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Abstract

Case-Based Reasoning (CBR) is a relatively recent problem solving technique that is attracting

increasing attention. However, the numbers of people with first hand theoretical or practical

experience of CBR is still small. The main objective of this review is to provide a

comprehensive overview of the subject to people that are new to CBR. The paper will outline

the development of CBR in the US in the 1980’s. It will describe the fundamental techniques

of CBR and contrast its approach to that of model-based reasoning systems1. A critical review

of currently available CBR software tools is followed by descriptions of CBR applications

both from academic research and, in more detail, three CBR systems that are presently being

used commercially. Each of the three commercial case studies highlights features that made

CBR particularly suitable for the application. Moreover the last case study describes a

development methodology for implementing CBR systems. The paper concludes with a

research agenda for CBR. A detailed categorised bibliography of CBR research is provided in

a companion paper to this [Marir & Watson, 94].

1. Introduction

“reality takes shape in the memory alone”,

Marcel Proust, A la recherché du temps perdu.

Expert or knowledge-based systems (KBS) are one of the success stories of Artificial

Intelligence (AI) research. In a recent survey the UK Department of Trade & Industry found

over 2000 KBS in commercial operation (the survey excluded KBS in University research

laboratories) [DTI, 92]. It has been around twenty years since the first documented KBS (the

trinity of classic systems: DENDRAL, MYCIN and PROSPECTOR) were reported, yet in

that time the basic architecture of KBS has changed little. The early KBS, and today’s

systems, are based upon an explicit model of the knowledge required to solve a problem - so

called second generation systems [Clancey, 85] using a deep causal model that enables a

                                               

1The term model based reasoning is used to include all systems with an explicit model of a problem, including

systems relying on heuristic, causal, statisitical and mathematical models. Of these rule-based systems are

perhaps the most common instances in the knowledge-based systems arena.
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system to reason using first principles. But whether the knowledge is shallow or deep an

explicit model of the domain must still be elicited and implemented often in the form of rules

or perhaps more recently as object models. However, despite the undoubted success of model-

based KBS in many sectors developers of these systems have met several problems:

• knowledge elicitation is a difficult process, often being referred to as the knowledge

elicitation bottleneck;

• implementing KBS is a difficult  process requiring special skills and often taking many man

years;

• once implemented model-based KBS are often slow and are unable to access or manage

large volumes of information; and

• once implemented they are difficult to maintain [Bachant & McDermot, 84; Coenen &

Bench-Capon, 92; Watson et al., 92b].

Solutions to these problems have been sought through better elicitation techniques and tools

[Motta et al., 89; Brooke & Jackson, 91], better KBS shells and environments, improved

development methodologies [Diaper, 89; Inder & Filby, 1991; Watson et al., 92a; Wielinga et

al., 1992], knowledge modelling languages and ontologies [Alexander et al., 86; Steels, 90;

Chandraskaren 86 & 90; Wielinga et al., 92], facilitating the co-operation between KBS and

databases in expert databases and deductive databases [Gallaire et al.,, 81; Minker, 88; Marir

& Yip, 92; Marir 93], and techniques and tools for maintaining systems [Bench-Capon &

Coenen, 92, Watson et al., 92b]

However, over the last few years an alternative reasoning paradigm and computational

problem solving method has increasingly attracted more and more attention. Case-based

reasoning (CBR) solves new problems by adapting previously successful solutions to similar

problems. CBR is attracting attention because it seems to directly address the problems

outlined above. Namely:

• CBR does not require an explicit domain model and so elicitation becomes a task of

gathering case histories,

• implementation is reduced to identifying significant features that describe a case, an easier

task than creating an explicit model,

• by applying database techniques largely volumes of information can be managed, and

• CBR systems can learn by acquiring new knowledge as cases thus making maintenance

easier.
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This paper therefore has several objectives.

• to introduce the history, techniques and application of CBR to a new audience,

• to provide a comprehensive review of CBR software tools,

• to demonstrate that the benefits of CBR are real and not merely hype, and to

• identify where further research and development is required.

To this end, section two presents a history of CBR from its foundations in the late seventies to

the present day. Section three summarises CBR techniques, whilst section four provides a

review of CBR software tools currently available. Section five describes influential CBR

applications. These are divided into two categories: those that are primarily academic,

implemented to demonstrate certain aspects of CBR, and three systems that are being used

commercially. These systems are described in more detail than the academic demonstrators,

highlighting why CBR was particularly suitable to the problem domain and describing the

benefits it brought. The last case study describes how the system was implemented and

outlines a methodology for developing CBR systems. Section six summarises by making a

case for case-based reasoning, drawing on all previous sections. The paper concludes by

identifying areas for further research. A companion paper to this presents a detailed

categorised bibliography of CBR for the researcher requiring a reasonably complete

bibliography of the subject [Marir & Watson, 94].

Those interested in other overviews of case-based reasoning should refer to Riesbeck &

Schank [89], Slade [91] and Kolodner [92 & 93] for comprehensive discussions of CBR

concepts and origins. A task decomposition of CBR is provided by Aamodt & Plaza [94]. The

review presented here differs from previous works in that in addition to describing the history

and techniques of CBR and contrasting its approach with that of model-based reasoning

systems, it also gives a critical review of currently available CBR software tools.

2. A History of Case-Based Reasoning

The work Schank and Abelson in 1977 is widely held to be the origins of CBR. They proposed

that our general knowledge about situations is recorded as scripts that allow us to set up

expectations and perform inferences. Scripts were proposed as a structure for conceptual

memory describing information about stereotypical events such as, going to a restaurant or

visiting a doctor.  However, experiments on scripts showed that they were not a complete

theory of memory representation - people often confused events that had similar scripts.  For

example, a person might mix up room scenes from a visit to a doctor’s office with a visit to a

dentist’s office. Such observations fell in line with the theories of concept formation, problem

solving and experiential learning within philosophy and psychology [Tulving, 77, Smith et al.,

78].
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Roger Schank continued to explored the role that the memory of previous situations (i.e.,

cases) and situation patterns or memory organisation packets (MOPs) play in both problem

solving and learning [Schank, 82]. At a similar time Gentner [83] was developing a theoretical

framework for analogy which also has relevance to CBR. Perhaps with the benefit of hindsight

it is also possible to find references of significance to CBR in Wittgenstein’s observation that

natural concepts such as tables and chairs are in fact polymorphic and can not be classified by

a single set of necessary and sufficient features but instead can be defined by a set of instances

(i.e., cases) with family resemblances [Wittgenstein, 53]. This work has been cited by Aamodt

and Plaza [94] as a philosophical basis for CBR.

Whilst the philosophical roots of CBR could perhaps be claimed by many what is not in doubt

is that it was the work of Roger Schank’s group at Yale University in the early eighties that

produced both a cognitive model for CBR and the first CBR applications based upon this

model. Janet Kolodner developed the first CBR system called CYRUS [Kolodner, 83a & b].

CYRUS contained knowledge, as cases, of the travels and meetings of ex-US Secretary-of-

State Cyrus Vance. CYRUS was an implementation of Schank’s dynamic memory model. Its

case-memory model later served as the basis for several other CBR systems including

MEDIATOR [Simpson, 85], CHEF [Hammond, 86], PERSUADER [Sycara, 87], CASEY

[Koton, 89] and JULIA [Hinrichs, 92].

An alternative approach came from Bruce Porter’s work, at The University of Texas in Austin,

into heuristic classification and machine learning resulting in the PROTOS system [Porter &

Bareiss, 86; Bareiss, 88]. PROTOS unified general domain knowledge and specific case

knowledge into a single case memory model. This work was taken further by GREBE, a

system operating in a legal domain [Branting, 91].

It is perhaps no surprise that since the practice of law is largely based upon precedence and the

notion of cases, that there has been some interest from this sector in CBR. Notably Edwina

Rissland’s group at the University of Massachusetts in Amherst who developed HYPO

[Ashley, 88]. In HYPO cases representing legal precedents are used to interpret a court

situation and to produce arguments for both the defence and the prosecutors. This system was

later combined with rule-based reasoning to produce CABARET [Rissland & Skalak, 89].

CBR research is not restricted to the US, but it was slower to get started in Europe. Amongst

the first cited European work is that of Derek Sleeman’s group from Aberdeen in Scotland.

They studied the uses of cases for knowledge acquisition, developing the REFINER system

[Sharma & Sleeman, 88]. At a similar time Mike Keane, from Trinity College Dublin,

undertook cognitive science research into analogical reasoning that has subsequently

influenced CBR [Keane, 88]
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On continental Europe Michael Richter and Klaus Althoff [Althoff, 89], from the University of

Kaiserslautern, applied CBR to complex diagnosis. This has given rise to the PATDEX system

[Richter & Weiss, 91] and subsequently to the CBR tool S3-Case. Agnar Aamodt at the

University of Trondheim has investigated the learning facet of CBR and the combination of

cases and general domain knowledge resulting in CREEK [Aamodt, 89 & 91]

In the UK, CBR seems to be particularly applied to civil engineering. A group at the

University of Salford are applying CBR techniques to fault diagnosis, repair and refurbishment

of buildings [Watson & Abdullah, 94]. Yang & Robertson [94] in Edinburgh are developing a

CBR system for interpreting building regulations, a domain reliant upon the concept of

precedence. Whilst another group in Wales are applying CBR to the design of motorway

bridges [Moore et al., 94].

Further afield there are active CBR groups in Israel [Oxman. 93a & b], India [Venkatamaran

et al., 93] and Japan [Kitano, 93]. However, the increasing number of CBR papers in AI

journals and the increasing number of commercially successful CBR applications is likely to

ensure that many more countries take an active interest in CBR in the future. As an indicator

the British Computer Society Specialist Group on Expert Systems has held CBR workshops

suitable for novices at both it last annual conferences.

3. Case-Based Reasoning Techniques

A case-based reasoner solves new problems by adapting solutions that were

used to solve old problems [Riesbeck & Schank, 89]

3.1 The CBR Cycle

The processes involved in CBR can be represented by a schematic cycle (see Figure 1).

Aamodt and Plaza [94] have described CBR typically as a cyclical process comprising the four

REs:

1. RETRIEVE the most similar case(s);

2. REUSE the case(s) to attempt to solve the problem;

3. REVISE the proposed solution if necessary, and

4. RETAIN the new solution as a part of a new case.

A new problem is matched against cases in the case base and one or more similar cases are

retrieved. A solution suggested by the matching cases is then reused and tested for success.

Unless the retrieved case is a close match the solution will probably have to be revised

producing a new case that can be retained.

This cycle currently rarely occurs without human intervention. For example many CBR tools

act primarily as case retrieval and reuse systems. Case revision (i.e., adaptation) often being
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undertaken by managers of the case base. However, it should not be viewed as weakness of

CBR that it encourages human collaboration in decision support. The following sections will

outline how each process in the cycle can be handled.

Case-Base

Problem

Proposed
Solution

Confirmed
Solution

RETRIEVE

R
E
U
S
E

REVISE

RETAIN

Figure 1 The CBR Cycle [adapted from Aamodt & Plaza, 1994]

3.2 Case Representation

A case is a contextualised piece of knowledge representing an experience. It contains the past

lesson that is the content of the case and the context in which the lesson can be used [Alterman, 89,

David, 91; Kolodner, 93]. Typically a case comprises:

• the problem that describes the state of the world when the case occurred,

• the solution which states the derived solution to that problem, and/or

• the outcome which describe the state of the world after the case occurred.

Cases which comprise problems and their solutions can be used to derive solutions to new

problems, as in CASEY [Koton, 89]. Whereas cases comprising problems and outcomes can be

used to evaluate new situations. If, in addition, such cases contain solutions they can be used to

evaluate the outcome of proposed solutions and prevent potential problems as in MEDIATOR

[Simpson, 85]. Cases can be represented in a variety of forms using the full range of AI

representational formalisms including frames, objects, predicates, semantic nets and rules - the

frame/object representation currently being used by the majority of CBR software.

There is a lack of consensus within the  CBR community as to exactly what information should be

in a case. However, two pragmatic measures can be taken into account in deciding what should be
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represented in cases: the functionality and the ease of acquisition of the information represented in

the case [Kolodner, 93].

3.3 Indexing

Case indexing involves assigning indices to cases to facilitate their retrieval. Several guidelines on

indexing have been proposed by CBR researchers [Birnbaum & Collins, 89; Hammond 1989).

Indices should:

• be predictive,

• address the purposes the case will be used for,

• be abstract enough to allow for widening the future use of the case-base, and

• be concrete enough to be recognised in future

Both manual and automated methods have been used to select indices. Choosing indices manually

involves deciding a case’s purpose with respect to the aims of the reasoner and deciding under what

circumstances the case will be useful.

There are an ever increasing number of automated indexing methods including:

• Indexing cases by features and dimensions that tend to be predictive across the entire domain

i.e., descriptors of the case which  are responsible for solving it or which influence its

outcome (Acorn & Walden, 92). In this method the domain is analysed and the dimensions

that tend to be important are computed. These are put in a checklist and all cases are

indexed by their values along these dimensions. For example, MEDIATOR uses this method

by indexing on type and function of disputed objects and relationship of disputants, whilst

CHEF indexes on texture and taste. This kind of technique is called checklist-based indexing

[Kolodner, 93].

• Difference-based indexing selects indices that differentiate a case from other cases as in

CYRUS. During this process the system discovers which features of a case differentiate it

from other similar cases, choosing as indices those features that differentiate cases best.

• Similarity and explanation-based generalisation methods, which produce an appropriate set of

indices for abstract cases created from cases that share some common set of features, whilst the

unshared features are used as indices to the original cases [Hammond, 87 & 89].

• Inductive learning methods [Lebowitz, 87], which identify predictive features that are then used

as indices [Goodman, 89]. These techniques are widely used (e.g., in Cognitive system’s

ReMind) and commonly use variants of the ID3 algorithm used for rule induction.

• Explanation-based techniques, which determine relevant features for each case [Barletta &

Mark, 88; Simoudis et al., 93]. This method analyses each case to find which of their

features are predictive ones. Cases are then indexed by those features.
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However, despite the success of many automated methods, Janet Kolodner believes that people

tend to do better at choosing indices than algorithms, and therefore for practical applications indices

should be chosen by hand [Kolodner 1993].

3.4 Storage

Case storage is an important aspect in designing efficient CBR systems in that, it should reflect the

conceptual view of what is represented in the case and take into account the indices that

characterise the case. The case-base should be  organised into a manageable structure that supports

efficient search and retrieval methods. A balance has to be found between storing methods that

preserve the semantic richness of cases and their indices and methods that simplify the access and

retrieval of relevant cases. These methods are usually referred to as case memory models. The two

most influential case memory models are the dynamic memory model of Schank and Kolodner, and

the category-exemplar model of Porter and Bareiss.

3.4.1 The dynamic memory model

The case memory model in this method is comprised of memory organisation packets or MOPs.

MOPs are a form of frame and are the basic unit in dynamic memory. They can be used to

represent knowledge about classes of events using two kind of MOPs:

• instances representing cases, events or objects, and

• abstractions representing generalised versions of instances or of other abstractions.

The case memory, in a dynamic memory model, is a hierarchical structure of episodic memory

organisation packets (E-MOPs) [Kolodner, 83a & b], also referred to as generalised episode

(GEs) [Koton, 89] developed from Schank's more general MOP theory [Schank, 82]. The basic

idea is to organise specific cases which share similar properties under a more general structure (i.e.,

a generalised episode). A GE contains three different types of objects: norms, cases and indices.

Norms are features common to all cases indexed under a GE. Indices  are features which

discriminate between a GE’s cases. An index may point to a more specific generalised episode or to

a case, and is composed of an index name and an index value.

The case-memory is a discrimination network where nodes are either a GE, an index name, index

value or a case. Index name-value pairs point from a GE to another GE or case.  The primary role

of a GE is as an indexing structure for storing, matching and retrieval of cases. During case storage

when a feature (i.e., index name and index value) of a new case matches a feature of an existing

case a new GE is created. The two cases are then discriminated by indexing them under different

indices below the new GE (assuming the cases are not identical). Thus, the memory is dynamic in

that similar parts of two cases are dynamically generalised into a new GE, the cases being indexed

under the GE by their differences.
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However, this process can lead to a explosive growth in the number of indices as case numbers

increase. So for practical purposes most CBR systems using this method limit the number of

permissible indices to a limited vocabulary.

3.4.2 The category-exemplar model

This model organises cases based on the view that the real world should be defined extensionally

with cases being referred to as exemplars [Porter & Bareiss, 86]. The case memory is a network

structure of categories, semantic relations, cases and index pointers. Each case is associated with a

category. Different case features are assigned different importance in describing a case's

membership to a category. Three type of indices are provided, which may point to a case or a

category:

1. feature links that point from problem descriptors (features) to a case or category,

2. case links that point from categories to its associated cases, and

3. difference links pointing from categories to the neighbouring cases that only differ in a small

number of features.

A feature is described by a name-value pair. A category’s exemplars are stored according to their

degree of prototypicality to the category. Within this memory organisation, the categories are

inter-linked within a semantic network containing the features and intermediate states referred to by

other terms. This network represents a background of general domain knowledge that enables

explanatory support to some CBR tasks. A new case is stored  by searching for a matching case

and by establishing the relevant feature indices. If a case is found with only minor differences to the

new case, the new case may not be retained, or the two cases may be merged.

3.5 Retrieval

Given a description of a problem, a retrieval algorithm, using the indices in the case-memory,

should retrieve the most similar cases to the current problem or situation. The retrieval algorithm

relies on the indices and the organisation of the memory to direct the search to potentially useful

cases.

The issue of choosing the best matching case has been addressed by research into analogy

[Falkenehainer et al, 86]. This approach involves using heuristics to constrain and direct the search.

Several algorithms have been implemented to retrieve appropriate cases, for example: serial search

[Navinchandar, 91; Acorn & Walden, 92; Simoudis et al., 93], hierarchical search [Maher & Zhang,

91] and simulated parallel search [Domeshek, 93].

Case-based reasoning will be ready for large scale problems only when retrieval algorithms are

efficient at handling thousands of cases. Unlike database searches that target a specific value in a
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record, retrieval of cases from the  case-base must be equipped with heuristics that perform partial

matches, since in general there is no existing case that exactly matches the new case.

Among well known methods for case retrieval are: nearest neighbour, induction, knowledge guided

induction and template retrieval. These methods can be used alone or combined into hybrid

retrieval strategies.

3.5.1 Nearest neighbour

This approach involves the assessment of similarity between stored cases and the new input case,

based on matching a weighted sum of features. The biggest problem here is to determine the

weights of the features. The limitation of this approach include problems in converging on the

correct solution and retrieval times. In general the use of this method leads to the retrieval time

increasing linearly with the number of cases. Therefore this approach is more effective when the

case base is relatively small. Several CBR implementation have used this method to retrieve

matching cases, for example: BROADWAY [Skalk, 92] for selection of car models, the Compaq

SMART System [Acorn & Walden, 92] for a customer product support help desk, and  ANON

[Owens, 93] for situation assessment in plan failure.

A typical algorithm for calculating nearest neighbour matching is the one used by Cognitive

Systems ReMind software reported in Kolodner [93] where w is the importance weighting of a
feature (or slot), sim is the similarity function, and fi

I  and fi
R  are the values for feature i in the

input and retrieved cases respectively.
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Figure 2 A Nearest Neighbour Algorithm

3.5.2 Induction

Induction algorithms (e.g. ID3 [Quinlan, 79]) determine which features do the best job in

discriminating cases, and generate a decision tree type structure to organise the cases in memory.

This approach is useful when a single case feature is required as a solution, and where that case

feature is dependent upon others.

3.5.3 Knowledge guided induction

This method applies knowledge to the induction process by manually identifying case features that

are known or thought to affect the primary case feature. This approach is frequently used in

conjunction with other techniques, because the explanatory knowledge is not always readily

available for large case bases.
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3.5.4 Template retrieval

Similar to SQL-like queries, template retrieval returns all cases that fit within certain parameters.

This technique is often used before other techniques, such as nearest neighbour, to limit the search

space to a relevant section of the case-base.

3.6 Adaptation

Once a matching case is retrieved a CBR system should adapt the solution stored in the retrieved

case to the needs of the current case. Adaptation looks for prominent differences between the

retrieved case and the current case and then applies formulae or rules that take those differences

into account when suggesting a solution. In general, there are two kinds of adaptation in CBR:

• Structural adaptation, in which adaptation rules are applied directly to the solution stored in

cases [Kolodner, 93]. This kind of adaptation is used in JUDGE [Bain, 86] and CHEF

[Hammond, 86].

• Derivational adaptation, that reuses the algorithms, methods or rules that generated the

original solution to produce a new solution to the current problem. In this method the planning

sequence that constructed that original solution must be stored in memory along with the

solution as in MEDIATOR [Simpson, 85]. Derivational adaptation, sometimes referred to a

reinstantiation, can only be used for cases that are well understood.

An ideal set of adaptation rules must be strong enough to generate complete solutions from scratch,

and an efficient CBR system may need both structural adaptation rules to adapt poorly understood

solutions and derivational mechanisms to adapt solutions of cases that are well understood.

Several techniques, ranging from simple to complex, have been used in CBR for adaptation. These

include:

• Null adaptation, a direct simple technique that applies whatever solution is retrieved to the

current problem without adapting it. Null adaptation is useful for problems involving  complex

reasoning but with a simple solution. For example, when someone applies for a bank loan, after

answering numerous questions the final answer is very simple: grant the loan, reject the loan, or

refer the application.

• Parameter adjustment, a structural adaptation technique that compares specified parameters of

the retrieved and current case to modify the solution in an appropriate direction. This technique

is used in JUDGE [Bain, 86], which recommends a shorter sentence for a criminal where the

crime was less violent.

• Abstraction and respecialisation, a general structural adaptation technique that is used in a

basic way to achieve simple adaptations and in a complex way to generate novel, creative

solutions. The PLEXUS planning system uses this technique [Alterman, 88].
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• Critic-based adaptation, in which a critic looks for combinations of features that can cause a

problem in a solution. Importantly, the critic is aware of repairs for these problems.

PERSUADER [Sycara, 87] is a system which uses all the techniques of adaptation discussed

above.

• Reinstantiation, is used to instantiate features of an old solution with new features. For

example, CHEF can reinstantiate chicken and snow peas in a Chinese recipe with beef and

broccoli thereby creating a new recipe.

• Derivational replay, is the process of using the method of deriving an old solution or solution

piece to derive a solution in the new situation. For example, BOGART [Mostow et al. 1989],

which replays stored design plans to solve problems.

• Model-guided repair, uses a causal model to guide adaptation as in CELIA [Redmond, 92],

which is used for diagnosis and learning in auto mechanics, and KRITIK [Goel et al., 92] used

in the design of physical devices.

• Case-based substitution, uses cases to suggest solution adaptation as in ACBARR [Moorman

& Ram, 92, Ram et al., 93] a system for robot navigation

4. CBR Software Tools

Theoreticians might argue that the current surge in interest in CBR is due to the intuitive

nature of CBR and because it may closely resemble human reasoning. Software vendors might

argue that it is because CBR tools have made the theory practically feasible. There is truth in

both views but certainly the tools have made a contribution. This section reviews most of the

currently available major CBR tools. In most cases these have been evaluated by the authors

and this is indicated in the text. The section concludes with a brief description of  other CBR

tools that have been reported to be available.

4.1 CBR-Express

CBR-Express, produced by Inference Corporation, is perhaps the most successful CBR

product to date. CBR-Express is specifically tailored to a vertical market, that of help desks.

The customer support help desk is becoming an increasingly common feature in the nineties,

and managers of such services face similar problems:

• for staff manning the help desk to be useful they require training,

• training takes time and money, and

• manning a help desk is not the best job in the world so staff turn over is high.

Where expertise is scarce conventional wisdom tells us a KBS is useful. However, as Dearden

& Bridge [93] point out there is an additional problem. Customer help desks often deal with

technical faults. To implement a model-based reasoning system (MBR) you need to know the

faults and their solutions. But if you (as the manufacturer) new there was a fault you probably
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wouldn’t release the product. Thus, help desks often must deal with faults that designers and

engineers have not envisaged and consequently could not be in the model-base.

Dearden & Bridge argue that this is where CBR systems offer a solution. Through the

application of the CBR cycle including case retainment (i.e., learning) newly identified faults

and their solutions can be added as new cases as they arise (this is simpler than adding new

rules). CBR-Express applies the CBR cycle very successfully to help desks and is currently the

market leader for knowledge-based help desk software.

CBR-Express has a simple case structure and uses nearest neighbour matching to retrieve

cases. A Sample case from CBR-Express that diagnoses faults in laser printers is shown in

Figure 3. Developers using CBR-Express use an interface that deals with all programming

elements of case creation and editing resulting in a syntax free environment that lets people

without programming experience quickly develop case-bases [Watson & Abdullah, 94].

BEGIN CASE CASE11
      TITLE
            Ink cartridge is damaged, causing black stains.
      DESCRIPTION
            Stains appear as small, round, black dots that
            occur on front or back of page.
            Sometimes wide inconsistent stains appear.
      QUESTIONS
            Are you having print quality problems?
                ANSWER  : Yes
                SCORING : (-)
            What does the print quality look like?...
                ANSWER  : Black Stains
                SCORING : (default)
            Does cleaning the printer with cleaning paper
            remove problem?
                ANSWER  : No
                SCORING : (default)
      ACTIONS
            Check toner cartridge and replace if it is low in
            toner or damaged...
      BROWSE TEXT
      CREATION    29/7/91 14:19:22
      LAST_UPDATE 29/7/91 14:19:22
      LAST_USED   29/7/91 14:19:22
      STATUS ACTIVE
END CASE

Figure 3 A CBR-Express Case

A key feature of CBR-Express is its ability to handle free-form text. This was felt to be vital to

the help desk market since it lets customers describe their problems in their own words rather

than being taken through a decision tree style question and answer session. CBR-Express

ignores words such as: and, or, I, there, etc., it can use synonyms, and represents words as a

set of trigrams. The trigram for cartridge is: CAR, ART, RTR, TRI, RID, IDG, DGE.

The use of trigrams means that CBR-Express is very tolerant of spelling mistakes and typing

errors such as letter transpositions. The trigrams for cartridge and cartrideg will still match
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closely. Although there are obvious problems with this lexical approach it is nonetheless

surprisingly powerful and very useful for CBR-Express’ market.

CBR-Express examines a user’s free form text entry and matches this against cases’ titles and

descriptions. This results in the retrieval of a set of cases. A list of ranked solutions with

likelihood values is generated from the cases and the user is offered these along with a set of

questions. Answers to these questions help narrow the number of cases that match leading to a

more accurate solution that is presented to the user.

In the event of a solution not being reached (CBR-Express has a customisable threshold value)

or if a solution is not satisfactory, CBR-Express closes the CBR cycle by using the concept of

an unresolved case. If after searching on a problem description and answering several

questions a successful match is not obtained an entire transcript of the consultation can be

saved as an unresolved case. The administrator of the case base subsequently can find out

what that case’s solution was and modify the unresolved case to create a new case.

In summary, CBR-Express is extremely well suited to help desk applications and has also been

used successfully for intelligent task assistance, information access systems and knowledge

publishing. It is very easy to use, reliable, network ready, and notable for its intelligent

handling of text. The product reviewed was CBR-Express Developers Kit version 1.2 R1 for

Windows.

4.2 CasePoint

CasePoint, also from Inference Corp., is a runtime version of CBR-Express. CasePoint is a

CBR delivery system as it only runs case-bases (i.e., users of CasePoint can not develop or

edit cases, for this they must use CBR-Express) and does not contain the customer tracking

facilities of CBR-Express. However,  as a delivery vehicle it has certain advantages over CBR-

Express. A criticism of nearest neighbour matching is that if a case base were large and if cases

had many features it is not an efficient process. However, the matching algorithm that

CasePoint uses is extremely fast.

CasePoint is also extremely memory efficient, only requiring a few hundred K to run.

Moreover, since it is an efficient DDE server (MS Windows data exchange protocol) it can

easily be integrated with other applications running under Windows. This is an interesting

feature because although CBR-Express was designed for the help desk market, CasePoint can

deliver CBR solutions for a wider range of diagnostic or classification problems at a

reasonable cost. The product reviewed was CasePoint version 1.2.
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4.3 ART*Enterprise

ART*Enterprise is the latest incarnation of Inference Corporation’s flagship development

product. In the 1980’s ART and then ART-IM were marketed as AI development tools.

Inference have dropped the AI label and now market ART*Enterprise as “an integrated,

object-oriented applications development tool. designed for MIS developers”.

ART*Enterprise offers a variety of  representational paradigms including:

• objects supporting multiple inheritance, encapsulation and polymorphism;

• rules; and

• cases.

This is all packaged with a GUI builder, version control facilities, and the ability to link to data

repositories in most proprietary DBMS formats for developing client-server applications.

Moreover, ART*Enterprise offers cross-platform support for most operating systems,

windowing systems and hardware platforms.

The CBR component in ART*Enterprise is essentially the same as that in CBR-Express (or

rather vice-versa since CBR-Express uses code from ART to provide its CBR functionality).

Thus, ART*Enterprise offers nearest neighbour matching and the impressive text handling

mention above. However, the CBR functionality of ART*Enterprise is more controllable than

in CBR-Express. Moreover, the integration with other knowledge representational paradigms

means that this offers an excellent environment to integrate CBR with other techniques and to

use MBR techniques for case adaptation. However, although the package as a whole is very

powerful the CBR functionality of ART*Enterprise is less powerful than a tool such as

ReMind.

ART*Enterprise is currently (Spring 1994) undergoing advanced beta-testing with selected

sites and will be available commercially shortly. At the time of publication the authors did not

have first hand experience of this product. This review is based on information supplied by

contacts within Inference, attendance at product seminars, and contacts with beta-testers.

4.4 Eclipse - The Easy Reasoner

Eclipse from Haley Enterprises is a close relative of ART. The forward chaining functionality

of ART, written in LISP, was re-implement in C by NASA, entering the public domain as the

language CLIPS. In the late eighties Paul Haley, the former Chief Scientist of Inference,

developed a new ART-like language compatible with CLIPS. This became Eclipse.

Like ART, Eclipse offers objects, only this time fully compatible C++ objects, and optimised

forward chaining using the Rete algorithm. Eclipse is available for the DOS operating system,
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MS Windows, UNIX platforms and certain mainframe environments. Haley Enterprise claim

they can port Eclipse to any ANSI C environment in 30 days after you buy it.

The Easy Reasoner is a C library supplied with Eclipse that provides CBR functionality. The

Easy Reasoner provides nearest neighbour and inductive retrieval of records in a database.

Once records have been retrieved they can be asserted as Eclipse objects for adaptation by its

rule-base. Eclipse supports the usual range of variable types and offers similar text handling

facilities to ART (i.e., ignoring noise words and using trigrams to cope with spelling mistakes).

Interestingly Eclipse also uses stems to identify, for example, that magnetically and magnetic

all stem from magnet.

Eclipse does not provide the same easy development environment as ART*Enterprise and it

lacks the ability to integrate data from disparate heterogeneous databases. But, for an

experienced C++ programmer Eclipse may offer some advantages - it is extremely fast, and it

can be embedded within a C++ application. The product reviewed was Eclipse version 1.1.

4.5 ReMind

ReMind, produced my Cognitive Systems Inc., was developed with support from the US

DARPA programme. It was originally developed for the Macintosh and has since been ported

to MS Windows and various UNIX platforms. It is available as a C library, for embedding in

other applications, and as an interactive development environment. The product reviewed was

the MS Windows version 1.1, and it must be said that the port from the Macintosh was all too

obvious. However, despite problems with the interface ReMind is the most flexible of the CBR

tools reviewed.

ReMind offers template, nearest neighbour, inductive, and knowledge-guided inductive

retrieval. The template retrieval supports simple SQL-like queries returning all cases that fall

within set parameters. The nearest neighbour retrieval is informed by user defined importance

weightings that can be placed on case features. Inductive retrieval involves building a decision

tree that indexes the cases. This can be done automatically by ReMind with no user

involvement or the user can create a qualitative model to guide the induction algorithm.

Qualitative models are created graphically to indicate which concepts (case features) are

dependent on other concepts. Qualitative weightings can be placed on these dependencies and

ReMind then uses the qualitative model to guide the induction algorithm (hence knowledge-

guided induction) resulting in decision trees that more closely reflect the causal relationship of

concepts in the cases. Interestingly, different qualitative models can be created to explore

different theories about the domain or to allow what-if questions to be asked.
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Case adaptation is provided by creating adaptation formulae that adjust values based on the

difference between the retrieved and the new case. These are also created graphically using a

visual programming technique. Although this takes a little getting used to the extremely close

typing of case features combined with the close typing of the operators does reduce syntax

errors. Finally, ReMind can create case-bases from existing databases making it potentially

useful for data-mining projects [Milne & Nelson, 94].

ReMind is a flexible CBR tool offering the widest range of case-retrieval methods along with

interesting concepts such as qualitative models and visual adaptation formulae. It does not

have the powerful text handling features of Inference’s products and Eclipse, though it does

provide an elementary natural language capability via a lexicon of terms that can be mapped to

an ordered symbol hierarchy. However, in general users are forced to select rather than

describe a situation.

Cognitive systems has announced CBR/text which will add significant new natural language

and text handling functionality to ReMind. CBR/text is scheduled for release in the second

quarter of 1994.

4.6 CASUEL

Ralph Bergmann, of the University of Kaiserslautern in Germany, reports that CASUEL, the

Common Case Representation language developed by the INRECA project is now available

(June 1994). INRECA (INtegrated REasoning from CAses) is a case-based reasoning project

funded by the European Union under ESPRIT-contract P6322.

CASUEL is the interface language between all the INRECA component systems, but it is also

intended to serve as the interface language between the INRECA integrated system and the

external world, and as a standard for exchanging information between classification and

diagnostic systems that use cases. Currently, CASUEL is not designed to handle design and

planning tasks CASUEL is a flexible, object-oriented frame-like language for storing and

exchanging descriptive models and case libraries in ASCII files. It is designed to model

naturally the complexities of real cases. CASUEL represents domain objects in a class

hierarchy using inheritance, slots being used to describe the objects, with typing constraints on

slot values, as well as different kinds of relationships between objects.

In its current version, CASUEL also supports a rule formalism for exchanging case completion

rules and case adaptation rules, as well as a mechanism for defining similarity measures.

CASUEL is more concise than flat feature-value vectors for the representation of objects with

a large number of potentially relevant attributes of different types, only a few of which are

applicable to any given case. Its use reduces the number of information gain calculations

needed for induction systems or similarity computations required for case-based reasoning.
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Although CASUEL provides a lot of features, it does not require applications to use all of

them. CASUEL is a keyword-driven language, that allows different system component to

ignore irrelevant definitions. On the other hand, CASUEL is also open in the sense that new

features can be defined if necessary for a particular kind of application or component.

CASUEL is intended to become the European standard for exchanging case-bases. It is

planned to use CASUEL as a starting point from which a more general (including also

planning and design tasks) Case Interchange Format will be developed in a joint European

CBR-activity.

CASUEL Version 2.0 is now available in the public domain from the University of

Kaiserslautern as a package including:

• a document describing the CASUEL V2.0 syntax,

• a set of case-bases in CASUEL V2.0 format, and

• a CASUEL V2.0 parser (written in C), which will be available soon.

Further information on CASUEL and details on how to download it can be obtained by email

from casuel@informatik.uni-kl.de.

4.7 ReCall

ReCall is a CBR trademark of the Paris based AI company ISoft. This tool offers a

combination of nearest neighbour and inductive case retrieval. ReCall is coded in C++ and is

available on the PC under Windows 3.1, on UNIX Workstations under Motif, for: SUN, IBM

RS6000, BULL DPX20, HP series 700, and DEC Alpha. It is designed on an open

architecture allowing users to add CBR functionality to their own applications. The

functionality in ReCall includes:

• An object-oriented language with taxonomies, inheritance and multiple-inheritance

mechanisms, typed descriptors, facets, deamons, and relationships between objects. This

allows users to specify complex domain knowledge in a structured but modular way, and

to describe cases having noisy, incomplete and uncertain descriptions.

• Multiple hierarchical indices are used for organisation purposes and for efficient case

retrieval. ReCall provides different methods for automatically analysing the case base

providing for selection of indices as well as their organisation. However, application

developers can impose their own organisation. Automatic procedures are based on

inductive techniques. The automatic procedures takes into account the domain knowledge

defined in the cases, helping users to develop applications interactively.
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• Similarity functions take into account both the properties and values of descriptors, as well

as structural differences between cases. ReCall uses a variant of a nearest-neighbour

algorithm that improves similarity computations.

• ReCall supports two different adaptation mechanisms: a default adaptation mechanism

based on a voting principal, and user defined adaptation rules. As ReCall is based on C++,

external function calls can provide more complex adaptation.

ReCall has a graphical user interface that allows a user with no programming knowledge to

quickly initialise a case-base. Through the use of specialised graphic editors, the user can

define objects, relationships between objects, taxonomies, deamons and adaptation rules. A

tree editor allows the user to interact directly on the case organisations in order to control and

modify indices. A user mode allows developers to write simple adaptation rules or daemons

easily, whilst a developer mode gives access to an interpreted language. Users design, modify

and test applications interactively and can work on several case bases at the same time.

ReCall can be easily interfaced to external applications in particular with data bases and since

ReCall is available as a C++ library, CBR functionality can be integrated with other

applications. It has been used (according to ISoft) for:

• diagnosis, including: user-help systems (hot-lines), failure diagnosis, and maintenance help

systems;

• design systems, including: cost estimation, document layout and application sizing;

• simulation, including: estimation, prediction, market forecasts, and behavioural simulation;

• control and monitoring, including: telecommunication network supervision, alarm filtering,

situation evaluations, crisis situation management, performance analysis, and continuous

process control; and for

• information retrieval, including: query analysis, and DBMS optimisation.

Information about ReCall was provided by ISoft.

4.8 Other CBR Tools

AI software companies tend to come and go, but at the time of writing the following tools

with a CBR component have been reported. This is not necessarily a complete list, and the

authors have no first hand experience of these products.

• Esteem, from Esteem Software Inc., was originally written in Intellicorp’s Kappa-PC. It

has been re-written in C++ and has its own inference engine enabling developers to create

adaptation rules. It supports case hierarchies that help narrow the search. It also supports

applications that access multiple case-bases and nested cases. This means that one can

reference another case-base through an attribute slot in a case. Esteem also provides
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hierarchical retrieval allowing control of the induction process through feature counting,

weighted feature computation and inferred computation.

• CasePower (formerly called Induce-it) from Inductive Solutions Inc. builds its cases within

the matrix environment provided by Microsoft Excel, a spreadsheet application. Rows and

columns of cells within a spreadsheet are used to define cases and their attributes - cells

containing attribute values. Associated worksheets and formulas incorporated as macros

are used to provide the CBR algorithms and the weights associated with values. All the

tools described previously rely on an object/frame representation to model cases. Also

many tools (e.g., ART*Enterprise, ReMind and ReCall) have rules or formulae and an

inference engine to facilitate case adaptation. In contrast, CasePower is a specialised tool

for constructing Excel spreadsheets that model case-based KBS. Within the limited

confines of Excel it provides basic CBR functionality suitable for numeric applications .

However, for more complex non-numerical applications another CBR tool may be

preferable

• KATE, produced by Acknosoft in Paris, is a KBS development environment with CBR

functionality. CaseWork, KATE’s CBR component integrates an instance based CBR

approach with a tool for inductive learning and problem solving through the creation of

decision trees. The inductive and case-based methods can be used separately or as a

combined method. There are graphical editing facilities to build the case-index structure

and to generate dialogues. KATE has incorporated initial results on the integration of case-

based and inductive methods from the INRECA project.

• S3-Case, derived from PATDEX, is part of the German company TechInno’s S3

environment for systems maintenance.

5. CBR Applications

This section describes CBR applications. It is divided into two sub-sections. The first describes

CBR applications that are the primarily the product of academic research. These system,

mostly developed in the US, demonstrate certain features of CBR. They should be viewed as

demonstrators, as there is little evidence they have been used in real situations.

Although CBR is a relatively new method there have been several successful commercial

applications. The second sub-section discusses three such applications. The first developed at

Lockheed is usually cited as the first commercial CBR application. Lockheed’s CLAVIER

system has already become the classic CBR system demonstrating:

• that CBR could be applied to solve a problem where no explicit model existed, and

• that CBR systems can learn by acquiring new cases and so improve their performance with

time.
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The second developed by British Airways shows how CBR techniques are easily accepted by

users because of CBR’s intuitive feel and how retaining the rich context of a case has

advantages over the  distillated knowledge associated with rule-based systems. The final

system developed for Legal & General shows how CBR systems can be implemented rapidly

and can be maintained by users.

5.1 Academic Demonstrators

In the relatively short time since the first CBR systems were implemented there have been

numerous academic CBR demonstrators. This sub-section presents a selection of the better known

classified according to tasks (where a system could be placed in several categories it has only been

placed in one). This section is not exhaustive, but is intended to give practitioners an indication of

the range of problems to which CBR has been applied. A more complete description of CBR

demonstrators is given in Kolodner [93].

5.1.1 Knowledge acquisition

The REFINER program [Sharma & Sleeman, 88] is a knowledge acquisition system that helps an

expert refine his knowledge in a more natural way than extracting rules from an expert. The system

has the ability to recognise classifications that are inconsistent and to suggests ways of resolving the

inconsistency. REFINER uses both inferred rules as well as individual cases.

5.1.2 Legal reasoning

JUDGE [Bain, 86] represents a case-based model of criminal sentencing. The program starts with a

simple set of strategies for forming sentences and then begins to retrieve remindings of its own

cases for developing new sentences. JUDGE reasons about murder, man-slaughter and assault

cases. JUDGE has five stages of operations which are: interpretation, retrieval, differential analysis,

application and modification and generalisation. JUDGE uses its case-base to maintain a consistent

sentencing pattern.

HYPO [Ashley, 88] does case-based legal reasoning in the area of patent law. Centred on cases

claiming violation of a patent, such as the release of a trade secret, HYPO uses its case-base of

precedents to generate plausible arguments for the prosecution and the defence.

GREBE (Generator of Recursive Exemplar-Based Explanation) [Branting, 91] uses knowledge in

form of generalisations and category exemplars to determine the classification of new cases.

GREBE’s knowledge-base contains rules and a small collection of exemplar cases concerned with

Texas’ laws for injuries to workers travelling outside of the work place. GREBE uses a semantic

network representation for cases and uses generalisation and exemplar-based explanation. GREBE

represents an advance over previous exemplar-based systems in that it accepts detailed semantic

network representations of cases, retains and reuses the explanations of category exemplars and use

exemplar based reasoning recursively to assess similarity.
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KICS [Yang & Robertson, 94] is being implemented in the domain of building regulations. This

system accumulates case histories of interpretation of regulations used to establish precedents.

These precedents can be used when revising statutory regulation and enrich the resulting new

versions of regulations. They also provide relevant information for the experts to interpret and

make decisions about cases coming to appeal.

5.1.3 Explanation of anomalies

SWALE [Kass, 86] is a case-based creative explainer. It has a library of cases for explaining why

animals and people die. If SWALE is given an anomalous event such as the death of a healthy,

young horse, it searches for explanations of death in other context such as rock stars dying from

drug overdoses or a spouse being murdered for life insurance, and then SWALE tries to adapt

those explanations to fit the current situation.

5.1.4 Diagnosis

PROTOS [Porter & Bareiss, 86] was developed in the domain of clinical audiology. It learned to

classify hearing disorders from descriptions of patients’ symptoms, history and test results. The

design of PROTOS was motivated by real-world constraints on knowledge representation (e.g., the

limited polymorphy of concept instances), and learning (e.g., the limited availability of training).

PROTOS was trained with 200 cases in 24 categories from a speech and hearing clinic. After

training PROTOS had absolute accuracy of one hundred per cent.

CASEY [Koton, 89] is a system which diagnosis heart failure. As input it uses a patient’s

symptoms and produces a causal network of possible internal states that could lead to those

symptoms. When a new case arises CASEY tries to find cases of patients with similar but not

necessarily identical symptoms. If the new case matches, then CASEY adapts the retrieved

diagnosis by considering differences in symptoms between the old and new cases.

CASCADE [Simoudis, 92] is a system for diagnosing the causes of crashes to the VMS operating

system to suggest a solution. Although this system is purely a retrieve and suggest system (i.e.,

there is no adaptation) it assists effective recovery from a system crash.

PAKAR [Watson & Abdullah, 94] is a system that identifies possible causes for building defects

and suggests remedial actions. Developed in CBR-Express under MS Windows PAKAR is able to

combine textual information and computer aided design drawings to advise on possible causes for

defects and potential solutions.

5.1.5 Arbitration

MEDIATOR [Simpson, 85] works in the domain of dispute resolution. Given a conflict between

several parties, it proposes possible compromises. If one proposal fails to satisfy all the parties
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involved, it generates new proposals and records the failure thus avoiding a similar failure in the

future.

PERSUADER [Sycara, 87] proposes resolution of disputes between labour and management. The

input is a description of a dispute between management and labour over wage-benefit packages and

the output is a compromise package adapting contracts that have been used by similar companies.

The existence of a backup planner makes it unlike other CBR systems since it can generate new

contracts when no existing ones can be found or adapted.

5.1.6 Design

CYCLOPS [Navichandra, 89] is a design problem solver. It solves design problems in the domain

of landscaping. It is focused around finding potential problems when designing new amenities.

JULIA [Hinrichs, 92] is a case-based designer that works in the domain of meal planning. It uses

cases to propose solutions, decomposing the problem as necessary and posting constraints to guide

synthesis. It exploits a repertoire of adaptation methods to transform previous dishes in order to

meet the constraints of the current problem. These adaptation methods are used both to modify

previous cases and repair previous decisions that have been invalidated by constraints that arrive

late.

CADET [Sycara, 92; Sycara & Navichandra, 92] is a case-based design system that functions as

designer’s assistant for mechanical design. It retrieves previous successful designs while avoiding

previous failures such as poor materials or high costs. CADET transforms abstract descriptions of

the desired behaviour of the device into a description that can be used to retrieve relevant designs

and generate a variety of equivalent alternative designs for a given set of design specifications.

ARCHIE [Pearce et al., 92] is implemented using ReMind and helps architects in the high-level task

of conceptual design. It gives architects access to office building designs created by other architects

and points to factors that should be considered in solving a given problem. Each case in ARCHIE

contains several types of information Including: design goals, design plans, descriptions of how well

the plan satisfied its goals and constraints and finally lessons to be learned from the case.

5.1.7 Planning:

BATTLE [Goodman, 89] projects the results for plan evaluation in the domain of land warfare

planning. The system was built from an existing database of 600 cases. The user describe a battle

situation and chosen battle plan, BATTLE retrieve cases that are composed of pieces of battles and

experts’ evaluations, to project the outcome.

BOLERO [Lopez & Plaza 93] builds a diagnostic plan according to information known about a

patient. The BOLERO-RBS system is a combination of a case-based reasoning and a rule-based

system. BOLERO plays the role of a meta-level reasoner, whilst the RBS plays the role of the
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object-level reasoner. The RBS has knowledge about specific diseases in order to solve problems,

while BOLERO has planning knowledge particular to that disease

TOTLEC [Costas & Kashyap, 93] was developed to solve complex manufacturing planning

problems such as the detection of errors during the design phase, warning and advising the user

about non-manufacturable designs. Its cases are stored in dynamic memory organisation. It uses a

hierarchical, case-based planning paradigm, a complex indexing of cases, and a three stage

incremental retrieval of cases based on the notion of similarity.

5.1.8 Repair and adaptation

CHEF [Hammond, 86] creates new recipes from old ones. CHEF begins planning by finding a

recipe that satisfies as many of its active goals as possible. It uses a set of object critics and

modification rules to change the old recipe and satisfy the goal of the new one. One of the

important aspects of CHEF is explanation of failures through a causal description of why they

occurred. CHEF link recipes to a failure’s explanation to predict the failure in similar circumstances.

CHEF stores new recipes indexed by the goals that they satisfy and the problems that they avoid.

PLEXUS [Alterman, 86] is a planner that adapts old plans to new situations. This system is

designed to compare two plans by adapting the normal plan for riding San Francisco’s subway

system into a plan for riding New York’s subway system. It has a mechanism for comparing the

similarity, and dissimilarity of two cases in the adaptation process.

COACH [Collins, 87] is a program which works in a football domain, COACH generates new

football plays by improving old plays by debugging and repairing stored plans. COACH has

relatively few plays in its library, but it has several strategies for adaptation to form new plays.

5.1.9 Tutoring

DECIDER [Farrel, 87] is a system that helps students understand or resolve a pedagogical

problem by selecting and presenting appropriate cases from a database that respond to the student's

goal.

Another case-based system tutoring system is described in [Aleven & Ashley, 92]. The system is

used to generate fresh cases for analysis in response to a particular issue of interest as identified by a

tutor. In this system the tutor enters as input the theme he wants to teach and the system presents a

set of pedagogically related cases that are used by the tutor to teach that particular theme to

students.

5.2 Commercial Applications

Leake [94] reports that at a recent workshop Janet Kolodner identified over 100 fielded CBR

applications. This sub-section describes three commercial applications in some detail.
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5.2.1 Lockheed - CLAVIER

The first commercially fielded CBR application was at Lockheed, Palo Alto [Hennessy &

Hinkle, 92]. Modern aircraft contain many elements that are made up from composite

materials. These materials require curing in large autoclaves. Lockheed, the US aerospace

company, produce many such parts. Each part has its own heating characteristics and must be

cured correctly. If curing is not correct the part will have to be discarded. Unfortunately, the

autoclave’s heating characteristics are not fully understood (i.e., there is no model that

operators can draw upon). This is complicated by the fact that many parts are fired together in

a single large autoclave and the parts interact to alter the heating and cooling characteristics of

the autoclave.

Operators of Lockheed’s autoclaves relied upon drawings of previous successful parts layouts

to inform how to layout the autoclave. However, this was complicated by the fact that layouts

were never identical because parts were required at different times and because the design of

the composite materials was constantly changing. Consequently operators had to select a

successful layout they thought closely matched and adapt it to the current situation.

This closely resembled the CBR paradigm and when Lockheed decided to implement a KBS to

assist the autoclave operators they decided upon CBR. Their objectives were to:

• reuse previously successful loadings,

• reduce the pressure of work on one or two experts,

• secure the expertise of the experts as a corporate asset, and

• help to train new personnel.

The development of CLAVIER started in 1987 using Inference’s ART, and it has been in

regular use since the Autumn of 1990. CLAVIER searches a library of previously successful

autoclave layouts. Each layout is described in terms of:

• parts and their relative positions on a table

• tables, and their relative positions in the autoclave, and

• production statistics such as start and finish times, pressure and temperature.

CLAVIER finds substitutes for parts in a layout that do not match, and it recommends new

layouts to operators. In adapting new layouts from previous ones CLAVIER:

• creates new layouts by adapting pieces of previous layouts

• minimises the number of required parts not included in the layout,

• maximises the number of high-priority parts included in the layout, and

• maximises the total number of parts in a layout.
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CLAVIER acts as a collective memory for Lockheed and as such provides a uniquely useful

way of transferring expertise between autoclave operatives. In particular the use of CBR made

the initial knowledge acquisition for the system easier. Indeed, it is doubtful if it would have

been possible to develop a MBR system since operatives could not say why a particular

autoclave layout was successful. CLAVIER also demonstrates the ability of CBR systems to

learn. The system has grown from 20 to over 150 successful layouts and its performance has

improved such that it now retrieves or adapts a successful autoclave layout 90% of the time.

5.2.2 British Airways - CaseLine

CaseLine is a first generation technology demonstrator used by British Airways (BA) to assess

the potential of CBR [Magaldi, 94]. CaseLine assists Boeing 747-400 technical support

engineers with aircraft fault diagnosis and repair between aircraft arrival and departure. It

advises on past defects and known successful  recovery and repair procedures. When a fault in

a Boeing 747-400 is detected or suspected, either by monitoring equipment or the pilots,

details are transmitted to ground staff. The plane may only be scheduled to be on the runway

for one hour during which time engineers have to identify the cause of the fault and effect

repair. This is complicated because defects are often obscure and have complex and

inconsistent causes. To delay the plane will disrupt schedules and costs thousands or pounds

per minute. To let the plane take off with an unresolved fault could have catastrophic

consequences

CaseLine is implemented in ReMind. Users can input diagnostic information and control the

search  for available repair and recovery information. The system contains around 200 cases

(early 1994) that describe previous failure instances and details of successful recovery actions.

Three main search modes are provided:

• ATA Chapter - a simple two digit number referring to a fault in the plane’s maintenance

manual,

• EICAS Message - a precise but variable length alphanumeric text indicating a fault, and

• Reported Defect - a variable length string describing a fault.

These can be used alone or together for case retrieval using either nearest neighbour or

inductive retrieval. Usually, a single case is retrieved if an exact match has been specified or

several cases if a partial match was required. CaseLine helps engineers identify procedures

that have the highest likelihood of success. The engineer is still obliged to use the aircraft

maintenance manuals as a final authority and to follow approved procedures. But CaseLine

does reduce costly delays by cutting out less productive routes to fault analysis and fault

finding.
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Initial assessment by BA states that “CBR has a set of in-built capabilities that complement a

specific range of engineering problems. These are by nature, often more than just technical in

origin, and require an awareness of many competing human, organisational and operational

factors when posing solutions” [Magaldi, 94]. In particular BA identify three benefits of CBR:

1. CBR is intuitive to both developers and users,

2. CBR complements human reasoning and problem solving, and

3. CBR retains the rich context of a problem situation - they discard nothing but simply index

on different features of what they store.

The latter point is of particular legal interest. If an rule-based diagnostic system were

developed its rules would represent distillated knowledge. The original reasons why a rule was

created may become obscured with time. However, episodic cases are always heavily

contextualised. If BA were sued for negligence using CaseLine they could demonstrate that

engineers had followed procedures that had proved successful in case X - a simple defence.

However, if BA used a rule-based system expert witnesses might have to prove that a rule was

theoretically correct - a more complex defence.

5.2.3 Legal & General - SWIFT

Legal & General (L&G) are a major UK provider of financial services. Their IT department

has an annual budget of around £60 million. In 1993 the company was in the process of down-

sizing from dumb terminals attached to mainframes to PC based LANs. As part of a business

process reengineering project they wanted to provide a streamlined service to employees

purchasing PC’s, peripherals, software or upgrades.

The system was developed very rapidly using a KBS development methodology called the

Client Centred Approach (CCA). The CCA combines the linear stages of the Waterfall

approach to software development with the iterative prototyping methods popular with KBS

developers. The CCA explicitly encourages the involvement of all stakeholders in a project

and emphasises the need to consider maintaining the system [Watson et al., 92a&b]. The CCA

has seven deliverables:

1. a feasibility study that identifies stakeholders, benefits, costs and resources;

2. a concept system that illustrates the high level functionality of the system - useful for

obtaining resource commitment;

3. a demonstrator that proves the system is technically achievable;

4. a trustable system where the case-base is sufficiently complete to be useful;

5. a usable system that addresses interface and integration issues;

6. a saleable system that can be sold to end-users or other organisational units; and

7. a system embedded-in-use that has an ongoing managed maintenance plan.
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A week was spent in April 1993 analysing the existing process and reengineering it. This

resulted in a very much simplified design whereby all L&G’s employees would have access to

a single point of contact for ordering PC products and upgrades. An essential component of

the reengineered process was a KBS that would contain knowledge about L&G’s IT strategy,

their approved product range and the hardware/software options that different business units

used.

Because of the volatile nature of the PC market it was decided that it would be important to

make the maintenance of the KBS as easy as possible. It was decided that the managers of the

service ideally should be able to maintain the knowledge-base themselves. Consequently, CBR

was chosen as the knowledge representation paradigm that would best meet these constraints

[Vargas & Raj, 93]. Inference’s CBR-Express/CasePoint combination, Asymetrix Toolbook

and Microsoft’s Access were chosen to develop the demonstration system. After

approximately one months prototyping a demonstration system, called SWIFT, was shown at

several seminars to stakeholders from all the business units within L&G.

These presentations were carefully organised as part of a comprehensive communications plan.

They were professionally conducted and involved describing why the existing process had to

be reengineered, what benefits the new process would deliver, and concluded with a

demonstration of the CBR software supporting the process. These sessions were essential in

obtaining the support of the whole of the company to the project.

Following this an intensive system development stage took place that involved establishing the

required databases and obtaining cases from different business units. In general at this stage

prototypical cases were constructed from elicitation meetings held with representatives

(usually IT specialists) from each business unit.

At the beginning of September 1993, less than five months after the project started, the system

went live. L&G had decided to roll the system out incrementally:

• first it would be used by selected people on selected projects that would be carefully

monitored enabling bugs, technical difficulties, organisational and communication

problems and simple oversights to be solved;

• then two weeks later it would be rolled out to serve the whole IT department; and finally

• it would be rolled out business unit by business unit over six to nine months.

This phased roll out was crucial since it allowed problems to be trapped early and avoided

many of the problems associated with a big bang approach to delivering a new system. By

Christmas of 1993 SWIFT was operational across over two thirds of L&G’s business units

and was judged a success.
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SWIFT operates by:

1. Obtaining a customer’s business unit and location from their employee ID number using a

relational database.

2. Asking if the enquiry is about software, hardware or upgrades and opening the relevant

case-base.

3. Obtaining a free text query such as “I want to buy a fast modem that lets me send faxes”.

4. Using that text to retrieve a set of matching cases.

5. Asking several questions to confirm which case matches best.

6. Offering a solution.

If the customer accepts the solution SWIFT enters the product ordering process. However, if

the customer rejects the solution a full transcript of the consultation is stored as an unresolved

case. At a monthly meeting managers of the service study unresolved cases to determine if

cases need adapting or if new cases are required. Recognising that knowledge changes is

particularly important in the domain of personal computing where new products are brought

out almost daily.

The L&G SWIFT system demonstrates that:

• CBR systems can be developed quickly,

• CBR systems can be effectively integrated within a wider information system, and

• that once established a CBR system can be maintained by people who are not

programmers.

The CCA development methodology, which was developed to assist prototyping model-based

KBS, proved valuable in guiding the development of SWIFT. In particular, the emphasis that

the CCA places on involving stakeholders in the development process and the explicit

attention to system maintenance from the outset fitted the CBR paradigm well. Moreover, the

ability to rapid prototype the system within the constraints of linear milestones gave

developers flexibility and project managers control.

6. The Case for Case-Based Reasoning

This section discusses the problems associated with developing model-based knowledge-based

systems. It posits that CBR appears to offer solutions to many of these problems, and presents

evidence from the literature to support these claims.

As was mentioned in the introduction, during the last thirty years many KBS have been

developed that have an explicit model of the problem domain in which they operate. In many

such systems the model is implemented by rules, and perhaps more recently by objects. In
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second generation systems [Clancey 1985] a deep underlying causal model exists that enables

the system to reason from first principles in its application domain. There is little doubt that

such MBR systems (whether they be deep or shallow) can be very successful. However, as

identified in section 1 there are five major problems with this approach:

1. knowledge elicitation is difficult

2. KBS can be very complex and can take many man years to develop,

3. KBS are frequently slow,

4. KBS are often poor at managing large volumes of information, and

5. once developed they are difficult to maintain.

The first problem was recognised as soon as KBS were built and was often attributed to the

knowledge elicitation bottleneck [Hayes-Roth et al., 1983]. The second problem is familiar to

any KBS developer and has partially been responsible for the increasing interest in KBS

development methodologies and of knowledge modelling languages and ontologies. The third

problem has partially been overcome by the ever decreasing cost of processing power, whilst

solutions to the fourth have been sought through the integration of AI techniques with

database technology. However, for many years practitioners believed that KBS were easy to

maintain - almost all books on KBS development written during the eighties will contain a

quote similar to “maintaining a rule-base is easy, being simply a matter of adding or

subtracting rules from the knowledge-base” Easier than maintaining procedural C or

FORTRAN code true, but not easy. Unfortunately, the experience of XCON/R1 [Bachant &

McDermot, 84] and others [Coenen, & Bench-Capon, 92; Vargas & Raj, 93] has shown that

maintaining model-based KBS is not as simple as adding or subtracted rules or objects. As a

knowledge-base grows it becomes a complex debugging task.

However, there is a more fundamental problem that has been overlooked. KBS practitioners

did not consider how to build a KBS when there was no model available. Overlooking this

problem reflects the heritage of KBS in academic research laboratories. The early KBS (e.g.,

DENDRAL, MYCIN, PROSPECTOR) all operated in domains where there were good

underlying models (either from first principles or statistical) - scientists are comfortable with

working with models, they build them for a living. Unfortunately, in a commercial environment

and outside of the Universities many people make decisions without reference to first

principles and underlying causal or statistical models.

These people solve problems by using their experience. It is no surprise that expert and

experience derive from the same root. We posit that the KBS community was seduced by

rules and neglected the truism that experts solve problems by applying their experience, whilst

only novices attempt to solve problems by applying rules they have recently acquired. The

application of experience to problem solving is the hallmark of CBR. Thus, CBR is proposed
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by some as a psychological theory of human cognition [Slade, 91] and one that provides a

cognitive model of how people solve problems [Kolodner, 91]. It offers a paradigm that is

claimed to be close to the way people solve problems and one that overcomes the brittleness

of MBR systems [Barletta, 91; Helton, 91]

Hence, there is a strong case for CBR since it has several potential advantages over MBR:

• CBR systems can be built without passing through the knowledge elicitation bottleneck

since elicitation becomes a simpler task of acquiring past cases. This was demonstrated by

the CLAVIER system.

• CBR systems can be built where a model does not exist, this is also well demonstrated by

the CLAVIER system.

• Implementation becomes a simpler task of identifying relevant case features, and moreover

a system can be rolled out with only a partial case-base as happened with CLAVIER,

CaseLine and SWIFT. Indeed, using CBR a system need never be complete since it will be

continually growing. This removes one of the bug-bears of KBS - how to tell when a

knowledge-base is complete.

• CBR systems can propose a solution quickly by avoiding the need to infer an answer from

first principles each time, important in CaseLine and in most help-desk situations.

• Individual or generalised cases can be used to provide explanation that are perhaps more

satisfactory than explanations generated by chains of rules, important in many domains

with legal implications as with CaseLine.

• CBR systems can learn by acquiring new cases making maintenance easier as demonstrated

by CLAVIER, CaseLine and SWIFT.

• Finally, by acquiring new episodic cases CBR systems can grow to reflect their

organisation’s experience. If a rule-based KBS were delivered to six companies and used

for six months, after that time each system would be identical, assuming no maintenance

had taken place. If six identical CBR systems were used in a similar way after six months

there could be six different systems as each could have acquired different episodic cases.

The claim that CBR systems can be implemented faster than MBR systems was supported by a

study conducted by Cognitive Systems which stated that it took two weeks to develop a case-based

version of a system that took four months to build in rule-based form [Goodman 89]. Also, and

more recently, developers at Digital Equipment Corporation confirmed that a rule-based system

called CANASTA took more than eight times longer to develop than CASCADE a case-based

system with the same functionality [Simoudis, 92; Simoudis et al., 93]. They also claim that the

maintenance of CANASTA is continual whereas CASCADE needs almost no maintenance.

Related claims are provided by Hennessy and Hinkle [92] concerning CLAVIER and Vargas & Raj

[93]. However, isolated claims such as these should be treated with caution lest CBR is hyped in

the same way the knowledge-based systems were a decade or more ago. We should also not
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overlook the fact that for well understood domains MBR systems can be very effective and are now

a relatively mature technology.

7. Conclusions

The US is still the theoretical and practical centre of case-based reasoning and CBR continues

to be put forward as a model for human memory and reasoning. Although there is currently

limited practical evidence, there is anecdotal evidence from knowledge engineers building

CBR systems who state that experts and users seem more comfortable with CBR than MBR

[Vargas & Raj, 93; Leake, 94; Magaldi, 94].

Thus, CBR does seem to address many of the shortcomings of MBR, particularly the

knowledge elicitation bottleneck, the ability of the systems to learn incrementally and to

provide highly contextualised explanations. This is why over the last few years, this new

paradigm for building KBS has grown from an isolated research area to a field of widespread

interest. Originally, it was an area of research in AI that was exclusively the focus of academic

research and was little known by commercial AI developers. However, CBR emerged from the

research labs as the new hot topic both for industry and academe with the development of

commercial products addressing this area of reasoning [Harmon, 92].

These developments have produced commercial CBR tools which use database and AI

techniques that can help sift through large amounts of historical information in order to

automate knowledge based on experience. This automation of historical experience required

reasoning about previous cases which could complement other methods of problem solving. It

is extremely natural, for example, to be reminded of something when trying to solve a

particular problem. The goal of CBR systems is thus to be reminded of similar cases when

faced with a new problem and to retrieve those cases in order to help the user solve the new

problem in a fashion similar to the way it was solved for a closely matching situation.

With all of its advantages in domains that are poorly understood there are still problems that

need to be worked out for CBR. If for example, MBR systems face problems in eliciting,

acquiring, representing and maintaining knowledge, there are also sensitive problems that face

CBR including:

• how cases should be represented,

• how indices should be chosen for organising memory efficiently,

• how to structure relationships between cases and parts of different cases,

• how to handle cases containing multimedia,

• how to handle massive case-bases, and
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• how to develop general adaptation heuristics for modifying previous cases or their

solutions to fit new cases.

In the future CBR systems may need to be able:

• to forget unused cases in order to maintain case-base efficiency, and

• learn about the emergence of any indices that had not previously been thought significant.

More immediately it is necessary to integrate CBR fully with other reasoning paradigms and

information systems and importantly to critically evaluate the effectiveness of CBR in

commercial domains. Relying on previous experience without validation may result in

inefficient or incorrect solutions being recommended causing an increase in problem-solving

time or errors that may have negative effects on the process of learning.

CBR is entering a period where people are exploring its potential and its limitations. This is

largely being driven by the available tools and we would be unwise to neglect the theoretical

basis of CBR. In the next years we will see many more hopefully successful applications using

CBR. The majority of these will undoubtedly be in help desks. However, despite the shallow

nature of many of these systems, the AI community should be proud that after all the hype

surrounding KBS we are finally able to deliver a simple effective solution that business can

understand and benefit from. Moreover, the acceptance of these systems, of CBR and thus by

implication of AI techniques in general may open the door to a more widespread use of AI and

its integration with management information systems. Inference’s new tool ART*Enterprise

seems to be in the vanguard of corporate AI and will encourage the spread of cases as a

corporate resource and of knowledge as an asset to be managed.

Of all the challenges identified above perhaps the greatest is adaptation. Relatively few CBR

systems adapt cases, and those that do usually do so in a simplistic manner. Many CBR

systems, like CBR-Express, are primarily case retrieval systems, adaptation being left to

human intervention. Perhaps the other great challenge will be handling massive case-bases.

Currently most CBR systems are relatively small, hundreds not thousands of cases. We have

little theoretical or practical understanding of how CBR will perform where cases are feature

rich and where there are many thousands of them. Brute force solutions such as the application

of massively parallel computation have been proposed [Kitano, 93], but are unlikely to be

commercially relevant for some time.

Despite these problems CBR will continue to be applied to a wider and wider range of

problems types as people experiment with its potential. The use of cases as a way of recording

situated knowledge will certainly lead to an increase in the use of CBR in computer assisted
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learning. Moreover, the ability of such systems to continually learn from interactions with new

students makes them particularly appealing [Kolodner, 93].

Khris Hammond a pioneer of CBR in the US has proposed dividing CBR research into three

categories according to their fundamental goals (note he intends that the categories should be

inclusive and not exclusive and should stimulate debate not stifle it):

1. true faith CBR - relating to the cognitive science and AI theoretical issues of CBR,

2. hard-core CBR - testing and refining true faith theories in challenging practical

applications, and

3. CBR-lite - using selected CBR techniques, such as case-retrieval, to solve particular

problems (e.g., help-desks).

Khris Hammond believes that research into each of these three categories is bona fide CBR

research. CBR needs the cognitive science and AI theorists as well as the hard-core

researchers and those who apply CBR-lite for commercial profit. As Phil Harmon said “CBR

is not rocket science”. It is the application of relatively simple and well understood techniques

to decision support [Harmon, 92]. CBR is perhaps one of the first fruits of Spring following

the AI Winter and as such the AI community has good reason to feel more optimistic about its

future.
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