system satisfies the above
requirement, therefore, it can be applied to ensure the con-
tinuous correct behaviours of a reactive safety-critical sys-
tem.

In the railway system, in order to avoid that the trains
which run in the same direction on the same track crash
into one another “from behind”, the track is divided into
segments with visible signals at the segment connections.
The trains may pass a signal if there are no trains in the
approaching segment(signal is set to green), or if it is some
while ago that a previous train passed the segment(signal is
then set to yellow). Otherwise, if the approaching segment
is occupied by another train, the current train is blocked as
the signal is set to red.

Station X Station Y
sigYX 1

S
1

sigYX
i-1

sigXY
i-1

sigYX
i

sigXY
i

sigYX
i+1

sigXY
i+1

sigXY
n

S
i-1

S
i

S
i+1

S
n

Figure 4. Automatic line signalling.

As shown in Figure 4, line l which connects exactly two
stations: station X and station Y, is usually divided into
segments l = 〈s1, s2, ..., si−1, si, si+1, ..., sn〉. A line l can
be in one of three possible states: OpenXY, OpenYX and
Close. Each segment can be in two states: Free or Occu-
pied. Segment si is in Free when no train is detected in the
segment. Otherwise, segment si is in Occupied.

For each inner segment si,where i = 〈2, ..., n − 1〉, there
are two signals sigXYi and sigYXi which are for the two op-
posite directions of travel. Each signal is associated with
four possible states: Red, Yellow, Green and Off.

Signal sigXYi is in Red state when line l is in OpenXY
state and segment si is in Occupied state. It is in the Green
state when line l is in OpenXY state and both segment si

and si+1 are in Free state. It is in Yellow state when line l
is in the OpenXY state, segment si is in Free state and seg-
ment si+1 is in Occupied state. It is in the Off state, when
line l is in OpenYX or Closed state. Correspondingly, it is
easy figure out the situations when signal sigYXi will be in
the four different states.

For the first segment s1 and the last segment sn, there is
only one signal sigYX1 and signal sigXYn, respectively. The
signals in the opposite directions(sigXY1 and sigYXn) are
controlled manually, or by interlocking in the station [3].

As shown in Figure 5, with the formal specification and
concrete implementation of the railway track line automatic
blocking scheme loaded into our specification-based mon-

Proceedings of the 11th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS'06)
0-7695-2530-X/06 $20.00 © 2006

Figure 5. Monitoring an aspect of a railway
control system.

itoring system, the monitoring system works in running
mode where the user will indicate what will be executed
next in a step-by-step way. Figure 5 also shows that the
monitoring system finds an inconsistency and reports that
operation trainTwoMovetoB is not implemented correctly.
By checking the operation sequence, we know that the sec-
ond train enters a segment while the first train is already on
it. This is not allowed by the railway line automatic block-
ing scheme. Due to the page limitation, the full version
of the formal specification in the Z specification language
and the concrete implementation in Java programming lan-
guage1 are not included in this paper. The part of the formal
specification which describes the above property of the rail-
way system is shown as follows.

trainTwoMovetoB
ΔTrack

trainTwo.position = A
status = OpenAB
trainTwo.direction = MoveAB
(segmentB.signalAB = Green

∨ segmentB.signalAB = Yellow)
segmentA′.status = Free
segmentA′.signalAB = Yellow
segmentB′.signalAB = Red
segmentB′.status = Occupied
trainTwo′.position = B
trainTwo′.direction = trainOne.direction
trainOne′ = trainOne ∧ status′ = status

1A complete version of the formal specification and the implementa-
tion of the railway track line automatic blocking scheme can be found at
http://www.comp.nus.edu.sg/∼lianghui/spec-monitoring.pdf.

By checking the concrete implementation in Java, it is
found out that the cause of the inconsistency is in method
twoAtoB. As shown by the following code, the method
twoAtoB which is supposed to implement the operation
trainTwoMovetoB defined in formal specification, does not
correctly implement the checking of signal as described by
the specification. In the if statement of method twoAtoB,
there should have been a substatement which checks the
variable corresponding to the signal at the segment connec-
tion.

public void twoAtoB(){
if(status == TrackState.OpenAB

&& trainTwo.position ==
TrainPosition.A

&& trainTwo.direction ==
TrainDirection.MoveAB)

{segmentA.status = SegState.Free;
segmentA.signalAB = SigState.Yellow;
segmentB.signalAB = SigState.Red;
segmentB.status = SegState.Occupied;
trainTwo.position = TrainPosition.B;
}
}

5. Related work

Efforts have been put into the development of software
monitoring techniques during the past few years. Zulker-
nine and Seviora [25] proposed a compositional approach
to automatic monitoring of distributed systems, whose re-
quirements specification is expressed in communicating fi-
nite state machines based formalism. Their monitor pas-
sively observes the external inputs, outputs, and partial in-
ternal states of a distributed system. With this information,
the monitor interprets the specification of the target system
and reports errors and failures. The main difference be-
tween the above work and our monitoring system is that we
do not embed any extra observation code into the implemen-
tation, instead, we use the debugger to obtain the required
information from the target system. Barnett et al. [2] pre-
sented a runtime monitor that uses executable specification
to identify the behavioural discrepancies between a compo-
nent and its specification. Like our monitoring system, the
monitor developed by Barnett et al. can handle both deter-
ministic and nondeterministic specifications and it does not
need any instrumentation of the target components. How-
ever, to observe the dynamic behavior of the target system,
it needs to snoop all the inter-component calls and returns.

Sankar and Mandal [17] have developed a methodology
to continuously monitoring an executing Ada program for
specification consistency. The user annotates an Ada pro-
gram with constructs from Anna, a formal specification lan-

Proceedings of the 11th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS'06)
0-7695-2530-X/06 $20.00 © 2006

guage. Those annotations are predicates that express con-
straints on Ada language constructs such as type, subtype,
subprograms and exceptions. The compiler transforms the
annotations into checking functions; and, in place of the
transformed annotation, the compiler inserts a call to the
checking function. The call statement acts as a sensor, ob-
serving the behavior of the target system; and the checking
function judges the consistency. If any inconsistency oc-
curs, diagnostic information is provided. In this approach,
the instrumentation code can be installed automatically by
the compiler. However, adding a new annotation leads to
the recompiling of the target system. Moreover, there is
potential that a large number of monitor will exist for a
target system because a separate checking task is created
for every annotation. The important difference between
our monitoring technique and Sankar and Mandal’s is that
the implementation-dependent description of the monitored
objects is separated from the high-level requirements spec-
ification of it in our monitoring system. Our monitoring
system does not annotate the concrete implementation with
any extra formal specifications. It gets the required infor-
mation about dynamic behaviors of the formal specification
and concrete implementation through animating and debug-
ging respectively.

Our monitoring system can also help online testing. The
basic idea of on-the-fly/online testing has been introduced
in the context of labelled transition systems using ioco the-
ory [20, 22]. Veanes et al. [23] developed a model-based
testing tool named Spec Explorer, in which the model pro-
grams are written in the high level specification languages
AsmL or Spec#. They formalized both the model programs
and the implementation under test(IUT) as interface au-
tomata. The conformance relation between a model and an
implementation is formalized as refinement between two in-
terface automata. Correspondingly, the interface automata
is used for conformance testing, including the handling of
timeouts. Contrary to formalizing model program and IUT,
in our monitoring system, the formal specification is an-
imated and the consistency between the specification and
implementation is judged based on the concrete data from
animator and debugger, rather than based on the refinement
between abstract models.

6. Conclusion and future work

This paper presents a formal specification-based on-
line monitoring technique. With the formal specifica-
tion and concrete implementation of the target system, our
specification-based monitoring technique uses a specifica-
tion animator to exhibit the dynamic behaviour of the for-
mal specification, uses a program debugger to extract re-
quired information about the dynamic behaviour of the
concrete implementation, and checks the consistency of

the concrete implementation with the formal specification,
based on the information from the animator and the debug-
ger.

Without embedding any instrumentation code into the
target system, our formal specification-based online moni-
toring technique will not alter the running environment and
the dynamic behaviours of the target system which is being
monitored. Our monitoring technique gets required infor-
mation about dynamic behaviors of the formal specification
and concrete implementation of the target system through
animating and debugging respectively, rather than by anno-
tating the concrete implementation with extra formal spec-
ifications. Consequently, our monitoring technique realizes
the separation between the implementation-dependent de-
scription of monitored object and the high-level require-
ments specification of it.

As an online monitoring technique, our formal
specification-based monitoring technique dynamically
gathers required information, interprets the gathered
information and responds appropriately in a timely manner
as the target system runs. It can contribute to increasing
the dependability, correctness, robustness and security
of the target system. It is competent for monitoring
reactive safety-critical systems, and it also can contribute
to effective dynamic test execution and test result checking.

In the future, we plan to extend our specification-based
monitoring system so that it can work with the specifica-
tions written in Object-Z [4] and TCOZ [11], which are both
extensions of Z and have strong capability for describing
complex real-time system. The monitoring system based on
them will be more competent. Monitoring distributed and
parallel system during execution can provide information
that can be used to reconfigure the system, provide visual-
ization of behavior, or steer its outcome [19]. Therefore, we
also intend to extend our monitoring technique so that it can
handle distributed and parallel systems.

7. Acknowledgments

We would like to thank Dines Bjørner for many helpful
discussions about the railway system.

References

[1] http://java.sun.com/j2se/1.3/docs/tooldocs/solaris/
jdb.html.

[2] M. Barnett and W. Schulte. Spying on components: A run-
time verification technique in specification and verification
of component-based systems. In Proc. of the Workshop on
Specification and Verification of Component Based Systems
- OOPSLA 2001, 2001.

[3] D. Bjørner. The SE Book: Principles and Techniques of Soft-
ware Engineering. Springer-Verlag, 2004.

Proceedings of the 11th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS'06)
0-7695-2530-X/06 $20.00 © 2006

[4] R. Duke, G. Rose, and G. Smith. Object-Z: a Specifica-
tion Language Advocated for the Description of Standards.
Computer Standards and Interfaces, 17:511–533, 1995.

[5] I. Hayes and C. Jones. Specifications are not (necessar-
ily) executable. Software Eng. Journal, 4(6):330–338, Nov.
1989.

[6] D. Hazel, P. Strooper, and O. Traynor. Possum: An animator
for the sum specification language. In APSEC ’97: Proceed-
ings of the Fourth Asia-Pacific Software Engineering and In-
ternational Computer Science Conference, page 42. IEEE
Computer Society, 1997.

[7] D. Hazel, P. Strooper, and O. Traynor. Requirements en-
gineering and verification using specification animation. In
ASE ’98: Proceedings of the Thirteenth IEEE Conference
on Automated Software Engineering, page 302. IEEE Com-
puter Society, 1998.

[8] M. A. Hewitt, C. O’Halloran, and C. T. Sennett. Experiences
with PiZA, an Animator for Z. In ZUM ’97: Proceedings of
the 10th International Conference of Z Users on The Z For-
mal Specification Notation, pages 37–51. Springer-Verlag,
1997.

[9] J. Jacky. The Way of Z: Practical Programming with Formal
Methods. Cambridge University Press, 1997.

[10] Y. S. Liao and D. Cohen. A specificational approach to high
level program monitoring and measuring. IEEE Transac-
tions on Software Engineering, 18(11):969–979, 1992.

[11] B. P. Mahony and J. S. Dong. Blending Object-Z and Timed
CSP: An introduction to TCOZ. In K. Futatsugi, R. Kem-
merer, and K. Torii, editors, The 20th International Con-
ference on Software Engineering (ICSE’98), pages 95–104,
Kyoto, Japan, Apr. 1998. IEEE Press.

[12] T. Miller and P. Strooper. A framework for systematic spec-
ification animation. Technical Report 02-35, The University
of Queensland, 2000.

[13] T. Miller and P. Strooper. Model-based specification anima-
tion using testgraphs. In ICFEM ’02: Proceedings of the 4th
International Conference on Formal Engineering Methods,
pages 192–203. Springer-Verlag, 2002.

[14] A. K. Mok and G. T. Liu. Efficient run-time monitoring of
timing constraints. In RTAS ’97: Proceedings of the 3rd
IEEE Real-Time Technology and Applications Symposium
(RTAS ’97), page 252, 1997.

[15] J. Peleska. Test automation of safety-critical reactive sys-
tems: Industrial application and future developments. In
M.-C. Gaudel and J. Woodcock, editors, FME ’96: Indus-
trial Benefit and Advances in Formal Methods, pages 538–
556, New York, 1996. Springer-Verlag.

[16] I. Sanabria-Piretti. Data Refinement by Rewriting. PhD
thesis, Department of computer science, Oxford University,
2001.

[17] S. Sankar and M. Mandal. Concurrent runtime monitoring
of formally specified programs. IEEE Computer, 26(3):32–
41, 1993.

[18] T. Savor and R. E. Seviora. An approach to automatic detec-
tion of software failures in real-time systems. In IEEE Real
Time Technology and Applications Symposium, 1997.

[19] B. A. Schroeder. On-line monitoring: A tutoiral. IEEE Com-
puter, 28(6):72–78, 1995.

[20] J. Tretmans and A. Belinfante. Automatic testing with for-
mal methods. In EuroSTAR’99: 7th European International
Conference on Software Testing, Analysis & Review, 1999.

[21] M. Utting. Data structures for Z testing tools. In Proceedings
of FM-TOOLS, 2000.

[22] M. van der Bij, A. Rensink, and J. Tretmans. compositional
testing with IOCO. In Formal Approaches to Software TEst-
ing: Third International Workshop,, FATE2003, pages 86–
100, 2004.

[23] M. Veanes, C. Campbell, W. Grieskamp, W. Schulte, and
N. Tillmann. Online testing with model programs. In Pro-
ceedings of FSE/ESEC 2005, 2005.

[24] J. Woodcock and J. Davies. Using Z: Specification, Refine-
ment, and Proof. Prentice-Hall International, 1996.

[25] M. Zulkernine and R. E. Seviora. A compositional approach
to monitoring distributed systems. In Proceedings of the
International Conference on Dependable Systems and Net-
works, 2002.

Proceedings of the 11th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS'06)
0-7695-2530-X/06 $20.00 © 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

