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The Idea

■ Student code calls the static method
Dot.drawGraph(whatever)

■ whatever can be any Java object.
■ Dot.drawGraph

◆ traverses the object’s fields using Java reflection
◆ outputs a GraphViz format graph description to a text file
◆ runs the GraphViz processor to produce a PNG (or EPS,

etc.) picture
■ Student views the sequence of pictures using a standard

viewer

http://www.cs.auckland.ac.nz/~j-hamer
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Example

public static void main( String[] args ) {
List xs = new LinkedList( );
for( int i = 0; i < 4; i++ ) {

Dot.drawGraph( xs );

xs.add( new Integer(i+100) );
}

}

http://www.cs.auckland.ac.nz/~j-hamer
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Frame #1

LinkedList size: 0

Entry element: null

header

next previous
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Frame #2

LinkedList size: 1

Entry element: null

header

Entry element: 100

next previous next previous
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Frame #3

LinkedList size: 2

Entry element: null

header

Entry element: 100

next

Entry element: 101

previous

previous

next

next

previous
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Frame #4

LinkedList size: 3

Entry element: null

header

Entry element: 100

next

Entry element: 102

previous

previous

Entry element: 101

next previous

next

next

previous
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Frame #4 coloured

LinkedList size: 3

Entry element: null

header

Entry element: 100

next

Entry element: 102

previous

previous

Entry element: 101

next previous

next

next

previous

Dot.Context ctx = Dot.defaultContext( );

ctx.setFieldAttribute( "next", "color=blue" );

ctx.setFieldAttribute( "previous", "color=red" );
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About GraphViz

■ GraphViz is a widely used, freely available graph drawing
program, developed at ATT; see www.graphviz.org

■ Layout is completely automatic and (generally) æsthetically
pleasing.

■ Text input for nodes and edges, with optional attributes
(colour, node shape, labels, fonts, etc.).

■ Output to a variety of formats (PNG, EPS, SVG, . . . )

http://www.cs.auckland.ac.nz/~j-hamer
www.graphviz.org
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Related work

GraphViz ■ Brocard — Perl interface to GraphViz for
visualising data structures; also regular expressions,
grammars, XML, call graph, profiling, . . . .

■ North & Koutsofios — visual debugger, vdbx

Visualisation ■ Thomas Naps’ Visualiser class. Canned
collection of visualisations: numeric arrays (bar,
scattergram, data views), general arrays, stacks,
queues, linked lists, binary trees, general trees, graphs,
networks.
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Principles

■ Students must be engaged in active learning;
■ tools need to be simple to use;
■ avoid distracting students from substantive course material;
■ for instructors, minimise the effort required to integrate tools

into the curriculum;
■ software must be reliable.

http://www.cs.auckland.ac.nz/~j-hamer
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Features of our tool

■ trivial to setup and easy to use (source < 600 lines);
■ active learning — students decide where to place the calls

to drawGraph, what to elide;
■ connects code with the Java data model;
■ usable on any Java program; no specific programming

conventions necessary;
■ allows “wrong” data structures to be viewed (as well as

correct ones);
■ configuration allows broad and precise elision of detail;
■ visualisations can be incorporated in reports, www pages,

and presentations.

http://www.cs.auckland.ac.nz/~j-hamer
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Overcoming student misconceptions

Java has a simple data model, right?
■ Strings are objects, but string constants look like primitive

values.
■ Assignment of objects is by reference, primitive types by

value.
■ Object arrays hold references, not values.
■ 2-dimensional arrays are constructed from 1-d arrays (is it

row or column order?)
■ Static fields are not part of any object.
■ Inheritance means objects are often not the same as their

declared types.

http://www.cs.auckland.ac.nz/~j-hamer
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Visualising the Java data model

HashMap

size: 3

threshold: 8

loadFactor: 2.0

modCount: 3

    

table

Entry

key: three

value: 3

hash: -741826716

0

Entry

key: two

value: 2

hash: -1000502134

2

Entry

key: one

value: 1

hash: -953555362

next

■ Arrays are displayed with elements
juxtaposed.

■ Values in primitive arrays are shown
inline.

■ Object arrays just contain links.
■ Primitive fields are shown inside the

object’s node.
■ Object fields are shown as labelled

arcs.
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Degrees of faithfulness

Three different views of String
■ Show the full internal state of String.
■ Acknowledge String is an object, but hide the internal

state.
■ Pretend String is a primitive value (not an object).

These views apply to any object, not just String.

http://www.cs.auckland.ac.nz/~j-hamer
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The Full Monty

String x = "Hello";
String y = new String(x);
Dot.drawGraph( new String[]{ x, y } );

  

String

offset: 0

count: 5

hash: 0

0

String

offset: 0

count: 5

hash: 0

1

H e l l o

value value

+ Useful in explaining the memory
consumption of substring
operations, or as an example of a
sharing data structure.

− Clutters the visualisation.

− Details are a distraction (e.g.,
explaining hash).
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Hide the internal state

  

Hello

0

Hello

1
+ Visualisation respects reference semantics.
+ More compact.
− Internal sharing is not shown.
■ Can be used with any object, by calling the
toString method.

http://www.cs.auckland.ac.nz/~j-hamer
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Pretend it’s primitive

Hello Hello

+ Most compact.

− Visualisation contradicts reference
semantics.

■ Can be used with any object, by calling the
toString method.

http://www.cs.auckland.ac.nz/~j-hamer
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Limitations and future work

■ GraphViz has limited support for node shapes, label
placement, . . . .

■ Graphs of, e.g., Java AWT components, can be immense.
Drawing even a simple Button will bring in every interface
component!

■ Work in progress on integration with a debugger (Jacob
Tseng). Extended a Java IDE debugger with a “draw”
command. Graphs are updated at each breakpoint.

■ Also, “draw” command extension to the BeanShell (an
interactive Java interpreter), provided by a first-year student.

■ More elision controls.
■ Experimental features for dynamically selecting attributes

(e.g., red nodes in a red-black tree are displayed in red).
■ Interactive graphs — select a node and expand or elide.

http://www.cs.auckland.ac.nz/~j-hamer
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Summary and conclusions

■ Light-weight, general purpose visualisation tool for Java.
■ Useful in elucidating the Java data model, especially

reference semantics.
■ Less suitable for classical array data structures (c.f., Naps),

or OOP (but see, e.g., UMLGraph
http://www.spinellis.gr/sw/umlgraph/)

■ Freely available from
http://www.cs.auckland.ac.nz/~j-hamer

http://www.cs.auckland.ac.nz/~j-hamer
http://www.spinellis.gr/sw/umlgraph/
http://www.cs.auckland.ac.nz/~j-hamer
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A view of an “Arne” Tree

{0->"0",1->"1",10->"10",11->"11",12->"12",13->"13",14->"14",15->"15",16->"16",17->"17",18->"18",19->"19",2->"2",3->"3",4->"4",5->"5",6->"6",7->"7",8->"8",9->"9",a->"a",b->"b"}
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