
Modeling and Customization of Fault Tolerant Architecture using
Object-Z/XVCL

Ling Yuan, Jin Song Dong
School of Computing

National University of Singapore
{yuanling, dongjs}@comp.nus.edu.sg

Jing Sun
Department of Computer Science

The University of Auckland
j.sun@cs. auckland.ac.nz

Abstract

This paper proposes a novel heterogeneous software ar-
chitecture FTA (Fault Tolerant Architecture). FTA incorpo-
rates idealized fault tolerant component concept and coor-
dinated error recovery mechanism in the early system de-
sign phase. It can be reused in the high level model design
of specific mission critical distributed systems with reliabil-
ity requirements. The formal model of FTA in the Object-
Z language is presented to provide precise idioms to the
system designers. Formal proof using the Object-Z reason-
ing rules are constructed to demonstrate the fault tolerant
properties of FTA. By analyzing the customization process,
we also present a FTA template, expressed in x-frames us-
ing XVCL (XML-based Variant Configuration Language)
methodology, to automate the customization process. We
apply a sales control system case study to illustrate the cus-
tomization of FTA.

1. Introduction

In order to satisfy the reliable requirements of mission
critical distributed systems, fault tolerant techniques are
employed to deal with the exceptions. Fault tolerance is the
property of a system to provide a service complying with
the specification in spite of faults occurred or occurring [9].
The concern of the fault tolerance makes the development
of the distributed systems more complicated. Software ar-
chitecture is considered as a critical design methodology to
provide a generic framework to guide the development of
distributed systems.

How to incorporate fault tolerant mechanisms with func-
tional aspects in the software architecture level is a new re-
search area that has recently gained considerable attention.
Existing work in this area mostly emphasizes the creation
of fault tolerance mechanisms [7], description of software
architectures with respect to their reliability properties [14],
and the evolution of component-based software architecture

by adding or changing components to guarantee reliability
properties [3]. In this paper, we propose a novel heteroge-
neous software architecture FTA (Fault Tolerant Architec-
ture). FTA integrates the fault tolerant mechanisms in the
early design phase, which can be reused in the development
of distributed systems with reliability requirements.

In practice, different kinds of concurrency might co-
exist in a distributed system which thus would require a
generic supporting framework for controlling and coordi-
nating these concurrent activities. The proposed FTA com-
bines several widely used basic architecture styles to guide
the development of such systems. These basic architec-
ture styles [1] involve pipe-and-filter, repository style, and
object-oriented organization.

The well-defined semantics and syntax make formal
modeling techniques suitable for precisely specifying and
formally verifying architecture designs. The formalisms of
an architecture style can be used to provide precise, explicit
common idioms and patterns to the software system design-
ers [11]. Object-Z [4] is an object oriented structure that
can describe internal state transitions and interface com-
munications of software components. Compared to other
formal languages such as Z, CSP, TCL, Object-Z has in-
heritance and instantiation mechanisms. These two mech-
anisms can help the specific distributed system developers
to reuse the formal model of FTA. Furthermore, we could
formally prove the fault tolerant properties of FTA by using
the Object-Z reasoning rules.

In order to automate the customization process, we use
XVCL technique (XML-based Variant Configuration Lan-
guage) [8] to customize the formal model of FTA to the
models of specific systems. A case study SCS (Sales Con-
trol System) [2] is presented to illustrate the customization
process.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the background knowledge about formal
language Object-Z. Section 3 describes FTA including lit-
eral description, formal model and formal proof of fault
tolerant properties. Section 4 presents a template for cus-

XIII ASIA PACIFIC SOFTWARE ENGINEERING CONFERENCE (APSEC'06)
0-7695-2685-3/06 $20.00 © 2006

tomization. Section 5 presents a case study SCS (Sales Con-
trol System) to illustrate how to produce the formal model
of SCS automatically, and shows that SCS can preserves the
fault tolerant properties. Section 6 concludes the paper and
presents the future work.

2. The Object-Z Formal Language

Object-Z [4] is a formal language based on set theory
and predicate logic, which can help describe internal state
transitions and interface communications of a system by
the state and operation schema definitions. The inheritance
and instantiation mechanisms of Object-Z can help the cus-
tomization process. Below is a simple example queue to
describe basic features of Object-Z. The Queue[Item] class
schema is reused later to specify FTComponent, Coordinat-
ingComponent and SharedResource class by the inheritance
mechanism.

Queue[Item]

items : seq Item [state schema]

INIT

items = 〈 〉 [initial state]

Join
∆(items)
item? : Item

items′ = items�
〈item?〉

Leave
∆(items)

[operation schema]
item! : Item

items �= 〈 〉
items = 〈item!〉�items′

3. The Fault Tolerant Architecture (FTA)

3.1. The Overall Description of FTA

FTA involves object-oriented organization, pipe-and-
filter architecture, and the repository style [1]. FTA can
help develop mission critical distributed systems called
FTS (Fault Tolerant Systems) , which have two kinds of
concurrency- competitive and cooperative [6]. Competitive
concurrency indicates that concurrent activities compete for
some common resources, but without explicit cooperation.
Cooperative concurrency means that concurrent activities
cooperate and communicate with each other. FTS are com-
posed of a set of components, called FTComponents, a set
of Connectors, a set of SharedResources and a Coordinat-
ingComponent, as shown in Fig. 1.

Access
Shared

Resource
#123

FT
Component1

Coordinating
Component

Connector Connector

Connector Connector

Shared
Resource

#24

Access

Exception

AccessAccess

ExceptionExceptionExceptionException

FT
Component2

FT
Component4

FT
Component3

Access

Figure 1. The Fault Tolerant Architecture.

The FTComponent derives from the object-oriented or-
ganization to accommodate the distributed environment,
which can implement a separate task and potentially exe-
cute in parallel with other FTComponents. In order to help
the FTComponents execute concurrently in the distributed
system, the connector in FTA connects the out port of one
FTComponent and in port of another FTComponent. This
concept is similar to the pipe communication pattern in the
pipe-and-filter architecture. The cooperative concurrency is
modeled by the FTComponents interacting with each other
via the connectors to cater for common goals. That FTCom-
ponents compete for SharedResource models the competi-
tive concurrency, which derives from the repository style.
The competitive concurrency need to guarantee the transac-
tion semantics [5].

In order to satisfy the reliability requirements of mis-
sion critical distributed systems, several fault tolerant mech-
anisms are incorporated in FTA. Each FTComponent has its
own exception context to deal with the exceptions occurring
in the execution process, similar to the concept of idealized
fault tolerant component [10].

We classify the exceptions raised in the FTComponent
into two types: local exceptions and global exceptions. The
influence of a local exception is limited within a single FT-
Component. Global exceptions, on the other hand, affect
the control flows of more than one FTComponent within a
distributed system. FTA incorporates a coordinated error
recovery mechanism to deal with these exceptions. Once a
local exception is raised in one FTComponent, the FTCom-
ponent can call the corresponding exception handler in its
own exception context to cope with the exception. If this
exception can not be handled successfully, a global excep-
tion is signalled, which can be transferred to the Coordi-
natingComponent. If a global exception is originally raised
in an FTComponent, this global exception is also passed to
the CoordinatingComponent. The CoordinatingComponent
broadcast the global exception to the related FTComponents
and SharedResources within a distributed system. These
components need to replace the normal execution with the

XIII ASIA PACIFIC SOFTWARE ENGINEERING CONFERENCE (APSEC'06)
0-7695-2685-3/06 $20.00 © 2006

exception handling execution.

When several global exceptions are raised in different
FTComponents concurrently, these global exceptions are
passed to the CoordinatingComponent concurrently. The
CoordinatingComponent uses exception graph mechanism
to resolve these concurrently raised exceptions into an
unique global exception called universal exception which
covers all the raised exceptions. When the Coordinating-
Component obtains the universal exception, it propagates
this exception to all the related FTComponents and Share-
dResources involved in the distributed system. Furthermore
the FTComponents call the corresponding exception han-
dler in their own exception contexts to deal with this excep-
tion. The state of each SharedResource need to be restored
to its prior normal state.

3.2. Formal Model of FTA

In the previous section, we presented FTA in a box-and-
line fashion, accompanied with the literal explanations of
the architecture style and fault tolerant mechanisms. Such
description cannot provide precise, explicit common idioms
and patterns of FTA to the system designers. In this section,
Object-Z [4] is used to model FTA formally. The formal
model of FTA1 includes the global types, FTComponent,
Connector, CoordinatingComponent, ShareResource, and
FTSystem class schemas.

3.2.1 FTComponent

The FTComponent class schema describes the normal activ-
ities and error recovery activities of FTComponent in FTA.
Note that the Queue[item] in section 2 is inherited with in-
stantiation and rename mechanisms of Object-Z.

The constant variables n states, l excepts and g excepts
represent three different sets of states that an FTComponent
can be in: a set of normal states, a set of local exception
states and a set of global exception states. To model the
idea that the IO-ports are directional, we partition them into
a set of in ports and a set of out ports. The constant vari-
able comp msgs represents a set of messages that an FT-
Component can transmit to the SharedResources. We asso-
ciate a message with a port in the coop msg, which indi-
cates that the message can be received or sent out from the
associated port. The transition function specifies the state
transition of the FTComponent. The except context and
exception handle functions model the fault tolerant mecha-
nisms described in the section 3.1.

1Due to the space limit, the complete formal model of FTA is presented
at http : //www.comp.nus.edu.sg/ ∼ yuanling/fta.pdf .

FTComponent
Queue[↓ SharedResource][sr qlist/items, ans sr?/item?,

to sr!/item!, FromSR/Join, ToSR/Leave]

n states : P NORMAL
l excepts : P LE
g excepts : P GE
in ports, out ports : P PORT
comp msgs : P MSG
coop msg : PORT → MSG
transition : NORMAL × (PORT × MSG) →

OBSTATE × (PORT × MSG)

except context : LE ∪ GE �→ EH
except handle : EH → OBSTATE

...

inter state : OBSTATE
checkpoint : NORMAL
ue rec : SIG

...

INIT

inter state ∈ n states
checkpoint = inter state
ue rec = 0

LocalExceptHandle
∆(inter state)

...

GlobalExceptPropagate
exception! : GE

...

UniExceptReceive
∆(inter state, ue rec)
uni exception? : GE

...

UniExceptHandle
∆(inter state, ue rec)

...

Transition
∆(inter state,

checkpoint)

inter state ∈ n states
checkpoint′ = inter state
...

SRRequest
req ob! :↓
FTComponent
req sr! :↓ SharedResource
sr? :↓ SharedResource

...

ToSR
msg! : MSG

...

FromSR
ans ob? :↓
FTComponent

...

The inter state denotes the current state of FTCompo-
nent, the checkpoint records the prior normal state of an
FTComponent, the ue rec indicates whether an FTCompo-
nent has received an universal exception from the Coor-
dinatingComponent. The Transition operation denotes the
state transitions of FTComponent according to the transi-
tion function. The LocalExceptHandle, GlobalExceptProp-

XIII ASIA PACIFIC SOFTWARE ENGINEERING CONFERENCE (APSEC'06)
0-7695-2685-3/06 $20.00 © 2006

agate, UniExceptReceive, and UniExceptHandle operation
schemas specify how the FTComponent deals with local
and global exceptions. The SRRequest, FromSR, and ToSR
operation schemas model how the FTComponents compete
for the SharedResources.

3.2.2 Connector

The Connector class schema describes that a connector is
responsible for connecting send port of an FTComponent
and receive port of another FTComponent to transfer the
message represented by msg.

Connector

send port, receive port : PORT

∃ send ob, receive ob :↓
FTComponent; msg : MSG |
send ob �= receive ob ∧
send port ∈ send ob.out ports ∧
receive port ∈ receive ob.in ports

• msg = send ob.coop msg(send port) ∧
receive ob.coop msg(receive port)

= msg

3.2.3 CoordinatingComponent

The CoordinatingComponent class schema describes how
the CoordinatingComponent implements the coordinated
error recovery mechanism when a global exception is raised
or several global exceptions are raised concurrently. The
except graph is a function to resolve several concurrently
raised exceptions into an universal exception represented
by uni exception that can cover all the raised exceptions.
The state variable exceptions represents the sequence of re-
ceived exceptions. The ExceptRec and ExceptGraph opera-
tion schemas specify how the CoordinatingComponent im-
plements the coordinated error recovery mechanism.

CoordinatingComponent
Queue[GE][exceptions/items, exception?/item?,

ExceptRec/Join]

except graph : seq1 GE → GE

ExceptGraph
∆(exceptions)
uni exception! : GE

exceptions �= 〈 〉
uni exception! = except graph(exceptions)
exceptions′ = 〈 〉

3.2.4 SharedResource

The SharedResource class schema models how the Share-
dResource can guarantee the transaction semantics when
receiving messages from FTComponents and preserve con-
sistent state when facing exceptions.

SharedResource
Queue[↓ FTComponent][ob qlist/items,

req ob?/item?, ans ob!/item!,

ObList/Join, Available/Leave]

states : P SRSTATE
trans : SRSTATE × MSG → SRSTATE

...

semaphore : SIG
sr state : SRSTATE
checkpoint : SRSTATE

...

INIT

semaphore = 0

checkpoint = sr state

ObList
req sr? :↓

SharedResource

...

Available
∆(semaphore)
ans sr! :↓ SharedResource

...

Except
∆(semaphore, ob qlist,

sr state)
uni exception? : GE

...

Trans
∆(semaphore, sr state,

checkpoint)
to sr? :↓ SharedResource
msg? : MSG

...

The states represents a set of states that the SharedResource
can be in and the trans is used to model the state transition
of the SharedResource when it receives a message from FT-
Component. The state variables semaphore, sr state and
checkpoint represent the signal to show whether the Share-
dResource is accessed by an FTComponent, the current
state of SharedResource and the recorded prior normal state
of SharedResource respectively. The ObList, Available, and
Trans operation schemas specify how the SharedResource
can guarantee the transaction semantics. The Except oper-
ation describes how the SharedResource deals with excep-
tions.

3.2.5 FTSystem

The FTSystem class schema describes how the components
and connectors in FTA which constitute an FTS (Fault Tol-
erant System) are synchronized. The constant variable crit-
ical represents the set of FTComponents whose Fail state

XIII ASIA PACIFIC SOFTWARE ENGINEERING CONFERENCE (APSEC'06)
0-7695-2685-3/06 $20.00 © 2006

can cause the whole FTS to stop. The Result Control is a
function to check the execution result of FTS. The instances
of components and connectors in the FTS are all declared in
the state schema. The secondary variable ob fail records a
set of FTComponents in the Fail state. How the FTCom-
ponents interact with each other, compete for the Share-
dResources, and how to deal with exceptions are specified
in the declared operations.

FTSystem

critical : P ↓ FTComponent
Result Control : P ↓ FTComponent

→ RESULT

∀ fobs : P ↓ FTComponent • ∃ fob : fobs •
fob ∈ critical ⇒ Result Control(fobs) = stop

∀ fobs : P ↓ FTComponent • ∀ fob : fobs •
fob �∈ critical ⇒ Result Control(fobs) = tolerate

obs : P ↓ FTComponent
cs : P ↓ connector
coco :↓ CoordinatingComponent
srs : P ↓ SharedResource
∆

ob fail : P ↓ FTComponent

...

INIT

...

SystemRecover
Result Control(ob fail) = tolerate
∀ ob : obs • ob.INIT

Transition =̂ ∧ob : obs • ob.Transition

ExceptPropagate =̂ ∧ob : obs •
ob.GlobalExceptPropagate ‖ coco.ExceptRec

ExceptGraph =̂ coco.ExceptGraph ‖ (∧ob : obs •
ob.UEReceive ∧ ∧sr : srs • sr.Except)

ObReqSR =̂ ∧ob : obs • ob.SRReq ‖
(∧sr : srs • sr.ObList)

SRAnsOb =̂ ∧sr : srs • sr.Available ‖
(∧ob : obs • ob.FromSR)

ObAccSR =̂ ∧ob : obs • ob.ToSR ‖ (∧sr : srs • sr.Trans)

3.3 Reasoning about FTA

Reasoning about the formal model of the system enables
the designer to gain confidence in the correctness of the sys-
tem development [13]. Reasoning about FTA mainly in-
volves showing that the formal model of FTA can preserve

fault tolerant properties, which are expressed as theorems.
The proof process needs to demonstrate that fault tolerant
properties can be derived from the formal model of FTA by
using Object-Z reasoning rules. The following items 2 show
the fault tolerant properties that FTA can preserve.

1. When a global exception is raised by a FTCompo-
nent in the FTS, all of the FTComponents & Share-
dResources in the FTS should be informed about the
exception. This property can be formally expressed as
the following theorem.

Theorem

FTSystem :: ∃ ob : obs | ob.inter state ∈ ob.g excepts
� ∀ ob : obs; sr : srs • (ob.ue rec′ = 1

∧ sr.sr state′ = sr.checkpoint)

2. When two global exceptions are raised concurrently by
two FTComponents in the FTS, all the FTComponents
in the FTS can be informed about an universal global
exception. This property can be formally expressed as
follows.

Theorem

FTSystem :: ob1, ob2 : obs |
(ob1.inter state = ob1.g excepts ∧
ob2.inter state = ob2.g excepts ∧ ob1 �= ob2)

� ∀ ob : obs • ob.ue rec′ = 1

3. When a non-critical FTComponent fails, the FTS can
tolerate this fault, which means that the states of all
FTComponents in the FTS can recover to their stable
states. This property can be formally expressed as fol-
lows.

Theorem

FTSystem :: ∃ ob : obs | (ob.inter state = Fail ∧
ob �∈ critical) � ∀ ob : obs •

ob.inter state′ ∈ ob.n states

4. The Template of FTA in XVCL

By customizing formal model of FTA, we can build for-
mal models of specific mission critical distributed systems.
During the customization process, each class schema in the
formal model of FTA can be inherited by the class schemas
of specific mission critical distributed systems. Besides in-
heritance, the customization process involves several other
mechanisms such as declaring predicates of constant vari-
ables, defining initial schema and newly operation schemas,
etc. The class schema below is shown as an example to de-
scribe the customization from the FTA model to the formal

2Due to the space limit, the complete formal proof of FTA can be found
at http://www.comp.nus.edu.sg/˜yuanling/ftap.pdf.

XIII ASIA PACIFIC SOFTWARE ENGINEERING CONFERENCE (APSEC'06)
0-7695-2685-3/06 $20.00 © 2006

model of a specific mission critical distributed system. Note
that the items decorated with quotation mark can be instan-
tiated according to the requirements of specific systems.

“ftcomponnetname”

FTComponent′′rename”
“newfunction”

“newvar”

n states = {“nstates”}
l excepts = {′′lexcepts”}
· · ·

· · ·
“newop”

The class schemas above consist of fixed points and vari-
able points which can be reused in the high level design of
specific mission critical distributed systems by customiza-
tion. During the customization process, we just need to put
effort in the variable part by giving concrete definitions to
the items decorated with quotation mark. Therefore, we can
build a template of FTA formal model for the customization.

XVCL (XML-based Variant Configuration Lan-
guage) [8] is a meta-programming technique developed to
facilitate building flexible, adaptable and reusable software
artifacts. In XVCL technique, all of small or large variation
points can be represented as meta-expressions that are
instantiated during the customization process according
to the specific requirements. Following the mechanism
of XVCL, the template of FTA formal model can be built
as generic, adaptable fragments, called x-frames. Each
x-frame is an XML file composed of Object-Z class schema
LaTeX code and XVCL commands. In order to help
the flexible reuse of the template of FTA formal model,
we build five primitive x-frames3, called ftComponent,
connector, coco, sr and ftsystem. In the primitive x-frame,
each item decorated with quotation mark is represented as
a variable with the same name. As shown in Fig. 2, we
build the template of FTA formal model in XVCL.

Formal
Model
of FTA

Template
of FTA

in XVCL

Semantic
Rules

X-frames
for Specific

System

Formal Model
of Specific

System

XVCL

XVCL

Adapt
Generate

Automatically

Design of
Specific
System

Figure 2. The Customization Process.

3The x-frames built for the template of FTA and the semantic rules for
guiding the specific systems designers are all presented at http://www.
comp.nus.edu.sg/˜yuanling/template.pdf.

The template of FTA formal model is built based on
the formal model of FTA with inheritance and instantia-
tion mechanisms of Object-Z which ensure that the fault
tolerant properties of FTA can be preserved. The instantia-
tion of variation points in the template by the use of XVCL
technique during the adaptation process do not consider the
semantic factor. If the formal model of specific system gen-
erated by customization of the template need to preserve the
fault tolerant properties of FTA, we should establish seman-
tic rules3 to guarantee the compatibility between the for-
mal model of specific system and that of FTA. These rules
present guidelines to the designers when giving a concrete
definition to the variables in the x-frames of the template or
declaring a new variable.

The following case study illustrates the customization
process involving the x-frames building for the specific mis-
sion critical distributed system guided by the semantic rules,
and the generation of the formal model of the specific sys-
tem, as shown in Fig. 2.

5. A Case Study - Sales Control System (SCS)

In this section, we use a SCS system case study to
demonstrate how FTA can guide the high level design of
specific mission critical distributed systems.

5.1. Development of SCS Guided by FTA

The mission critical distributed system SCS (Sales Con-
trol System) [2] is designed to maintain a database describ-
ing all the products to be sold so that many distributed sales
points can obtain the correct prices of the items selected by
the customers. The SCS consists of a database, a set of
control points and a set of sales points. Fig. 3 shows an
example of SCS, which is composed of two control points,
a database and three sales points.

Senior
Control

Junior
Control

Database

Sales
Point A

Sales
Point B

Sales
Point C

Figure 3. The Sales Control System.

The control point provide the interface that allow the hu-
man manager of the system to update the product informa-
tion in the database at run time. We assume that such updat-
ing is regarded as a very critical activity and consequently,
to guard against fraud, the policy is that the senior control

XIII ASIA PACIFIC SOFTWARE ENGINEERING CONFERENCE (APSEC'06)
0-7695-2685-3/06 $20.00 © 2006

point need to monitor and, if necessary, to correct the up-
dates made by the junior control point. Therefore, the se-
nior and junior control points cooperate with each other to
update the database. The database stores product informa-
tion which can be accessed by control and sales points. This
competitive concurrency need to guarantee the transaction
semantics of the database.

According to the box-and-line patterns of FTA shown in
Fig.1, the SCS is composed of five FTComponents, called
SeniorControl, JuniorControl, SalesPointA, SalesPointB,
SalesPointC and a SharedResource, called Database. Two
Connectors, called SJC and JSC, are used to assist the com-
munication between SeniorControl and JuniorControl. A
CoordinatingComponent called CC is also involved in the
SCS to implement coordinated error recovery mechanism.
Fig. 4 shows the model design of SCS in the box-and-line
fashion guided by the pattern of FTA.

Senior
Control

Junior
Control

Sales
PointA

Sales
PointB

Sales
PointC

SJC

Database

CC

JSC

Exception

Access

Exception

Access

Access

Exception Exception

Figure 4. FTA Architecture View of SCS.

5.2 Generation of Formal Model of SCS

In the following, we generate the formal model4 of SCS
by customizing the template of FTA presented in section
4. The five primitive x-frames in the template can be reused
during the customization via adaption. Following the mech-
anisms of XVCL, we can build x-frames for formal model
of SCS complying with semantic rules defined in the sec-
tion 4. Fig. 5 describes x-frame adaption relationship be-
tween the SCS and the template of FTA. The sc, jc, spa, spb,
and spc x-frames are built for the five FTComponents in the
SCS. The sjc and jsc x-frames are built for the connectors.
The database x-frame is built for the Database and the cc
x-frame is built for the CC component. The scs x-frame is
built to describe how these components & connectors syn-
chronize. By running the XVCL processor with the fscs
SPC file which adapts all of the ten x-frames of SCS, we
can generate the formal model of SCS automatically, which
is the last step of customization process shown in Fig. 2. In

4The x-frames for the SCS and complete formal model of SCS are
all presented at http://www.comp.nus.edu.sg/˜yuanling/
fscs.pdf.

ftcomponent sr systemcococonnector

sc

jc

spa

spb

spc

sjc jsc database scscc

fscs

SPC
 SCS

template

adaption

Figure 5. The x-frame Adaption Relationship.

the following, a representative class schema is presented to
illustrate the features of the formal model of SCS.

JuniorControl
FTComponent

Local ExcepthHandle : OBSTATE → (PORT × MSG)

Global ExceptHandle : OBSTATE → Handler

Local ExceptHandle(NetworkDisconnected)

= (JSC Out, RequestUpdate)
Local ExceptHandle(InformationLost)

= DatabaseRecover
n states = {NormalProcess, AuthorizeRequest}
l excepts = {NetworkDisconnected}
g excepts = {InformationLost}
in ports = {SJC In}
out ports = {JSC Out}
comp msgs = {ProductUpdate}
coop msg = {(SJC In, UpdateApproved),

(JSC Out, RequestUpdate)}
Trans = {((NormalProcess, (NULL, NULL)),

(AuthorizeRequest, (JSC Out, RequestUpdate))),
((AuthorizeRequest, (SJC In, UpdateApproved)),

(NormalProcess, (NULL, NULL))),

((AuthorizeRequest, (NULL, NetworkDisconnected)),

(NetworkDisconnected, (NULL, NULL))),

((NormalProcess, (NULL, InformationLost)),
(InformationLost, (NULL, NULL)))}

except context = {(NetworkDisconnected,

Local ExceptHandle), (InformationLost,
Global ExceptHandle)}

except handle = {(Local ExceptHandle, AuthorizeRequest),
(Global ExceptHandle, NormalProcess)}

INIT

inter state = NormalProcess

The JuniorControl class represents the FTComponents
in the SCS, which describes how the JuniorControl point
interacts with SeniorControl point to update the product in-

XIII ASIA PACIFIC SOFTWARE ENGINEERING CONFERENCE (APSEC'06)
0-7695-2685-3/06 $20.00 © 2006

formation stored in the Database, and how to deal with local
and global exceptions. The JuniorControl class schema in-
herits the FTComponent class schema. The local exception
NetworkDisconnected defined in l excepts represents that
the network cannot work when the JuniorControl point is
waiting for the authorization from the SeniorControl point.
A Local ExceptHandle function is defined to handle this
exception. The global exception InformationLost represents
that the Database has lost some product information. A
Global ExceptHandle function is defined to handle this ex-
ception.

5.3. Reasoning about SCS

By adapting the template of FTA complying with defined
semantic rules, we generate the formal model of SCS. The
following theorems are two significant fault tolerant prop-
erties of SCS.

1. When the InformationLostA is raised in the Sales-
PointA, which represents that the SalesPointA can not
get the product information from the Database, the
SCS can tolerate this exception.

Theorem

SCS :: spa.inter state = InformationLostA �
∀ scs : SCS; ob : scs.obs •

ob.inter state′ ∈ ob.n state

2. When the InformationLostA is raised in the Sale-
sPointA, and concurrently the InformationLostB is
raised in the SalesPointB, the SCS can also handle this
situation.

Theorem

SCS :: spa.inter state = InformationLostA ∧
spb.inter state = InformationLostB

� ∀ scs : SCS; ob : scs.obs •
ob.inter state′ ∈ ob.n state

Following the same methodology shown in the section 3.3,
we can prove that the formal model of SCS can preserve
these fault tolerant properties5.

6. Conclusion
This paper proposes a novel heterogeneous software

architecture FTA (Fault Tolerant Architecture) which can
guide the development of mission critical distributed sys-
tems. FTA integrates fault tolerant mechanisms with func-
tional aspects in the early system design phase and com-
bines several widely used basic architecture styles. For-
mal model of FTA can be directly reused in the high level
design of specific mission critical distributed systems via

5The complete formal proof of SCS are all presented at http://
www.comp.nus.edu.sg/˜yuanling/pscs.pdf.

customization process. XVCL technique makes the cus-
tomization process more convenient and automatic. The
constructed formal proof based on Object-Z reasoning rules
can demonstrate that formal model of specific mission criti-
cal distributed systems generated by customization can pre-
serve fault tolerant properties. A sales control system is
used to illustrate the customization process and demonstrate
that the specific mission critical distributed system can pre-
serve the fault tolerant properties.

Formal proofs shown in this paper are all done manu-
ally, which is laborious and error-prone. It would be worth
trying to prove these theorems using PVS(Prototype Verifi-
cation System) [12]. PVS is a verification system developed
at SRI, which has a powerful interactive theorem prover and
its automation suffices to prove many straightforward re-
sults automatically.

References

[1] R. Allen and D. Garlan. A formal approach to software ar-
chitectures. In Proceedings of IFIP’92, 1992.

[2] C. Atkinson. Object-Oriented Reuse, Concurrency, and Dis-
tribution. Addison- Wesley, 1991.

[3] R. de Lemos. Describing evloving dependable systems using
co-operative software architecture. In In Proceedings of the
IEEE International Conference on Software Maintenance,
pages 320–329, 2001.

[4] R. Duke and G. Rose. Formal Object Oriented Specification
Using Object-Z. Macmillan, 2000.

[5] J. Gary and A. Reuter. Transaction Processing: Concepts
and Techniques. Morgan Kaufmann, 1993.

[6] C. Hoare. Communicating sequential processes. CACM,
vol.21(8):666–677, 1978.

[7] V. Issarny and J. P. Banatre. Architecture-based exception
handling. In In Proceedings of the 34th Annual Hawaii In-
ternational Conference on System Sciences,IEEE, 2001.

[8] S. Jarzabek and S. B. Li. Eliminating redundancies with a
”composition with adaption” meta-programming technique.
In European Software Engineering Conference and ACM
SIGSOFT Symposium on the Foundation of Software Engi-
neering,ACM Press, pages 237–246, September 2003.

[9] J. C. Laprie. Dependability: Basic concepts and terminol-
ogy. In Dependable Computing and Fault-Tolerant Systems,
volume 5. Springer-Verlag, 1992.

[10] P. A. Lee and T. Anderson. Fault Tolerance: Principles and
Practice. Second Edition,Prentice Hall, 1990.

[11] D. Luckham and J. Vera. An event based architecture defini-
tion language. IEEE Transactions on Software Engineering,
vol 21, 1995.

[12] S. Owre and J. Rushby. Formal verification for fault-tolerant
architecture: Prolegomena to the design of pvs. IEEE Trans-
actions on Software Engineering, SE-21(2):107–125, 1995.

[13] J. M. Rushby and F. von Henke. Formal verification of algo-
rithms for critical systems. IEEE Transactions on Software
Engineering, SE-19(1):13–23, 1993.

[14] T. Saridakis and V. Issarny. Fault tolerant software architec-
tures. In Technical report, INRIA/IRISA, 1999.

XIII ASIA PACIFIC SOFTWARE ENGINEERING CONFERENCE (APSEC'06)
0-7695-2685-3/06 $20.00 © 2006

