
Outrageous Software
John Hamer

J.Hamer@cs.auckland.ac.nz

Outrageous Software — c©John Hamer, 2004 – p. 1/27

“Today, most software exists, not to solve a
problem, but to interface with other software.”
—I.O. Angell

“Perilous to us all are the devices of an art
deeper than we possess ourselves.” —J. R. R.
Tolkien

“Out of intense complexities, intense
simplicities emerge.” —Winston Churchill

Outrageous Software — c©John Hamer, 2004 – p. 2/27

An enduring meta-architecture

Database

B
us

in
es

s
lo

gi
c

user interface

May be monolithic, client-server, web service, etc.

Outrageous Software — c©John Hamer, 2004 – p. 3/27

Codd’s meta-architecture

Database
(stored procedures

encode core
business logic)

—
accepts ad-hoc queries and

up
da

te
s

—

App-1

App-2

App-n

Domain model is relational and entwined with
database

Outrageous Software — c©John Hamer, 2004 – p. 4/27

The sad reality

Database logic contaminates the business logic

User interface logic contaminates the business logic

Business logic contaminates the database logic

Business logic contaminates the user interface

Outrageous Software — c©John Hamer, 2004 – p. 5/27

Database and U.I. independence is
not the issue

Database independence means using generic
(ANSI) SQL, together with an abstraction library (to
handle, e.g., placeholder syntax)

U.I. independence means using a cross-platform
library, writing facades (“application layer”), etc.

Contamination is a failure to separate concerns.

E.g., foreign keys appear in objects; logic for
retrieving data is mixed with business policy logic;
. . .

All this conspires to diffuse and complicate the
business logic.

Outrageous Software — c©John Hamer, 2004 – p. 6/27

Impedance mismatch

The relational data model is fundamentally
incompatible with the object-oriented model

famous “impedance mismatch”:
OOP: traverse objects via their relationships;
relational: join data rows of tables.
OOP: model includes behaviour and data;
relational includes only data.
OOP: keys typically not shown; relational:
explicit keys.

Similar “impedance mismatch” occurs between the
domain model and the user interface.

In addition, user interfaces are diverse and highly
changeable. Outrageous Software — c©John Hamer, 2004 – p. 7/27

When you’re in a hole, dig deeper

Current solutions all involve adding more
abstraction layers; e.g., frameworks like EJB and
.Net, JDO, etc.

Popular IDEs for creating user interface components
by mapping databases tables

The underlying mismatch remains.

“I have yet to see any problem, however
complicated, which, when you looked at it in
the right way, did not become still more
complicated.”

— Poul Anderson

Outrageous Software — c©John Hamer, 2004 – p. 8/27

“Outrageous Software”

Combination of three radical software technologies

prevaylance replaces conventional relational databases,
providing a pure object model, extreme
performance, and adaptable fault-tolerant
distribution; http://www.prevayler.org

naked objects eliminate the need for hand-crafted user
interfaces;
http://www.nakedobjects.org/

Mozart/Oz a multi-paradigm programming language
supporting massive concurrency, transparent
distribution, and an integrated finite domain
constraint solver;
http://www.mozart-oz.org

Outrageous Software — c©John Hamer, 2004 – p. 9/27

http://www.prevayler.org
http://www.nakedobjects.org/
http://www.mozart-oz.org

Prevaylance: trivial persistence

Client-1

Client-2

. . .

Client-n

Input stream

Server
(RAM)

Log file

a.
a.

a.

b.

c.

Client places a command in a
serialized input stream (a.)

Server reads command (b.),

logs the command (c.),

then executes.

Log file provides persistence;

to restore, for each log entry:
set date-time, execute.

Occasional “snapshots”
(memory dumps) minimize
restore times.

Outrageous Software — c©John Hamer, 2004 – p. 10/27

Features

Very, very fast orders of magnitude faster than cached
relational database.

Trivial implementation e.g., a few hundred lines of
Java.

Language independent Java, C], C++, Perl, Python, . . .

Only minor impact on programmer some conventions
to follow for serializing commands.

Distributed architectures e.g., fire up a query server on
any machine that can read the log file; or, hot-swap
main server by redirecting input stream.

And it actually works!

Outrageous Software — c©John Hamer, 2004 – p. 11/27

Store all active data in RAM

Premise: your server has sufficient RAM to hold the
complete set of business objects.

64-bit address space will be adequate for “some time
to come”

RAM may be 100 times more expensive than disk,
but business data is not growing at an exponential
rate.

$-per-Mb for RAM in 2004 is roughly equivalent to
$-per-Mb for disk in 1997.

Data tends to be stored more compactly in RAM
than disk.

Outrageous Software — c©John Hamer, 2004 – p. 12/27

From EUB Technical Review, April
2003

Outrageous Software — c©John Hamer, 2004 – p. 13/27

Naked Objects

Domain objects are then rendered directly visible to,
and manipulable by, the user.

All user actions consist of creating or retrieving
objects, specifying their attributes, forming
associations between them, or invoking methods on
an object (or collection of objects)

Outrageous Software — c©John Hamer, 2004 – p. 14/27

Naked Object Architecture

Outrageous Software — c©John Hamer, 2004 – p. 15/27

What’s left: just the meat

The combination of prevaylance and Naked Objects
immediately reduces the coding required for
business software (est. 60% or more), while
simultaneously eliminating the distorting effects of
relational database and user-interface logic.

Focus can now be placed on the business logic.

So many business systems. Are businesses really so
diverse?

Outrageous Software — c©John Hamer, 2004 – p. 16/27

Generic business logic

Not a new idea: IBM’s SanFrancisco framework,
Hay’s Data Model Patterns, Fowler’s Analysis
Patterns, GNUe project, . . .

E.g., Financials, Supply Chain Management,
Customer Relationship Management, Human
Resources, Project Management, . . .

Not without problems
Terminology varies between industries
Tends towards “overkill” — all possible features
Businesses want to preserve their own
“distinctive character”

Outrageous Software — c©John Hamer, 2004 – p. 17/27

The “Generic-Specific” approach

Claim: Generic models are best defined in abstract,
mathematical terms (graphs, sets, relations, etc.)

Allow formal properties to be established (you don’t
want the GL to leak $. . .)

Constraints can be written in a declarative language
that admits formal reasoning.

Propose instantiation phase that introduces client
terminology and structural constraints.

Deployed system is a specialised business model,
not intended for reuse.

Outrageous Software — c©John Hamer, 2004 – p. 18/27

Example: Accountability

Concerns “who reports what to whom.” Structures
are typically hierarchical (but not always).

E.g., sales office reports to division, division
reports to region, region reports to group.

There may be several dimensions of accountability,
such as: product support, sales, etc.

Outrageous Software — c©John Hamer, 2004 – p. 19/27

Generic accountability model

A generic model of accountability must
accommodate all such arrangements; e.g., a labelled
directed acyclic graph, the nodes denoting roles and
the edges denoting the responsibility.

Instantiating involves attaching constraints on the
graph.

Graph nodes may be classified into various
categories or roles (secretary, line manager, etc.).

Note that after instantiation, there is still no “active”
data in the system; e.g., the individuals who fill the
various roles are not known. The instantiated model
serves to (a) constrain the data that is subsequently
entered; and (b) allow “compilation” to an optimised
system. Outrageous Software — c©John Hamer, 2004 – p. 20/27

Mozart/Oz

Multi-paradigm language (dataflow, functional,
logic, object-oriented, active objects, distributed
state, constraint, component-based)

Small “kernel” with rigorous formal semantics.

Outcome of 10+ years programming language
research

Attention to pragmatics that is unusual in an
“academic” language.

Ideal substrate for Outrageous Software.

Outrageous Software — c©John Hamer, 2004 – p. 21/27

Constraint problems

In an “algorithmic” problem, the steps to reach a
solution are known (and fixed). You are familiar
with these.

In a constraint problem, the steps are not known. All
that is known is the problem structure and the
properties a solution must hold. A solution is found
using search.

E.g., scheduling, warehouse allocation, product
configuration, etc.

Outrageous Software — c©John Hamer, 2004 – p. 22/27

Constraint problems (cont.)

“Algorithmic” solutions tend to be difficult to derive
and are (by their nature) inflexible.

Traditional programming languages offer no support
whatsoever for constraint solving.

Tend to adopt crude algorithmic approximations, or
avoid the “tricky bits” altogether.

Outrageous Software — c©John Hamer, 2004 – p. 23/27

Constraint solvers

Most search problems are “combinatorial”; i.e.,
exploring all states is impractical.

To be effective, constraint solvers apply a variety of
search strategies.

Mozart/Oz provides mechanisms for controlling the
search strategy, and to facilitate communication
between sub-goals.

Relies on support for (massive) concurrency with
synchronisation through dataflow variables.

Outrageous Software — c©John Hamer, 2004 – p. 24/27

Reality check

No commercial support for Mozart/Oz (use Java, but
lose the constraints)

64-bit language implementations not yet mature? (in
a year or two)

No support for ad-hoc queries (work in progress)

Likewise for interoperability (XML is replacing
SQL as the lingua franca)

To radical to gain traction (become a radical).

Outrageous Software — c©John Hamer, 2004 – p. 25/27

Summary and conclusions

True OOP is not possible in conjunction with
non-OOP relational and user-interface layers.

Massive efforts currently underway in interfacing
across the divide (EJB, JDO, .Net, IDEs, . . .)

These “awkward ends” can be eliminated using
some alarmingly simple technology.

Focus can then (finally!) turn to the heart of the
matter: the core business logic.

Outrageous Software — c©John Hamer, 2004 – p. 26/27

Summary and conclusions (cont.)

Reusable business logic requires generic models.

These should be mathematically based, to allow
formal properties to be established.

Instantiation step necessary to bridge terminology
gap and bind constraints.

Changes the nature of programming: become formal
modellers.

Outrageous Software — c©John Hamer, 2004 – p. 27/27

	~
	An enduring meta-architecture
	Codd's meta-architecture
	The sad reality
	Database and U.I. independence is emph {not} the issue
	Impedance mismatch
	When you're in a hole, dig deeper
	``Outrageous Software''
	Prevaylance: trivial persistence
	Features
	Store all active data in RAM
	From EUB Technical Review, April 2003
	Naked Objects
	Naked Object Architecture
	What's left: just the meat
	Generic business logic
	The ``Generic-Specific'' approach
	Example: emph {Accountability}
	Generic accountability model
	Mozart/Oz
	Constraint problems
	Constraint problems (cont.)
	Constraint solvers
	Reality check
	Summary and conclusions
	Summary and conclusions (cont.)

