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Abstract. Semistructured data is now widely used in both web applications and
database systems. Much of the research into this area defines algorithms that
transform the data and schema, such as data integration, change management,
view definition, and data normalization. While some researchers have defined a
formalism for the work they have undertaken, there is no widely accepted for-
malism that can be used for the comparison of algorithms within these areas. The
requirements of a formalism that would be helpful in these situations are that
it must capture all the necessary semantics required to model the algorithms, it
should not be too complex and it should be easy to use. This paper describes a first
step in defining such a formalism. We have modelled the semantics expressed in
the ORA-SS (Object Relationship Attribute data model for SemiStructured data)
data modelling notation in two formal languages that have automatic verification
tools. We compare the two models and present the findings.
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1 Introduction

Semistructured data is now widely used in both web applications and database systems.
There are many research challenges in this area, such as data integration, change man-
agement, view definition, and data normalization. Traditionally in these areas a formal-
ism is defined for the database model, and properties of the algorithms can be reasoned
about, such as the dependency preserving property of the normalization algorithm in the
relational data model. Because research into semistructured data is still in its infancy,
many algorithms have been defined in this area and a number of formalisms have been
proposed but there is no widely accepted formalism that is generally accepted to reason
about the properties of the algorithms. Such a formalism must capture all the necessary
semantics required to model the algorithms, should not be too complex, and should be
easy to use.

Another area that has been developing steadily is automatic verification. This involves
formally specifying a model of a system, and running an automatic model checker or
theorem prover that proves or disproves the consistency of the model. In this paper we
describe research that we have undertaken in this direction. We have determined the
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semantics that we believe are required to reason about the properties of algorithms, we
have modelled them using two different logics and used automatic verification to reason
about the properties. This work is a first step towards establishing a widely accepted
formalism, and it does highlight some important findings:

– the importance of the model containing enough semantics to express the algorithms
over the data, but not excessive semantics

– the model must be broken down into logical sections for understandability and
extensibility

– the importance of basing research into semistructured data on previous research in
the database area rather than reinventing the wheel.

More specifically, we use a data modelling notation that extends the entity rela-
tionship (ER) data model. The ORA-SS (Object Relationship Attribute data model for
SemiStructured Data) data model models the schema and instance, so it is possible to
model an XML Schema document in an ORA-SS schema diagram and an XML docu-
ment in an ORA-SS instance diagram. However the semantics captured in an ORA-SS
schema diagram are richer than those that are represented in XML Schema. We have
modelled the semantics expressed in the ORA-SS diagrams in OWL (Web Ontology
Language), which is based on a description logic, which itself can be translated into
first order predicate logic. Because OWL was designed for sharing data using ontolo-
gies on the web, it was a natural starting point. OWL has an automatic reasoning tool
called RACER (Renamed ABox and Concept Expression Reasoner). We also modelled
the semantics expressed in the ORA-SS diagrams in PVS (Prototype Verification Sys-
tem), which is a typed higher order logic based verification system with a theorem
prover. PVS can express more complex structures than OWL and in part, you get typing
for free.

Section 2 clarifies the motivation for the project and describes other research that has
offered a formal model for semistructured data. Section 3 provides background for the
rest of the paper, highlighting the main features of ORA-SS, OWL and PVS. Section 4
summarizes the modelling of ORA-SS in OWL and PVS. More details of these models
can be found in [1,2]. In Section 5 we analyze the two models. We conclude and provide
future work in Section 6.

2 Related Work

Much of the work that has addressed challenges in the semistructured data area, such as
[LiLi06, LeHo06, EmMo01], have proposed algorithms. However, there is little com-
parative analysis of algorithms that are designed for similar tasks. Because there is no
widely accepted formalism, it is not possible to reason about the correctness, or show
specific properties of the algorithms in a general way. Moreover it is difficult to compare
properties of algorithms that are designed for similar purposes. For example it is diffi-
cult to compare the properties of the normalization algorithms that have been defined
for semistructured data.

The area that our group is specifically interested in is normalization of semistructured
data (or XML documents). There has been some very good and very practical work done
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in this area, such as [3,4,5,6]. If there was a widely accepted data model, with a set of
defined operations it would be possible to show properties such as, whether data is lost
during the transformations specified and it would also be possible to reason about what
constraints are lost in the transformations. The kinds of formal definitions that we have
seen to date in the normalization area include [7,5,8,6].

Another area where there are similar transformations are view definitions. It would
be helpful to be able to show that given a set of view transformations again no data is
lost, and also show that particular operations are reversible. At one level, data integra-
tion can be thought of as creating a view over a set of schemas. The unified view that
is formed can be defined by a set of operations and the unified view would be better
understood if there were some way to state properties of the operations. The operations
defined in change management, such as insert, drop and move can be defined formally.
There should be operators for both changes to the data and changes to the schema. A
formal definition would not only be useful when defining what changes to allow, but
could also help in the defintion of operations and perhaps in detecting the kinds of
changes that have occured between different versions of the data or schema.

There was an interesting workshop that highlights the need to bring together people
who are working in foundations of semistructured data from different areas that are
related to semistructured data [9]. As you can see there have been a number of different
approaches to defining foundations for semistructured data (e.g. [10,11], where most
model the schema and data as a tree or graph and they are unable to model some of the
constraints that can be specified in schema languages such as cardinality of children in
relationships in the schema. These works consider limited semantics and do not provide
automatic verification.

3 Background

The three key components in this work is the data modelling notation, ORA-SS, the on-
tology language OWL with the automatic reasoner RACER, and the formal verification
language PVS. We briefly describe each of these components in this section.

3.1 ORA-SS (Object Relationship Attribute Model for Semistructured Data)

ORA-SS provides a notation for representing constraints on schemas and instances of
semistructured data. The ORA-SS schema diagram extends ER diagrams with hierar-
chical parent-child relationships, and ordering. Schema diagrams represent relationship
types between object classes, cardinality of relationship types, and distinguishes be-
tween attributes of object classes and attributes of relationship types. The ORA-SS
instance diagram represents the same information as DOM diagrams, namely the re-
lationships between objects and values of attributes. Objects match elements in XML
documents, while attributes match leaf elements or attributes. A full description of the
ORA-SS data modeling language can be found in [12,13].

We will now highlight some of the salient points in the ORA-SS schema diagram
in Figure 1. There is a relationship type between object class course and object class
student. It is a binary relationship type with name cs. Each course can have 4 to many
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Fig. 1. The ORA-SS schema diagram of a Course-Student data model

students and a student can take 3 to 8 courses. Attribute code is an identifying attribute
of course, and there is a reference between prerequisite and course, i.e. each prerequisite
is in fact another course. The attribute grade belongs to the relationship type cs, i.e. it is
the grade of a student in a course. Notice that relationship cst is a ternary relationship
type, i.e. it relates object classes course, student and tutor.

3.2 OWL (Web Ontology Language)

OWL was designed to share data using ontologies over the web, and represents the
meanings of terms in vocabularies and the relationships between those terms in a way
that is suitable for processing by software.

Description logics [14] are logical formalisms for representing information about
knowledge in a particular domain. It is a subset of first-order predicate logic and is
well-known for the trade-off between expressivity and decidability. Based on RDF
Schema [15] and DAML+OIL [16], the Web Ontology Language (OWL) [17] is the
de facto ontology language for the Semantic Web. It consists of three increasingly ex-
pressive sub-languages: OWL Lite, DL and Full. OWL DL is very expressive yet de-
cidable. As a result, core inference problems, namely concept subsumption, consistency
and instantiation, can be performed automatically. RACER is an automatic reasoning
tool for OWL ontologies, which supports min/max restrictions on integers, roles, role
hierarchies, inverse and transitive roles.

3.3 PVS (Prototype Verification System)

PVS is a typed higher-order logic based verification system where a formal specification
language is integrated with support tools and a theorem prover [18]. It provides formal
specification and verification through type checking and theorem proving. PVS has a
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number of language constructs including user-defined types, built-in types, functions,
sets, tuples, records, enumerations, and recursively-defined data types such as lists and
binary trees. With the language constructs provided, PVS specifications are represented
in parameterized theories that contain assumptions, definitions, axioms, and theorems.
Many applications have adopted PVS to provide formal verification support to their
system properties [19,20,21].

4 Modelling ORA-SS Diagrams

The ORA-SS notation separates concerns naturally, separating the schema and the in-
stance into individual diagrams. In our modelling we go a step further. We distinguish
between:

– constraints that must hold on all schema diagrams
– constraints that must hold on all instance diagrams
– constraints that hold on the relationships between schemas and instances

student

cs,2,4..n,3..8

course1

cname:
cs101

course1

cname:
cs101

sname:
Bob

student1

course

cname tutor

tname

ct,2,1..n,1..n

not holding on schema:

instance: no relationship has been 
defined between course and student in
the schema

(a) Example of constraint 

parent object class missing

(b) Example of constraint 
not holding on instance:
object missing

(c) Example of constraint not holding  
in the relationship between schema and

Fig. 2. Examples of constraints not holding in ORA-SS diagrams

The kind of constraint that must hold on the schema is that a child object class must
be either related to a parent object class to form a binary relationship or related to an-
other subrelationship type to form an n-ary relationship. The schema in Figure 2(a) vio-
lates this constraint. An example of a constraint that must hold on all instance diagrams
is that a relationship is between 2 or more objects. Figure 2(b) shows a relationship in an
instance diagram, where there is no child object. An example of a constraint that must
hold on the relationship between schemas and instances is that if there is a relationship
between two objects in an instance, then there must be a relationship type between the
related object classes at the schema level. Figure 2(c) shows an instance with a relation-
ship between objects course1 and student1. Assuming that student1 is a student and not
a tutor, then this relationship violates the relationship type in the corresponding schema
diagram. Although the mistakes appear obvious in the simple examples in Figure 2, they
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are harder to see in more complex diagrams or when the data is in a different format,
such as XML and XMLSchema.

For each of the models described above, we have a corresponding instance model.
There are models for:

– the instance of the schema
– the instance of the instance
– the relationship between the instances of the schema and the instance

In the instance of the schema, it is possible to state constraints such as course is an
object class. In the instance of the instance, it is possible to state that course1 is an
object, and in the relationship between instances of the schema and the instance it is
possible to state that course1 is a course. Figure 3 summarizes the components that
make up the ORA-SS model.

Constraints that
must hold in 
relationship between
schema and instance
diagrams

Constraints that
must hold in every

diagram
ORA−SS instance

Relationship between 
instance of shema 
and instance of data

Instance of 
data

Constraints that
must hold in every
ORA−SS schema
diagram

Instance of 
schema

Fig. 3. Components of the Model

4.1 The ORA-SS Ontology in OWL

In OWL, we refer to a model as an ontology. The ORA-SS ontology contains the OWL
definitions of all the ORA-SS concepts, such as object class, relationship type, and
attributes. The 6 models defined above are captured in the ORA-SS Ontology.

Constraints on the Schema. As each object class and relationship type can be asso-
ciated with attributes and other object classes or relationship types, we define an OWL
class ENTITY to represent the super class of both object class and relationship type.
The OWL class structure is shown as follows.

ENTITY � �
OBJECT � ENTITY
RELATIONSHIP � ENTITY

ATTRIBUTE � �
ENTITY � ATTRIBUTE = ⊥
OBJECT � RELATIONSHIP = ⊥

It may not seem very intuitive to define relationship types as OWL classes. In ORA-
SS, relationship types are used to relate various object classes and relationship types,
it might seem more natural to model relationship types as OWL properties. However,
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there are two reasons that we decide to model relationship types as OWL classes. Firstly,
the domain of ORA-SS relationship types can be relationship types themselves, when
describing the relationships of ternary and more. Secondly, classes and properties in
OWL DL are disjoint. In our model, an OWL relationship type consists of instances
which are actually pointers to the pairs of object classes or relationship types that this
relationship relates.

In ORA-SS, object classes and relationship types are inter-related to form new rela-
tionship types. As mentioned above, since we model relationship types as OWL classes,
we need additional properties to connect various object classes and relationship types.

Firstly, this is accomplished by introducing two object-properties, parent and child,
which map a RELATIONSHIP to its domain and range ENTITYs. The following state-
ments define the domain and range of parent and child. As in ORA-SS, the domain of
a relationship (parent) can be either an object class or another relationship type, i.e., an
ENTITY. The range (child) must be an OBJECT. These two properties are functional as
one relationship type has exactly one domain and one range node. Moreover, we assert
that only relationship types can have parents and child but object classes cannot.

≥ 1 parent � RELATIONSHIP
� � ∀ parent.ENTITY
� �≤ 1 parent

≥ 1 child � RELATIONSHIP
� � ∀ child.OBJECT
� �≤ 1 child

OBJECT � ¬ ∃ parent.�
OBJECT � ¬ ∃ child.�

RELATIONSHIP � ∀ parent.ENTITY
RELATIONSHIP � ∀ child.OBJECT

Secondly, we define two more object-properties: p-ENTITY-OBJECT and p-OBJECT-
ENTITY. These two properties are the inverse of each other and they serve as the super
properties of the properties that are to be defined in later ontologies of ORA-SS schema
diagrams. Those properties will model the restrictions imposed on the relationship types.

The domain and range of p-ENTITY-OBJECT are ENTITY and OBJECT, respec-
tively. Since the two properties are inverses, the domain and range of p-OBJECT-
ENTITY can be deduced.

p-OBJECT-ENTITY = (−p-ENTITY-OBJECT)
≥ 1 p-ENTITY-OBJECT � ENTITY
� � ∀ p-ENTITY-OBJECT.OBJECT
ENTITY � ∀ p-ENTITY-OBJECT.OBJECT

≥ 1 p-OBJECT-ENTITY � OBJECT
� � ∀ p-OBJECT-ENTITY.ENTITY
OBJECT � ∀ p-OBJECT-ENTITY.ENTITY

To define that attributes belong to entities or relationships, first of all, we define an
object-property has-ATTRIBUTE, whose domain is ENTITY and range is ATTRIBUTE.
Every ENTITY must have ATTRIBUTE as the range of has-ATTRIBUTE.

≥ 1 has-ATTRIBUTE � ENTITY
� � ∀ .has-ATTRIBUTE.ATTRIBUTE

ENTITY � ∀ has-ATTRIBUTE.ATTRIBUTE

For modeling the ORA-SS candidate and primary keys, we define two new object
properties that are sub-properties of has-ATTRIBUTE. We also make the property has-
primary-key inverse functional and state that each ENTITY must have at most one pri-
mary key. Moreover, we restrict the range of has-candidate-key to be ATTRIBUTE.

has-candidate-key � has-ATTRIBUTE
� � ∀ has-candidate-key.ATTRIBUTE
ENTITY �≤ 1 has-primary-key

has-primary-key � has-candidate-key
� �≤ 1 has-primary-key−
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Instance of the Schema. The instance of object classes are represented as a subclass
of OBJECT.

course � OBJECT
student � OBJECT
hostel � OBJECT
· · ·

tutor � OBJECT
sport club � OBJECT
home � OBJECT
· · ·

The instance of relationship types are represented as a subclass of RELATIONSHIP.

cs � RELATIONSHIP
sh � RELATIONSHIP

sm � RELATIONSHIP
cp � RELATIONSHIP

cst � RELATIONSHIP

The relationship type cs is bound by the parent/child properties as follows. We use
both allValuesFrom and someValuesFrom restriction to make sure that only the intended
class can be the parent/child class of cs.

cs � ∀ parent.course
cs � ∃ parent.course

cs � ∀ child.student 1
cs � ∃ child.student 1

As discussed in the previous subsection, for each ORA-SS relationship type we de-
fine two object-properties that are the inverse of each other.

Example 1. Take cs as an example, we construct two object-properties: p-course-student
and p-student-course. Their domain and range are also defined.

p-student-course = (−p-course-student)
p-course-student � p-ENTITY-OBJECT
p-student-course � p-OBJECT-ENTITY
≥ 1 p-course-student � course
� � ∀ p-course-student.student 1

≥ 1 p-student-course � student 1
� � ∀ p-student-course.course

One of the important advantages that ORA-SS has over XML Schema language is
the ability to express participation constraints for parent/child nodes of a relationship
type. This ability expresses the cardinality restrictions that must be satisfied by ORA-SS
instances.

Using the terminology defined previously, ORA-SS parent participation constraints
are expressed using cardinality restrictions in OWL on a sub-property of p-ENTITY-
OBJECT to restrict the parent class Prt. Child participation constraints can be similarly
modeled, using a sub property of p-OBJECT-ENTITY.

Example 2. In Fig. 1, the constraints captured by the relationship type cs state that a
course must have at least 4 students; and a studentmust take at least 3 and at most
8 courses. The following axioms are added to the ontology. The two object-properties
defined above capture the relationship type between course and student.

course �
∀ p-course-student.student 1

course �≥ 4 p-course-student

student 1 � ∀ p-student-course.course
student 1 �≥ 3 p-student-course
student 1 �≤ 8 p-student-course

The instances of attributes are modelled as a subclass of ATTRIBUTE. As OWL
adopts the Open World Assumption [17] and an ORA-SS model is closed, we need
to find ways to make the OWL model capture the intended meaning of the original
diagram. The following are some modeling conventions.
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– For each ENTITY, we use an allValuesFrom restriction on has-ATTRIBUTE over the
union of all its ATTRIBUTE classes. This denotes the complete set of attributes that
the ENTITY holds.

Example 3. In the running example, the object class student has student number and
name as its attributes.

student � ∀ has-ATTRIBUTE.(student number 
 name)

– Each entity (object class or relationship type) can have a number of attributes. For
each of the entity-attribute pairs in an ORA-SS schema diagram, we define an object-
property, whose domain is the entity and range is the attribute. For an entity Ent and
its attribute Att, we have the following definitions.

has-Ent-Att � has-ATTRIBUTE
≥ 1 has-Ent-Att � Ent

� � ∀ has-Ent-Att.Att

Example 4. In Fig. 1, the object class sport club has an attribute name. It can be
modeled as follows.

≥ 1 has-sport club-name � sport club
� � ∀ has-sport club-name.name

has-sport club-name � has-ATTRIBUTE
sport club � ∀ has-sport club-name.name

For an entity with a primary key attribute, we use an allValuesFrom restriction on the
property has-primary-key to constrain it. Since we have specified that has-primary-key
is inverse functional, this suffices to show that two different objects will have different
primary keys. Moreover, for every attribute that is the primary key attribute, we assert
that the corresponding object property is a sub property of has-primary-key.

Example 5. In Fig. 1, object class course has an attribute code as its primary key and
this is modeled as follows. The hasValuesFrom restriction enforces that each indi-
vidual must have some code value as its primary key.

course � ∀ has-primary-key.code course � ∃ has-primary-key.code

4.2 The ORA-SS Model in PVS

The PVS model is divided into six files, as shown in Figure 3. We did this because by
separating the concerns, it is easier to maintain and modify the model.

Constraints on the Schema. A relationship type is defined as a list of a set of object
classes, where there is more than one object class and there are no cycles in the list.
That is a relationship type cannot contain the same object class more than once. If there
are more than 2 object classes in a relationship type, then the child object class relates
to another relationship type.

no_cycle_oc(loc: list[set[OC]]): RECURSIVE bool =
CASES loc OF

null: TRUE,
cons(ocs, subloc): (FORALL(subocs: set[OC]):

member(subocs, subloc) =>disjoint?(ocs, subocs)) AND
no_cycle_oc(subloc)

ENDCASES
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MEASURE length(loc)

RelType: TYPE = ocsList: list[set[OC]] | (length(ocsList) > 1)
AND (no_cycle_oc(ocsList))

Relationship: TYPE = rel: RelType | (length(rel) > 2) =>
(EXISTS(subRel: RelType): subRel = cdr(rel))

In an ORA-SS schema diagram, there are two types of relationship, i.e., a normal
relationship where the child participant is a single object class; and a disjunctive re-
lationship where the child participant is a set of disjunctive object classes. The above
definition includes both cases. The ‘no cycle oc’ function is defined as a recursive pred-
icate function to disallow repetition of object classes in a relationship. The relationship
type states that for any relationship with more than two elements the tail of the list forms
another sub-relationship type.

Every relationship type in an ORA-SS schema diagram has its associated constraints
on its participating objects shown using the min:max notation. It constrains the num-
ber of child objects that a parent object can relate to and vice versa.

parentConstraints(rel: Relationship): [nat, posnat]

parentSet(loRel: list[list[OBJ]], loParent: list[OBJ]):
RECURSIVE nat =

CASES loRel OF
null: 0,
cons(oRelHead, oRelRest):

(IF (NOT(oRelHead = null) AND NOT(loParent = null) AND
loEqual?(cdr(oRelHead), cdr(loParent))) THEN 1

ELSE 0 ENDIF)
+ parentSet(oRelRest, loParent)

ENDCASES
MEASURE length(loRel)

correctPC?(rel: Relationship): bool =
FORALL(oRel: list[ObjRelationship]):
member(oRel, relInstance(rel)) IMPLIES

(proj_1(parentConstraints(rel)) <=
parentSet(nArrayObjRelAll(relInstance(rel)),
nArrayObjRel(oRel))) AND

(proj_2(parentConstraints(rel)) >=
parentSet(nArrayObjRelAll(relInstance(rel)),
nArrayObjRel(oRel)))

The above defines parent constraints as a function where it takes a relationship type
as an argument and returns the tuple of natural number and positive natural number
which refers to a min:max pair. There is also a function correctPC? that checks
whether the number of relationship instances for each object of the parent object class
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or each relationship instance of the sub-relationship type is within the boundaries de-
fined in the relationship or not. The child constraints of the relationship and constraints
on attribute values associated with objects and relationships can be defined in a similar
way.

An object can have an attribute or set of attributes that have a unique value for each
instance of an object class called a candidate key.

candidateKeys(oc: OC): list[list[ATT]]

correctCKey?(oc: OC): bool =
(FORALL(attList: list[ATT]):
member(attList, candidateKeys(oc)) =>

noAttRepeat?(attList) AND
isCKeyObjAtt?(attList, objAttribute(oc))) AND

noKeyRepeat?(candidateKeys(oc))

The above defines the object having a candidate key as a function where it takes
an object class as an argument and returns all candidate keys of OC as a list of list of
attribute. The list of attributes is able to model both candidate key and composite can-
didate key. The function for checking candidate keys checks two conditions. It checks
whether two objects are different when values of the candidate key for each object are
different, where the values of the candidate keys belong to the set of attribute values of
the object attributes. The function checks the uniqueness of the keys as well as whether
the key attributes are actually attributes of the object class. In ORA-SS schema dia-
grams, an object class has a primary key which is selected from the set of candidate
keys. The primary key is defined as a function that takes an object class as an argument
and returns a list of attributes which is the primary key of that object class.

Constraints on the Instance. The instances of an object class in a declaration.

OC: DATATYPE
BEGIN
department: department?
course: course?
student: student?
tutor: tutor?
home: home?
hostel: hostel?

END OC

The instances of a relationship are represented as variables (or instances) of relation-
ship types, the degree is represented as a conjecture, and participation constraints are
represented as an axiom.

dc: Relationship = (:singleton(course),singleton(department):)
dcDegree: CONJECTURE Degree(dc) = 2
dcConstraint_Ax: AXIOM
parentConstraints(dc)=(1, many) AND childConstraints(dc)=(1, 1)

Instances of attributes are modelled in a similar way to instances of object classes.
Attributes are assigned to object classes or relationship types in axioms.
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objAtts: AXIOM
objAttribute(department) = (:deptName:) AND
objAttribute(course) = (:code, title, examVenue:)

relAtts: AXIOM
relAttribute(cst) = (:feedback:) AND
relAttribute(cs) = (:grade:)

There is another axiom that states the primary keys of the object classes.

pKeys: AXIOM
primaryKey(department) = (:deptName:) AND
primaryKey(course) = (:code:)

5 Discussion

In this section we discuss the findings from modeling ORA-SS language in OWL and
PVS. OWL is based on Description Logic (DL). An OWL ontology model describes
the relationships and constraints among classes. In this sense, it is very similar to that
of an ORA-SS schema diagram. OWL provides qualifying number restrictions, role hi-
erarchies, inverse roles and transitive roles. We use qualifying number restrictions for
defining the cardinality of relationships, role hierarchies for expressing inheritance of
features, and inverse roles to express relationships. These concepts map naturally to
some of the features in ORA-SS diagrams. Furthermore, the OWL ontology is designed
for creating individuals from a relational model. Thus there is no need to explicitly de-
fine the ORA-SS instances in our OWL representation, but to use the OWL individuals
directly. Therefore the OWL semantics of the ORA-SS language is simpler.

However, DL has its own limitations. It can be clumsy to model complicated types
and predicates. For example, the current OWL notation has no cardinality constraint on
the domain, so we had to introduce inverse to check the domain cardinality restriction.
On the other hand, PVS is based on high-order logic, which has more expressiveness
than that of DL. Therefore, our PVS representation is capable of modeling complicated
constraints among schemas such as transformation operators, which may not be trivial
using OWL. In addition, PVS is a strongly typed language. It has a type checking fa-
cility that can be used to verify typing conditions such as that objects belong to object
classes and so on. This means that the specifications are easy to follow because we do
not have to write extra theorems for typing. This is very handy because it does syntax
checking on the ORA-SS language.

In terms of the automated verification, RACER is a reasoning engine and PVS has
a theorem prover. A reasoning engine derives a conclusion from premises expressed in
the knowledge base. It behaves more like a model checker, which verifies the consis-
tency of OWL individuals within a finite scope against its ontology model. Because the
OWL reasoner is design to handle huge ontology instances, it is very scalable enabling
the checking of large XML files. On the other hand, a theorem prover proves math-
ematical theorems from a specification. It is good at performing a complete proof on
certain properties of a model without any scope limitations. Thus PVS is a heavy duty
theorem prover that can check more deep constraints such as schema transformation
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verifications. It provides tools that allow the definition of higher-level proof strategies
enabling incremental building and reuse of proofs.

From our own experience, we found that the OWL and PVS approaches are actually
complementary to each other. The RACER reasoner is good at detecting inconsisten-
cies (within a finite scope) in an ORA-SS model. If an inconsistency exists it can also
provides counter-examples. This is very useful in the sense of debugging errors. On the
other hand, PVS theorem prover is good at verifying the total correctness of a prop-
erty within the model without scope limitations. If a property is proved from PVS that
means it should hold for every instance of the model. Hence, by using the RACER and
PVS together, we could achieve a complete verification on the ORA-SS models.

6 Conclusion

Much of the research in the area of semistructured data involves algorithms that trans-
form the data and schema, such as data integration, change management, view defin-
ition, and data normalization. The work presented in this paper is a first step towards
formally defining a data model that is rich enough to capture the semantics that are
needed to model and reason about the properties of operations that are capable of de-
scribing the algorithms described above. We have modelled the ORA-SS data model
using OWL and PVS, and conclude that:

– Semantic Web languages, such as OWL, are extremely good at capturing semantic
information about semistructured data.

– Reasoning tools, such as Racer, can be used to check the consistency of the ORA-
SS schema and instance diagrams.

– PVS can be used to define a formal mathematical semantics for semistructured data.
– The automated verification provided by PVS empowers our definition of ORA-SS

semantics, and if designed well it can be easy to extend.

There are a number of directions that we wish to take this work. Firstly we will study
the algorithms that have been defined for the normalization of semistructured data, and
derive the basic operations that are necessary to describe the algorithms. Secondly we
will extend the OWL and PVS models of ORA-SS diagrams with a formal definition of
the basic operations to compare how each model of ORA-SS performs. Thirdly, we will
test the success of the models by modelling at least two of the normalization algorithms
and comparing the properties of each. Finally we will investigate if the operators that
are defined for normalization are general enough to express the general problem of view
definitions.
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