
John Hamer, January 15, 2004 ACE’2004—Visualising Java Data Structures as Graphs – p. 1/21

Visualising Java Data Structures as Graphs

John Hamer
Department of Computer Science

University of Auckland

J.Hamer@cs.auckland.ac.nz

http://www.cs.auckland.ac.nz/~j-hamer

● The Idea

● Example

● About GraphViz

● Related work

● Principles

● Features of our tool

● Overcoming student misconceptions

● Visualising the Java data model

● Degrees of faithfulness

● The Full Monty

● Hide the internal state

● Pretend it’s primitive

● Limitations and future work

● Summary and conclusions

● A view of an “Arne” Tree

John Hamer, January 15, 2004 ACE’2004—Visualising Java Data Structures as Graphs – p. 2/21

The Idea

■ Student code calls the static method
Dot.drawGraph(whatever)

■ whatever can be any Java object.
■ Dot.drawGraph

◆ traverses the object’s fields using Java reflection
◆ outputs a GraphViz format graph description to a text file
◆ runs the GraphViz processor to produce a PNG (or EPS,

etc.) picture
■ Student views the sequence of pictures using a standard

viewer

http://www.cs.auckland.ac.nz/~j-hamer

● The Idea

● Example

● About GraphViz

● Related work

● Principles

● Features of our tool

● Overcoming student misconceptions

● Visualising the Java data model

● Degrees of faithfulness

● The Full Monty

● Hide the internal state

● Pretend it’s primitive

● Limitations and future work

● Summary and conclusions

● A view of an “Arne” Tree

John Hamer, January 15, 2004 ACE’2004—Visualising Java Data Structures as Graphs – p. 3/21

Example

public static void main(String[] args) {
List xs = new LinkedList();
for(int i = 0; i < 4; i++) {

Dot.drawGraph(xs);

xs.add(new Integer(i+100));
}

}

http://www.cs.auckland.ac.nz/~j-hamer

● The Idea

● Example

● About GraphViz

● Related work

● Principles

● Features of our tool

● Overcoming student misconceptions

● Visualising the Java data model

● Degrees of faithfulness

● The Full Monty

● Hide the internal state

● Pretend it’s primitive

● Limitations and future work

● Summary and conclusions

● A view of an “Arne” Tree

John Hamer, January 15, 2004 ACE’2004—Visualising Java Data Structures as Graphs – p. 4/21

Frame #1

LinkedList size: 0

Entry element: null

header

next previous

http://www.cs.auckland.ac.nz/~j-hamer

● The Idea

● Example

● About GraphViz

● Related work

● Principles

● Features of our tool

● Overcoming student misconceptions

● Visualising the Java data model

● Degrees of faithfulness

● The Full Monty

● Hide the internal state

● Pretend it’s primitive

● Limitations and future work

● Summary and conclusions

● A view of an “Arne” Tree

John Hamer, January 15, 2004 ACE’2004—Visualising Java Data Structures as Graphs – p. 5/21

Frame #2

LinkedList size: 1

Entry element: null

header

Entry element: 100

next previous next previous

http://www.cs.auckland.ac.nz/~j-hamer

● The Idea

● Example

● About GraphViz

● Related work

● Principles

● Features of our tool

● Overcoming student misconceptions

● Visualising the Java data model

● Degrees of faithfulness

● The Full Monty

● Hide the internal state

● Pretend it’s primitive

● Limitations and future work

● Summary and conclusions

● A view of an “Arne” Tree

John Hamer, January 15, 2004 ACE’2004—Visualising Java Data Structures as Graphs – p. 6/21

Frame #3

LinkedList size: 2

Entry element: null

header

Entry element: 100

next

Entry element: 101

previous

previous

next

next

previous

http://www.cs.auckland.ac.nz/~j-hamer

● The Idea

● Example

● About GraphViz

● Related work

● Principles

● Features of our tool

● Overcoming student misconceptions

● Visualising the Java data model

● Degrees of faithfulness

● The Full Monty

● Hide the internal state

● Pretend it’s primitive

● Limitations and future work

● Summary and conclusions

● A view of an “Arne” Tree

John Hamer, January 15, 2004 ACE’2004—Visualising Java Data Structures as Graphs – p. 7/21

Frame #4

LinkedList size: 3

Entry element: null

header

Entry element: 100

next

Entry element: 102

previous

previous

Entry element: 101

next previous

next

next

previous

http://www.cs.auckland.ac.nz/~j-hamer

● The Idea

● Example

● About GraphViz

● Related work

● Principles

● Features of our tool

● Overcoming student misconceptions

● Visualising the Java data model

● Degrees of faithfulness

● The Full Monty

● Hide the internal state

● Pretend it’s primitive

● Limitations and future work

● Summary and conclusions

● A view of an “Arne” Tree

John Hamer, January 15, 2004 ACE’2004—Visualising Java Data Structures as Graphs – p. 8/21

Frame #4 coloured

LinkedList size: 3

Entry element: null

header

Entry element: 100

next

Entry element: 102

previous

previous

Entry element: 101

next previous

next

next

previous

Dot.Context ctx = Dot.defaultContext();

ctx.setFieldAttribute("next", "color=blue");

ctx.setFieldAttribute("previous", "color=red");

http://www.cs.auckland.ac.nz/~j-hamer

● The Idea

● Example

● About GraphViz

● Related work

● Principles

● Features of our tool

● Overcoming student misconceptions

● Visualising the Java data model

● Degrees of faithfulness

● The Full Monty

● Hide the internal state

● Pretend it’s primitive

● Limitations and future work

● Summary and conclusions

● A view of an “Arne” Tree

John Hamer, January 15, 2004 ACE’2004—Visualising Java Data Structures as Graphs – p. 9/21

About GraphViz

■ GraphViz is a widely used, freely available graph drawing
program, developed at ATT; see www.graphviz.org

■ Layout is completely automatic and (generally) æsthetically
pleasing.

■ Text input for nodes and edges, with optional attributes
(colour, node shape, labels, fonts, etc.).

■ Output to a variety of formats (PNG, EPS, SVG, . . .)

http://www.cs.auckland.ac.nz/~j-hamer
www.graphviz.org

● The Idea

● Example

● About GraphViz

● Related work

● Principles

● Features of our tool

● Overcoming student misconceptions

● Visualising the Java data model

● Degrees of faithfulness

● The Full Monty

● Hide the internal state

● Pretend it’s primitive

● Limitations and future work

● Summary and conclusions

● A view of an “Arne” Tree

John Hamer, January 15, 2004 ACE’2004—Visualising Java Data Structures as Graphs – p. 10/21

Related work

GraphViz ■ Brocard — Perl interface to GraphViz for
visualising data structures; also regular expressions,
grammars, XML, call graph, profiling,

■ North & Koutsofios — visual debugger, vdbx

Visualisation ■ Thomas Naps’ Visualiser class. Canned
collection of visualisations: numeric arrays (bar,
scattergram, data views), general arrays, stacks,
queues, linked lists, binary trees, general trees, graphs,
networks.

http://www.cs.auckland.ac.nz/~j-hamer

● The Idea

● Example

● About GraphViz

● Related work

● Principles

● Features of our tool

● Overcoming student misconceptions

● Visualising the Java data model

● Degrees of faithfulness

● The Full Monty

● Hide the internal state

● Pretend it’s primitive

● Limitations and future work

● Summary and conclusions

● A view of an “Arne” Tree

John Hamer, January 15, 2004 ACE’2004—Visualising Java Data Structures as Graphs – p. 11/21

Principles

■ Students must be engaged in active learning;
■ tools need to be simple to use;
■ avoid distracting students from substantive course material;
■ for instructors, minimise the effort required to integrate tools

into the curriculum;
■ software must be reliable.

http://www.cs.auckland.ac.nz/~j-hamer

● The Idea

● Example

● About GraphViz

● Related work

● Principles

● Features of our tool

● Overcoming student misconceptions

● Visualising the Java data model

● Degrees of faithfulness

● The Full Monty

● Hide the internal state

● Pretend it’s primitive

● Limitations and future work

● Summary and conclusions

● A view of an “Arne” Tree

John Hamer, January 15, 2004 ACE’2004—Visualising Java Data Structures as Graphs – p. 12/21

Features of our tool

■ trivial to setup and easy to use (source < 600 lines);
■ active learning — students decide where to place the calls

to drawGraph, what to elide;
■ connects code with the Java data model;
■ usable on any Java program; no specific programming

conventions necessary;
■ allows “wrong” data structures to be viewed (as well as

correct ones);
■ configuration allows broad and precise elision of detail;
■ visualisations can be incorporated in reports, www pages,

and presentations.

http://www.cs.auckland.ac.nz/~j-hamer

● The Idea

● Example

● About GraphViz

● Related work

● Principles

● Features of our tool

● Overcoming student misconceptions

● Visualising the Java data model

● Degrees of faithfulness

● The Full Monty

● Hide the internal state

● Pretend it’s primitive

● Limitations and future work

● Summary and conclusions

● A view of an “Arne” Tree

John Hamer, January 15, 2004 ACE’2004—Visualising Java Data Structures as Graphs – p. 13/21

Overcoming student misconceptions

Java has a simple data model, right?
■ Strings are objects, but string constants look like primitive

values.
■ Assignment of objects is by reference, primitive types by

value.
■ Object arrays hold references, not values.
■ 2-dimensional arrays are constructed from 1-d arrays (is it

row or column order?)
■ Static fields are not part of any object.
■ Inheritance means objects are often not the same as their

declared types.

http://www.cs.auckland.ac.nz/~j-hamer

John Hamer, January 15, 2004 ACE’2004—Visualising Java Data Structures as Graphs – p. 14/21

Visualising the Java data model

HashMap

size: 3

threshold: 8

loadFactor: 2.0

modCount: 3

table

Entry

key: three

value: 3

hash: -741826716

0

Entry

key: two

value: 2

hash: -1000502134

2

Entry

key: one

value: 1

hash: -953555362

next

■ Arrays are displayed with elements
juxtaposed.

■ Values in primitive arrays are shown
inline.

■ Object arrays just contain links.
■ Primitive fields are shown inside the

object’s node.
■ Object fields are shown as labelled

arcs.

http://www.cs.auckland.ac.nz/~j-hamer

● The Idea

● Example

● About GraphViz

● Related work

● Principles

● Features of our tool

● Overcoming student misconceptions

● Visualising the Java data model

● Degrees of faithfulness

● The Full Monty

● Hide the internal state

● Pretend it’s primitive

● Limitations and future work

● Summary and conclusions

● A view of an “Arne” Tree

John Hamer, January 15, 2004 ACE’2004—Visualising Java Data Structures as Graphs – p. 15/21

Degrees of faithfulness

Three different views of String
■ Show the full internal state of String.
■ Acknowledge String is an object, but hide the internal

state.
■ Pretend String is a primitive value (not an object).

These views apply to any object, not just String.

http://www.cs.auckland.ac.nz/~j-hamer

● The Idea

● Example

● About GraphViz

● Related work

● Principles

● Features of our tool

● Overcoming student misconceptions

● Visualising the Java data model

● Degrees of faithfulness

● The Full Monty

● Hide the internal state

● Pretend it’s primitive

● Limitations and future work

● Summary and conclusions

● A view of an “Arne” Tree

John Hamer, January 15, 2004 ACE’2004—Visualising Java Data Structures as Graphs – p. 16/21

The Full Monty

String x = "Hello";
String y = new String(x);
Dot.drawGraph(new String[]{ x, y });

String

offset: 0

count: 5

hash: 0

0

String

offset: 0

count: 5

hash: 0

1

H e l l o

value value

+ Useful in explaining the memory
consumption of substring
operations, or as an example of a
sharing data structure.

− Clutters the visualisation.

− Details are a distraction (e.g.,
explaining hash).

http://www.cs.auckland.ac.nz/~j-hamer

● The Idea

● Example

● About GraphViz

● Related work

● Principles

● Features of our tool

● Overcoming student misconceptions

● Visualising the Java data model

● Degrees of faithfulness

● The Full Monty

● Hide the internal state

● Pretend it’s primitive

● Limitations and future work

● Summary and conclusions

● A view of an “Arne” Tree

John Hamer, January 15, 2004 ACE’2004—Visualising Java Data Structures as Graphs – p. 17/21

Hide the internal state

Hello

0

Hello

1
+ Visualisation respects reference semantics.
+ More compact.
− Internal sharing is not shown.
■ Can be used with any object, by calling the
toString method.

http://www.cs.auckland.ac.nz/~j-hamer

● The Idea

● Example

● About GraphViz

● Related work

● Principles

● Features of our tool

● Overcoming student misconceptions

● Visualising the Java data model

● Degrees of faithfulness

● The Full Monty

● Hide the internal state

● Pretend it’s primitive

● Limitations and future work

● Summary and conclusions

● A view of an “Arne” Tree

John Hamer, January 15, 2004 ACE’2004—Visualising Java Data Structures as Graphs – p. 18/21

Pretend it’s primitive

Hello Hello

+ Most compact.

− Visualisation contradicts reference
semantics.

■ Can be used with any object, by calling the
toString method.

http://www.cs.auckland.ac.nz/~j-hamer

● The Idea

● Example

● About GraphViz

● Related work

● Principles

● Features of our tool

● Overcoming student misconceptions

● Visualising the Java data model

● Degrees of faithfulness

● The Full Monty

● Hide the internal state

● Pretend it’s primitive

● Limitations and future work

● Summary and conclusions

● A view of an “Arne” Tree

John Hamer, January 15, 2004 ACE’2004—Visualising Java Data Structures as Graphs – p. 19/21

Limitations and future work

■ GraphViz has limited support for node shapes, label
placement,

■ Graphs of, e.g., Java AWT components, can be immense.
Drawing even a simple Button will bring in every interface
component!

■ Work in progress on integration with a debugger (Jacob
Tseng). Extended a Java IDE debugger with a “draw”
command. Graphs are updated at each breakpoint.

■ Also, “draw” command extension to the BeanShell (an
interactive Java interpreter), provided by a first-year student.

■ More elision controls.
■ Experimental features for dynamically selecting attributes

(e.g., red nodes in a red-black tree are displayed in red).
■ Interactive graphs — select a node and expand or elide.

http://www.cs.auckland.ac.nz/~j-hamer

● The Idea

● Example

● About GraphViz

● Related work

● Principles

● Features of our tool

● Overcoming student misconceptions

● Visualising the Java data model

● Degrees of faithfulness

● The Full Monty

● Hide the internal state

● Pretend it’s primitive

● Limitations and future work

● Summary and conclusions

● A view of an “Arne” Tree

John Hamer, January 15, 2004 ACE’2004—Visualising Java Data Structures as Graphs – p. 20/21

Summary and conclusions

■ Light-weight, general purpose visualisation tool for Java.
■ Useful in elucidating the Java data model, especially

reference semantics.
■ Less suitable for classical array data structures (c.f., Naps),

or OOP (but see, e.g., UMLGraph
http://www.spinellis.gr/sw/umlgraph/)

■ Freely available from
http://www.cs.auckland.ac.nz/~j-hamer

http://www.cs.auckland.ac.nz/~j-hamer
http://www.spinellis.gr/sw/umlgraph/
http://www.cs.auckland.ac.nz/~j-hamer

John Hamer, January 15, 2004 ACE’2004—Visualising Java Data Structures as Graphs – p. 21/21

A view of an “Arne” Tree

{0->"0",1->"1",10->"10",11->"11",12->"12",13->"13",14->"14",15->"15",16->"16",17->"17",18->"18",19->"19",2->"2",3->"3",4->"4",5->"5",6->"6",7->"7",8->"8",9->"9",a->"a",b->"b"}

Node

key: 3

value: "3"

level: 4

root

Node

key: 11

value: "11"

level: 3

left

Node

key: 7

value: "7"

level: 3

right

Node

key: 1

value: "1"

level: 2

left

Node

key: 15

value: "15"

level: 3

right

Node

key: 0

value: "0"

level: 1

left

Node

key: 10

value: "10"

level: 1

right

Node

key: b

value: null

level: -1

left right

left right

right left

Node

key: 13

value: "13"

level: 2

left Node

key: 17

value: "17"

level: 2

right

Node

key: 12

value: "12"

level: 1

left

Node

key: 14

value: "14"

level: 1

right

left right left right

Node

key: 16

value: "16"

level: 1

left Node

key: 19

value: "19"

level: 2

right

left right

Node

key: 18

value: "18"

level: 1

left

Node

key: 2

value: "2"

level: 1

right

left right left right

Node

key: 5

value: "5"

level: 2

left Node

key: a

value: "a"

level: 2

right

Node

key: 4

value: "4"

level: 1

left

Node

key: 6

value: "6"

level: 1

right

left right left right

Node

key: 8

value: "8"

level: 1

left

Node

key: b

value: "b"

level: 1

right

left Node

key: 9

value: "9"

level: 1

right

left right left right

http://www.cs.auckland.ac.nz/~j-hamer

	The Idea
	Example
	Frame #1
	Frame #2
	Frame #3
	Frame #4
	Frame #4 coloured
	About GraphViz
	Related work
	Principles
	Features of our tool
	Overcoming student misconceptions
	Visualising the Java data model
	Degrees of faithfulness
	The Full Monty
	Hide the internal state
	Pretend it's primitive
	Limitations and future work
	Summary and conclusions
	A view of an ``Arne'' Tree

