
An Open Framework for Dynamic Reconfiguration

Jamie Hillman & Ian Warren
Computing Department

Lancaster University
Lancaster UK

j.hillman
�
iw @comp.lancs.ac.uk

Abstract

Dynamic reconfiguration techniques appear promising
for building systems that have requirements for adaptabil-
ity and/or high availability. Current systems that support
dynamic reconfiguration tend to use a single, fixed, recon-
figuration algorithm to manage the change process. Fur-
thermore, existing change management systems lack sup-
port for measuring the impact of reconfiguration on a run-
ning system. In this paper, we introduce OpenRec, an open
framework for managing dynamic reconfiguration which
addresses these drawbacks. Using OpenRec, developers
can observe the costs, in terms of time and disturbance, as-
sociated with making a particular run-time change. In addi-
tion, OpenRec employs an extensible set of reconfiguration
algorithms where one algorithm can be substituted for an-
other. Developers can thus make an informed decision as
to which algorithm to use based on comparative analysis.
Finally, OpenRec is itself dynamically reconfigurable.

1 Introduction

Dynamic reconfiguration is the process of making
changes to an executing system without requiring that the
system be temporarily shut down. Two classes of system
for which dynamic reconfiguration is an enabling technol-
ogy include adaptive systems and those with a requirement
for high availability. The former operate in unpredictable
environments and must adapt their behaviour according to
environmental changes. Highly available systems are those
which must run for extended periods and which must acco-
modate change during those periods.

Mobile and ubiquitous systems are an emerging example
of adaptive system which operate in conditions of fluctuat-
ing resource availability [17]. For example, a mobile device
might discover a new resource with which it would like to
communicate. The mobile device might need to first re-
configure itself by switching to a communication protocol

which is compatible with that of the discovered resource.
More generally, IBM’s initiative on autonomic computing
[9] demands adaptive behaviour for self-configuring, self-
healing, self-optimising, and self-protecting systems.

Systems with a requirement for high availability, simi-
larly to adaptive systems, span multiple domains. For ex-
ample, part of the International Space Station’s control sys-
tem is tasked with regulating the oxygen supply to crew
members. This, along with a telecommunications switch-
ing system, needs to be highly available for safety reasons.
In other cases, the motivation for high availability might be
economic, such as with e-commerce and banking systems.

Ad hoc approaches to dynamic reconfiguration are used
in practice but these tend to be system specific and therefore
limited. For example, to upgrade a web server, incoming
requests can be switched to a temporary server for the du-
ration of the upgrade. While this is a workable technique, it
is restricted to a subset of distributed client/server systems.

To provide more generic and system-independent ca-
pabilities, work in the areas of software architecture and
dynamic reconfiguration has led to change management
systems that operate on component-based systems. Re-
searchers have developed reconfiguration algorithms, each
with their own run-time characteristics and constraints gov-
erning their applicability, which aim to carry out change
in a way that preserves system integrity. However, exist-
ing change management systems typically conform to the
black-box philosophy by encapsulating a single and fixed
reconfiguration algorithm. This means that developers are
forced to use the algorithm of a particular change manage-
ment system and cannot exploit alternative algorithms that
may be better suited to a given application. We argue that
the change management system should be open, giving de-
velopers choice over which algorithm to use.

Beyond conforming to the black-box philosophy, exist-
ing change management systems do not provide adequate
support for measuring the cost of making run-time changes.
Of interest to developers of reconfigurable systems is the
cost incurred by using a particular algorithm to manage a



particular change scenario for a particular system. Cost can
be measured in terms of the time taken for reconfiguration
and the degree of disruption experienced by components.
In the absense of such quantifiable data, developers can
only guess at the impact of performing a run-time change
on a system’s non-functional attributes, such as availability,
response-time, and throughput. In addition, existing sys-
tems generally offer no means for comparing different al-
gorithms.

Moreover, existing change management systems are not
typically themselves reconfigurable. Where the manage-
ment system is tightly integrated with the execution of the
applications it manages, updating the management system
invariably requires that it and all managed applications be
shut down prior to updating it. Since change is a natural
phenomenon of all software systems [14], the underlying
change management system should itself be reconfigurable
so that it can adapt and be evolved dynamically in a similar
manner to its hosted applications.

In this paper, we introduce OpenRec, a framework for
managing reconfiguration which addresses the current lim-
itations of work to date. In short, the novel contributions
made by OpenRec are:

� Support for multiple extensible reconfiguration algo-
rithms. OpenRec allows multiple reconfiguration al-
gorithms to be used to manage reconfiguration. In ad-
dition, the set of algorithms is extensible, allowing de-
velopers to add their own algorithms that better suit
specific properties of their applications.

� Support for measuring the cost of reconfiguration.
OpenRec is designed with plugin points that allow
developers to monitor reconfiguration and to gather
statistics relating to the degree of disturbance and time
taken to carry out a reconfiguration.

� Reconfiguration of OpenRec itself. The OpenRec
framework is itself designed to be reconfigurable.
OpenRec, similarly to the applications it manages, is
a component-based system with an open implementa-
tion. Reconfiguration algorithms can be substituted at
run-time as can other key services.

To prime the reader with OpenRec’s underlying technolo-
gies, we continue in Section 2 with a brief description of
components, reflection, and dynamic reconfiguration. In
Section 3, we present an overview of OpenRec, focusing on
its reflective component model, its open architecture, and
the benefits these bring to dynamic change management. In
Section 4 we show how we have used OpenRec to recon-
figure and monitor a simple EPOS (electronic point of sale)
simulation system. We comment on other significant work
in Section 5 before drawing conclusions and identifing av-
enues for further work in Section 6.

2 Core technologies

2.1 Components

A component is a unit of composition with well-defined
provided and required interfaces [22]. Since components
are compositional, they are intended to be assembled to
form a configuration of components. Similarly to an ob-
ject, a component may encapsulate state and its provided
interfaces define services the component offers to others.
Components are distinguished from objects in that they are
configuration independent, which is defined by:

� Explicit required interfaces. In addition to provided in-
terfaces, components define required interfaces which
represent the services they require from other compo-
nents. A component’s required interfaces are bound at
run-time to other components’ provided interfaces.

� Interconnection independence. Components do not
contain implicit references to other components. In-
stead, all interaction between components is handled
by a connector which binds required interfaces to pro-
vided interfaces. Common types of connector include
those with messaging, (remote) invocation and pub-
lish/subscribe semantics.

� Conformance to a binary standard. Components can
be separately compiled and composed into a configu-
ration without access to their source code.

Closely related to components is the notion of compo-
nent frameworks, which Szyperski [22] defines as ”collec-
tions of rules and interfaces that govern the interaction of a
set of components plugged into them.” In essence, a compo-
nent framework is a reusable architecture which provides a
means of enforcing architectural properties. Such architec-
tural properties may relate to components, connectors and
connectivity. For example, components may or may not be
allowed to encapsulate state, connectors may be required
to implement particular semantics, and connectivity invari-
ants may be specified. Component frameworks are a similar
concept to architectural styles [21] from the software archi-
tecture community.

Component technology is also well suited to realising re-
configurable systems. Configuration independence means
that components are inherently loosely coupled and any de-
pendencies are explicit and visible which eases the process
of changing a configuration at run-time. In general, a com-
ponent configuration can be manipulated dynamically by
adding, removing and replacing components and changing
connectivity.



2.2 Reflection

Reflection is the ability for a system to reason about and
act upon itself [12]. Reflective systems comprise two levels,
a base level and a meta level, that are causally connected. A
change in the base layer thus causes an automatic change in
the meta level and vice versa. The motivation for reflection,
in all areas where it has been applied which include middle-
ware [3] and component models [6], is to promote openness
and flexibility.

Of particular relevance to our work is the integration
of reflection and components. With reflective component
models, the base-level corresponds to application compo-
nents which are augmented with meta-level interfaces. The
meta-level interfaces can be invoked at run-time and offer
two complementary forms of reflection:

� Structural reflection. This is concerned with exposing
the structure of components and connectors that realise
a system. Meta-level interfaces provide operations
which allow the interfaces a given component provides
and requires to be inspected. In addition, operations
are provided which allow the connectivity structure to
be traversed. Beyond inspecting a system’s structure,
the meta-level interfaces also allow this structure to be
modified.

� Behavioural reflection. This form of reflection is con-
cerned with system activity, such as component in-
teraction. Interceptors are typically used to listen on
connectors for inter-component communications and
to take action for purposes such as monitoring or ac-
counting.

Reflective component models bring openness and self-
awareness to component-based systems. Using structural
reflection, a component’s neighbours can be discovered,
its interfaces can be identified and other meta information
such as whether a particular component encapsulates criti-
cal state can be found. In addition, structural reflection of-
fers the necessary primitives for making structural changes
to a configuration.

2.3 Dynamic reconfiguration

Although reflective component models offer a powerful
means for dynamic change, they offer only limited safe-
guards and do not guarantee that run-time changes will
leave systems with their integrity intact. Two fundamen-
tal issues concerned with preserving system integrity during
periods of dynamic reconfiguration are:

� Synchronising change with the executing system. Ar-
bitrary changes to a configuration will likely compro-
mise its integrity. For example, using its meta interface

a component might be disconnected from its neigh-
bours. If the disconnection is performed once the com-
ponent has started to process a request on behalf of one
of its neighbours but before it has returned a response,
the neighbouring component might wait indefinetely
for the response. Synchronisation is thus necessary to
carry out change safely.

� Preserving persistent state. Components may encap-
sulate state that must survive reconfiguration. In an-
other scenario involving replacing a component, for
example, the replacement component might need ac-
cess to the state encapsulated by the original compo-
nent. This is invariably the case for any component
whose state is subject to change since changes can in-
fluence its future behaviour. A simple example is a
component which generates unique identifiers; where
this component is to be replaced, the replacement com-
ponent relies on knowledge of which identifiers have
already been generated in order to continue to create
unique identifiers. Naive use of meta interfaces could
easily result in such state being discarded at run-time,
with the consequence that system integrity is compro-
mised.

Dynamic reconfiguration is concerned with bringing or-
der to the change process with the aim of maintaining a
system’s integrity. In general, this is achieved using an
algorithm which examines a set of proposed configuration
changes and identifies a subset of of the configuration to
direct towards a safe state where change is deemed syn-
chronised with the executing system. The safe state may be
reached when a component involved in reconfiguration is
prevented from processing incoming requests and from ini-
tiating further requests on others. Having reached the safe
state, an algorithm typically effects configuration changes
and may take action to preserve persistent state before al-
lowing the configuration of components to resume normal
execution.

Reconfiguration algorithms differ in terms of behaviour
and applicability constraints. To illustrate behavioural dif-
ferences, algorithms can be classified according to two di-
mensions:

� Approach to reaching the safe state. Static algorithms,
for example [13] [23], use knowledge of the configura-
tion structure to identify components to make safe. As
such, static algorithms will always identify the same
set of components for a particular system reconfigura-
tion. In contrast, dynamic algorithms, including [20]
[4] [11], use run-time information such as component
interaction to determine the set of components to make
safe. In many cases, dynamic algorithms disrupt less
of a system than static algorithms since they make safe



only those components that are actually communicat-
ing with a component involved in change. Static algo-
rithms, on the other hand, make safe the set of compo-
nents that might potentially communicate with a com-
ponent involved in reconfiguration.

� Unit of disturbance. Algorithms either manipulate
components or connectors. Algorithms of the for-
mer type, including [13] [11], are relatively coarse-
grained since they halt components, thereby prevent-
ing them from executing further. Connector-blocking
algorithms, such as [23] [24], allow components to
continue to execute, albeit with degraded functional-
ity using their unblocked connectors. Algorithms that
block connectors therefore impact less on an executing
system.

Common constraints on algorithms include prescribed
communication paradigms, the need for components to im-
plement change management interfaces, and prerequisite
knowledge of component properties. For example, a num-
ber of algorithms have been developed for distributed ob-
jects1 ([1] [20] for CORBA and [4] for Java RMI). These
algorithms therefore assume method invocation as the com-
munication paradigm. Kramer and Magee’s algorithm [13]
is less restrictive in that it allows components to interact
using transactions, where a transaction is defined as one
or more message exchanges between two or more compo-
nents. However, Kramer and Magee’s algorithm requires
that components implement a change management interface
correctly in order for the safe state to be reached.

To illustrate prerequisite knowledge, Chen’s algorithm
[4] distinguishes between mutator and selector operations
by allowing mutator requests to complete execution and
aborting selector requests. The rationale in this case is to
force a component to reach the safe state more quickly al-
lowing only state modifying operations to complete. Mu-
tator operations must be allowed to complete in the inter-
est of component integrity. Once the component has com-
pleted executing any mutator requests, it is deemed to have
synchronized. To implement this behaviour, the algorithm
needs knowledge of which of a component’s operations are
mutators and which are selectors.

The above discussion exposes some fundamental differ-
ences in reconfiguration algorithms found in the literature.
We argue that given such differences, algorithms will vary
in terms of the costs they impose on an executing system.
In addition, developers need to be aware of the constraints
governing applicability of any algorithm. Hence, a frame-
work which allows multiple algorithms to be modelled, im-
plemented, and compared is highly desirable in determining

1Despite being developed for distributed object systems, these algo-
rithms can be used to manage reconfiguration of components where con-
nectors implement method invocation semantics.

Change Parser

Lookup service

Component

Connector

Components

Component Factory

openrecML change Description

openrecML Parser

Instrumentation

Visualisation

Plugins

Change Driver

Algorithm

reconfiguration calls

internal representation

Application

Reconfiguration Manager

Figure 1. Framework architecture

the most appropriate algorithm to use, given a particular ap-
plication.

3 Framework overview

Figure 1 introduces the architecture of our framework
and shows that is split into three conceptual layers: Change
Driver, Reconfiguration Manager, and Application. Each
layer is constructed using the OpenRec reflective compo-
nent model, the key classes and interfaces of which are
shown in Figure 2.

For highly available systems, where change is generally
initiated by a third party, change requests are submitted
in the form of OpenRecML scripts to the Change Driver.
OpenRecML is an XML-based configuration language. In
the case of adaptive systems, the Change Driver determines
if and when a change is necessary. In either case, the
Change Driver forwards change requests to the Reconfigu-
ration Manager, which is responsible for changing the run-
ning application using a reconfiguration algorithm. The Ap-
plication layer comprises the configuration of components
and connectors that comprise the application. In addition,



Figure 2. OpenRec component model

the Application layer provides a point for plugging in mon-
itoring components.

3.1 Support for multiple algorithms

OpenRec allows developers to configure the Reconfig-
uration Manager with one of several reconfiguration algo-
rithms. In addition, developers are able to observe the be-
haviour of different algorithms and consequently the costs
associated with using them. Reconfiguration costs are mea-
sured in terms of the number of components affected by an
algorithm, the way in which components are affected, the
duration of these effects and the total time required to make
the change.

Each reconfiguration algorithm is implemented
according to the Strategy and Template Method
design patterns [8]. Figure 3 shows that the
reconfigurationManager component plays the
role of the context according to the Strategy pattern and
algorithm the strategy. Strategy algorithms are intended
to inherit from algorithm and override all methods
with the exception of start. algorithm’s start
method is a template method which enforces ordering of
reconfiguration activities by calling the do methods that
must be implemented by algorithm subclasses.

In response to a reconfiguration request from the Change
Driver, the reconfigurationManager delegates the

Figure 3. Algorithm components

request to its algorithm instance by invoking its struc-
tural change methods. Based on this knowledge, when the
algorithm’s start method is called, the algorithm is
aware of which components are involved in reconfigura-
tion and can check that any necessary constraints hold true.
To do this, the algorithm exploits the self-awareness
property of application components using their meta-level
interfaces. A metaDataManager instance maintains a
list of tuples containing meta information for a partic-
ular component. For example, an implementation of
Kramer and Magee’s algorithm [13] uses each component’s
metaDataManager to determine whether its component
implements the required change management interface.

Having ensured that all constraints are satisfied, the al-
gorithm proceeds to carry out any optimisation. In many
cases, reconfiguration actions can be carried out in parallel
and so this step is intended for such purposes. Following
optimisation, the algorithm continues by synchronising the
intended change with the application prior to making the
necessary structural changes. For synchronisation, the al-
gorithm invokes any algorithm-specific interfaces that com-
ponents are known to export, as determined in the con-
straint checking step, in addition to the services provided
by the connector class. In particular, connector’s
block method allows pending requests to be aborted or
queued. The wait methods block calling reconfiguration
threads until ongoing application requests have been ser-
viced using the connector. These primitives are sufficient
to allow a broad class of algorithms to be implemented.
Once synchronised, meta-level primitives in component



and connector are used to carry out the required struc-
tural changes.

For observing algorithm behaviour, OpenRec provides
an API for two kinds of monitoring:

� System monitoring. Through the
connectionPlugin interface, plugins can re-
ceive events relating to configuration-level changes.
In particular, these plugins are notified of structural
changes such as components being added, removed,
or replaced, connector blocking and unblocking, and
changes to a configuration’s connectivity.

� Local monitoring. Implementations of the
interactionPlugin interface are registered
with particular components and thus receive
events from a specified subset of the configura-
tion. interactionPlugins also receive events
of finer granularity that include details of method
invocations.

OpenRec’s plugins are intended to be used by instrumen-
tation and visualisation tools which calculate and present
the costs associated with reconfiguration algorithms. Plu-
gin instances correspond to observers in the Observer de-
sign pattern [8] which once registered with OpenRec re-
ceive run-time notifications.

3.2 Openness

OpenRec has been designed to offer three distinct forms
of openness:

� Reconfiguration management. OpenRec’s dynamic
change management system is itself open, allowing
deployment-time configuration and run-time recon-
figuration of the Change Driver and Reconfiguration
Manager layers.

� Application components. Applications have an open
implementation which facilitates their dynamic recon-
figuration.

� Plugins. Developers are free to write their own plugin
components and register them with OpenRec.

Each of these forms of openness stem from the uniform
application of reflection and componentisation to both the
application and underyling change management system.

In terms of open reconfiguration management, and as de-
scribed in Section 3.1, OpenRec can be configured with an
extensible set of reconfiguration algorithms. This enables
developers to create new algorithms as new applications
emerge with properties not readily suited to existing algo-
rithms.

For example, a common architectural model for multi-
media streaming applications comprises a chain of stateless
components, connected by media stream connectors, that
progressively process the media stream. The first compo-
nent of the chain governs the source of the media stream
and is connected indirectly to the destination by a number of
components that perform tasks relating to coding and com-
pression.

To dynamically replace the intermediate processing
components, Mitchell [16] describes an algorithm which
creates the chain of replacement processing components,
breaks the connection between the source and the first pro-
cessing component of the original chain, and then connects
the source to the first component of the replacement chain.
At this point, both chains are active in processing the media
stream. Since the original chain is no longer being fed from
the source, it will exhaust stream data to process. When this
happens, the algorithm switches the connection between the
destination component and the last processing component
of the original chain to the last component of the replace-
ment chain. The algorithm aims to minimise the period be-
tween output from the original chain ceasing and the output
from the replacement chain emerging. In this way, the al-
gorithm can maintain a level of QoS where users perceive
output to be free of jitter.

Mitchell’s algorithm is fundamentally different to the
more general algorithms, described in Section 2.3, which
require that a safe state be reached and maintained for the
duration of change. Specifically, it uses redundancy to ex-
ploit the stateless property of components and relaxes the
accepted definition of safe state. Furthermore, the archi-
tectural model described above more generally conforms to
the pipe and filter architectural style [21]. Hence, this al-
gorithm can be used to reduce reconfiguration costs below
those that would be experienced using a more general algo-
rithm, in cases where a configuration’s style is recognised
as pipe and filter.

OpenRec’s ability to substitute reconfiguration algo-
rithms at run-time is of particular value where systems are
composed from several units, each of which may conform
to a different architectural style. For large systems, this is
often the case [21]. For example a system which comprises
units that conform to the pipe and filter style and others
that are based on the explicit invocation style would be ap-
propriately reconfigured using separate algorithms that ex-
ploit each style’s defining characteristics. Using OpenRec,
a variation of Mitchell’s algorithm could be used to recon-
figure a pipe and filter module and subsequently, Chen’s
algorithm could be used to reconfigure a different module
conforming to the explicit invocation style.

In addition to reconfiguration algorithms, the Change
Driver and Reconfiguration Manager are also components
that can be changed. A simple implementation of the



Change Driver that we have implemented, for example,
uses two known change descriptions to periodically tog-
gle an application between two configurations. This is a
case of what Oreizy [18] terms a closed adaptation, since
the adaptation is hard-coded. A more sophisicated Change
Driver implementation might make intelligent adaptation
decisions based on a combination of data received from plu-
gin tools and from querying application components using
their meta-level interfaces. In this case, the application can
be adapted in unforeseen ways.

OpenRec thus allows adaptive applications to not only
change their own behaviour, but in addition they can change
the mechanisms for controlling change. The conditions
which trigger reconfiguration can be changed by making
changes to the ChangeDriver layer. To change the way
reconfiguration itself is managed, applications can make
changes to the components of the Reconfiguration Manager
layer.

3.3 Degrees of Separation

Figure 1 reveals two important degrees of separation
within our framework:

� Change Driver / Reconfiguration Manager. Recon-
figuration algorithms are separated from the Change
Driver. As described earlier, the Change Driver com-
municates change requests, using OpenRecML, to the
current reconfiguration algorithm component via the
Reconfiguration Manager. The effect of this separa-
tion is that algorithm components need only be
concerned with implementing a particular reconfigu-
ration algorithm, and not with when to carry out re-
configuration or how to determine the actual change
required. These latter concerns are the responsibility
of the Change Driver for adaptive systems; and for sys-
tem administrators or change programmers in the case
of third-party change for highly available systems.

� Reconfiguration Manager / Application. The Re-
configuration Manager is independent of any partic-
ular application. Using a Reconfiguration Algorithm
component it inspects and adapts application compo-
nents through their meta-level interfaces. The opera-
tions provided by these interfaces are sufficient to im-
plement a wide range of reconfiguration algorithms.
This separation simplifies development since develop-
ers can work at the application level without regard
to specific reconfiguration algorithms and vice cersa.
Furthermore it promotes reuse of components within
these layers.

4 Example

To illustrate OpenRec’s support for highly available sys-
tems, we describe a simple EPOS (Electronic Point Of Sale)
simulation that we have developed using OpenRec. The
simulation comprises three kinds of components: EPOS ter-
minals, a collator, and a report generator. A typical config-
uration involves a number of EPOS components which are
connected to the central collator. When a sale is made at an
EPOS component, it sends details of the sale to the collator
which acts as a persistent repository for sales data. The col-
lator is also connected to a single report generator to which
it periodically sends processed data. Each component type
is implemented using OpenRec’s component model, specif-
ically inheriting from component, and all communication
is handled by explicit invocation connectors.

The initial configuration constitutes 5 epos compo-
nents, 1 collator and 1 reportGenerator. The
OpenRecML script that describes this configuration is spec-
ified as a parameter in the OpenRec deployment tool along
with the name of the default reconfiguration algorithm. In
this example, we use the algorithm developed as part of our
earlier work [23]. This algorithm has been implemented
as a strategy component as described in Section 3.1. Ac-
cording to the classifications described in Section 2.3, the
algorithm is a static algorithm whose unit of disturbance is
the connector.

For component replacement, the algorithm blocks the
source end of connectors (in other words required inter-
faces). Formally, the algorithm determines the interfaces
to block and the way in which they should be blocked as
follows:

Informally, required interfaces that are connected to a
component to be replaced are blocked and any invoca-
tions sent on those interfaces are queued during reconfig-
uration. These interfaces constitute members of the queue-
Block set. Invocations can be queued since the required in-
terfaces are reconnected following reconfiguration, allow-
ing the replacement component to process them. In addi-



<?xml version="1.0" encoding="iso-8859-1"?>
<reconfiguration>

<replace>
<original>

<component
classname="collator"
modulename="tests.epostest"
uniquename="collator">

</component>
</original>
<replacement>

<component
classname="collatorTwo"
modulename="tests.epostest"
uniquename="collator">

</component>
</replacement>

</replace>
</reconfiguration>

Figure 4. OpenRecML reconfiguration script

tion to these required interfaces being blocked, the required
interfaces of the component to be replaced are also blocked,
but this time using an abort block (abortBlock set members).
In this case, further outgoing invocations are aborted. A
component which is to be replaced is synchronised when
it has completed processing any incoming requests on its
provided interfaces and when any invocations made on its
required interfaces, have completed. Queued invocations
are not available to the component to be replaced and abort
blocking its required interfaces means that all interaction
involving the component will terminate in bounded time.

Reconfiguration is initiated by submitting an Open-
RecML reconfiguration script to the Change Driver. The
script describing collator’s replacement is shown in
Figure 4. The script simply identifies the component to
replace using its unique name in addition to the compo-
nent type to instantiate as its replacement. Binding de-
tails are not required in this case since the algorithm re-
quires that the replacement component provides at least
those interfaces of the original component. The algorithm’s
doCheckConstraintsmethod includes a check to ver-
ify this using component’s meta interfaces to discover the
provided interfaces of the two components.

Figure 5 shows a simple visualisation tool which ren-
ders components and their connectors. Directed links rep-
resent connectors and point from required to provided in-
terfaces. The tool is an OpenRec plugin and implements
the connectionPlugin interface which, as described in
Section 3.1, means that it receives system-wide events de-
scribing configuration changes. The tool records the config-
uration events and enables users to traverse, back and forth,
through configuration changes over a system’s lifetime.

Figure 5. Visualisation tool

Figure 5 shows that at state 20, the application has
synchronised with change, since all epos components
have (queue) blocked on their required interfaces, and that
the collator has been replaced. Prior to this state,
collator’s required interface would have been blocked
in abort mode, preventing it from making further requests
of reportGenerator. In addition, since collator’s
encapsulated state should survive reconfiguration (it is cu-
mulative sales data), the algorithm extracts the state from
the original collator and uses it to initialise the replace-
ment. The algorithm does this using a state management in-
terface that both the original and replacement collator
components are required to provide. Ensuring that the com-
ponents do provide the necessary interface is verified as part
of the algorithm’s doCheckConstraintsmethod using
the metaData class. In states 21 onwards, blocked in-
terfaces are unblocked allowing the components to resume
normal execution.

In addition to the visualisation plugin, we have also im-
plemented a basic instrumentation plugin which presents
quantifiable reconfiguration data. Similarly to the visual-
isation tool, the statistics tool shown in Figure 6 imple-
ments the connectionPlugin interface. The statistics
tool displays the total reconfiguration time measured from
the time reconfiguration is initiated to the time normal ex-
ecution of all components is resumed. The total wait time
is part of the synchronisation period where the algorithm
waits for application components to process any ongoing
requests necessary for the application to synchronise. The
remainder of the reconfiguration time is spent determining
the members of the queueBlock and abortBlock sets and
actually carrying out the structural changes. In this sim-
ple configuration, application disturbance is high since all 5
epos components and collator experience some form
of blocking.



Figure 6. Reconfiguration measurement tool

The statistic tool’s output is useful in infering the im-
pact reconfiguration has on an application’s non-functional
requirements. For example, of all the epos components,
epos1 experiences the longest blocking time of its re-
quired interface. This delays the response time for epos1’s
request by up to 50 milliseconds. For this system, such
a small delay is unlikely to violate its response time re-
quirement. However, for more realistic implementations
with longer processing times, response times experienced
by users may drop below tolerable levels during periods
of reconfiguration. Moreover, for other applications with
more stringent timing constraints, such as the multimedia
streaming system discussed earlier, knowledge of the re-
configuration overhead becomes increasingly more impor-
tant. In cases where constraints are not met, developers can
use OpenRec to experiment with alternative algorithms and
configuration structures.

5 Related work

Reconfigurable distributed object systems [20] [1] [4]
and other component-based systems [15] [23] are restricted
by closed implementations. In particular, these systems en-
capsulate a single fixed reconfiguration algorithm. In addi-
tion to being closed, these systems do not offer support for
measuring the costs associated with dynamic reconfigura-
tion. In these respects, they are in contrast to OpenRec.

The ArchStudio tool suite [19] has been designed to re-
configure components-based systems that conform to the
C2 architectural syle. This style prescribes a hierarchy of
components that interact using only asynchronous messages
and events. C2 applications are open in that developers may
encode a range of reconfiguration policies in connectors.
However, in comparison with OpenRec, this enables only
a limited form of openness and blurs the separation of re-
configuration and application concerns. In addition, Arch-
Studio mandates use of the C2 style whereas OpenRec is
independent of any particular style.

Self-healing systems [5] monitor themselves and initi-
ate self-repairing action when a constraint fails to hold true.

Recent work, including [2], [10], [7] and [18], addresses
the problems of expressing architectural-level constraints
(throughput and response time for example), monitoring
systems at run-time, mapping monitored data to architec-
tural constraints, and triggering repair actions. However,
they assume the existence of lower-level algorithms to han-
dle synchronisation and persistent state management. While
such work leads to valid reconfiguration at the architectural
level, applications may fail because of unmanaged reconfig-
uration at the component level.

6 Conclusions and further work

In this paper, we have presented an overview of Open-
Rec, an open framework for managing dynamic reconfig-
uration. We have demonstrated that OpenRec offers three
novel features. First, OpenRec accommodates an extensi-
ble set of reconfiguration algorithms. This addresses the
issue that one algorithm does not fit all applications. Sec-
ond, using OpenRec’s extensible plugins, developers can
measure the costs incurred in using a particular reconfig-
uration algorithm. This is useful in evaluating alternative
application designs for suitability for reconfiguration. Fur-
thermore, based on a comparative analysis of multiple al-
gorithms, an informed decision can be made as to the most
appropriate algorithm for managing a particular scenario.
Third, OpenRec is itself reconfigurable. In particular, re-
configuration algorithms can be substituted at run-time, as
can other key elements of the OpenRec architecture. These
features are facilitated by the use of OpenRec’s underlying
reflective component model.

The current status of our work includes a Python imple-
mentation of the reflective component model, two static re-
configuration algorithms, a basic Change Driver, and the
two plugin tools described in Section 4. While this has
enabled us to verify the key novel contributions outlined
above, there remains much interesting further work which
we expect to report on in the near future. In particular:

� Comparative studies of reconfiguration algorithms.
We expect to further validate OpenRec’s support for
implementing reconfiguration algorithm and its stan-
dard form for capturing algorithms’ constraints. In par-
ticular we intend to implement dynamic algorithms in
addition to more specialist algorithms that are style-
specific. The former require run-time information that
is available using OpenRec’s meta-level interfaces.
From the growing catalogue of algorithms, we will col-
lect their relative costs and hope to formulate heuristics
governing their use.

� Deeper analysis of reconfiguration. The time taken
to carry out reconfiguration is dependent on what the
application is doing when reconfiguration is initiated.



For example, performing the reconfiguration described
in Section 4 yields different figures for disturbance
times each time it is run. Thus, best-, average-, and
worst-case times could be generated by taking a suf-
ficient number of samples. Beyond this, more com-
plex analysis would allow a reconfiguration request to
be deferred to the time it impacts least on the running
application. We anticipate that OpenRec’s monitoring
capabilities can be developed to support this level of
analysis.

� Briding the gap between component and architectural
based change management. The research that others
are doing at the architectural level, in terms of adapta-
tion to meet an application’s non-functional require-
ments, is complementary to our lower-level change
management. Integrating these approaches would en-
able a system to be monitored, the need for and the
type of adaptation to be determined and then carried
out efficiently using an appropriate algorithm that pre-
serves system integrity.

� Self adapting change management. Finally we would
like to investigate the possiblity of developing a
Change Driver that can reason about the system to be
adapted using data obtained via plugin tools and meta-
level interfaces to automatically select the most appro-
priate algorithm for handling adaptation. More gen-
erally, we intend to explore OpenRec’s inherent open-
ness for reconfiguring its reconfiguration management
capabilities.

References

[1] C. Bidan, V. Issarny, T. Saridakis, and A. Zarras. A dynamic
reconfiguration service for CORBA. In 4th International
Conference on Configurable Distributed Systems, pages 35–
42. IEEE Computer Society Press, 1998.

[2] G. Blair, G. Coulson, L. Blair, H. Duran-Limon, P. Grace,
R. Moreira, and N. Parlavantzas. Reflection, self-awareness
and self-healing in openorb. In Workshop on self-healing
systems, 2002.

[3] G. S. Blair, G. Coulson, A. Anderson, L. Blair, M. Clarke,
F. Costa, H. Duran-Limon, T. Fitzpatrick, L. Johnston,
R. Moreira, N. Parlavantzas, and K. Saikoski. The design
and implementation of open orb 2. In Distributed Systems
Online, Vol. 2. No. 6, 2001.

[4] X. Chen and M. Simmons. Extending RMI to support dy-
namic reconfiguration of distributed systems. In 22 nd In-
ternational Conference on Distributed Computing Systems
(ICDCS’02), 2002.

[5] S. Cheng, D. Garlan, B. Schmerl, J. P. Sousa, B. Spitznagel,
and P. Steenkiste. Using architectural style as a basis for
system self-repair. Technical report, Carnegie Mellon Uni-
versity, 2002.

[6] M. Clarke, G. S. Blair, G. Coulson, and N. Parlavantzas. An
efficient component model for the construction of adaptive
middleware. In IFIP/ACM International Conference on Dis-
tributed Systems Platforms, 2001.

[7] E. Dashofy, A. Hoek, and R. Taylor. Towards architecure-
based self-healing systems. In Workshop on self-healing sys-
tems, 2002.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
patterns: Elements of reusable software. Addison Wesley,
1995.

[9] A. G. Ganek and T. A. Corbi. The dawning of the auto-
nomic computing era. In IBM Systems Journal, Automonic
Computing. Vol 42. No 1., 2003.

[10] D. Garlan and B. Schmerl. Model-based adaptation for self-
healing systems. In Workshop on self-healing systems, 2002.

[11] K. M. Goudarzi. Consistency Preserving Dynamic Recon-
figuration of Distributed Systems. PhD thesis, Imperial Col-
lege, London, 1999.

[12] G. Kiczales, J. Rivieres, and D. Dobrow. The art of the meta-
object protocol. In MIT Press, 1991.

[13] J. Kramer and J. Magee. The evolving philosophers prob-
lem: Dynamic change management. IEEE Transactions on
Software Engineering, 16(11):1293–1306, 1990.

[14] M. M. Lehman and L. A. Belady. Program evolution. Aca-
demic Press, APIC Studies in Data Processing No 27, 1985.

[15] J. Magee, J. Kramer, and M. Sloman. Constructing dis-
tributed systems in conic. IEEE Transactions on Software
Engineering, 15(6), 1989.

[16] S. R. Mitchell. Dynamic Configuration of Distributed Mul-
timedia Components. PhD thesis, University of London,
2000.

[17] M.Roman, F.Kon, and R.H.Campbell. Reflective middle-
ware: from the desk to your hand. In IEEE Distributed Sys-
tems Online, Special issue on Reflective Middleware, Vol. 2,
No. 5, 2001.

[18] P. Oreizy, M. Gorlick, R. Taylor, D. Heimbigner, G. John-
son, N. Medvidovic, A. Quilici, D. Rosenblum, and A. Wolf.
An architecture-based approach to self-adaptive software. In
IEEE Intelligent Systems, Vol. 14 no. 3, pages 54-62, 1999.

[19] P. Oreizy, N. Medvidovic, and R. N. Taylor. Architecture-
based runtime software evolution. In International Confer-
ence on Software Engineering, Kyoto, Japan, 1998.

[20] J. Paula, A. Almeida, M. Wegdam, M. van Sinderen, and
L. Nieuwenhuis. Transparent dynamic reconfiguration for
CORBA. In Proceedings of the 3rd International Sympo-
sium on Distributed Objects and Applications, 2001.

[21] M. Shaw and D. Garlan. Software architecture: Perspectives
on an emerging discipline. Prentice-Hall, Englewood Cliffs,
NJ, 1996.

[22] C. Szyperski. Component software: Beyond object-oriented
programming. Addison Wesley, 1998.

[23] I. Warren. A Model for Dynamic Configuration which Pre-
serves Application Integrity. PhD thesis, Lancaster Univer-
sity, 2000.

[24] M. Wermelinger. A hierarchic architecture model for dy-
namic reconfiguration. In 2nd International Workshop on
Software Engineering for Parallel and Distributed Systems
(PDSE ’97), 1997.


