
Software Development Practices in New Zealand

Diana Kirk and Ewan Tempero

Department of Computer Science

June 2012

Executive Summary

This report presents the results of an on-line survey involving 195 employees from 51
New Zealand software organisations. The survey was open for participation between July
2010 and April 2011. Research project duration was 20 months, representing approximately
1200 person-hours effort. The aim for the survey was to understand what practices are
used by New Zealand (NZ) software organisations to develop software. The overall goal of
our research is to increase our understanding of the mechanisms underlying current practice
selection in order that we might advise the industry in a meaningful way and based on ‘as-is’
rather than ‘should-be’.

The received wisdom for developing software-intensive products is that software organisa-
tions should choose a particular development methodology and must adhere to this method-
ology exactly to ensure all aspects of the development lifecycle are properly covered i.e. there
are no gaps. However, we have observed that many organisations do not adhere to specific
process models and this raises the question of whether the practices implemented in an
organisation form a coherent set. For example, do implemented practices address quality in
the delivered software, or is there a ‘gap’ which might lead to customer dissatisfaction?

Our results indicate that organisations do not follow standard process models such as
Waterfall, SCRUM or XP but rather have established a set of practices that are suited to
the particular contexts of the organisation. Furthermore, the data suggests that individuals
do not follow practices in a consistent way. As exact adherence to a process is encouraged to
balance performance trade-offs, the risk of gaps is clearly large in the New Zealand context.
Our aims are to help organisations increase productivity and software quality by exposing
gaps in their selected practices and by providing advice on how to address gaps to ensure a
coherent set of practices.

Results also indicate the following:

• Software development in New Zealand tends to be implementation-centric, with a
culture of collaboration, informality and reliance upon personal capability.

• Individuals tend to be involved in several aspects of product creation. This may
indicate a strength in that decision-making is often carried out in a collaborative way
with several roles included.

• A majority of respondents claimed to be ‘agile’. This claim was backed up by extensive
use of iteration, but close informal contact with customers is not practiced.

• We found major issues with clarity and accessibility of requirements. This indicates
an ineffectiveness in requirements practices and represents a possible gap endemic in
the NZ approach to developing software.

• We also found a significant number of issues with practices relating to product quality.
These include ineffective or missing design-and-code-checking practices (for example,
reviews and unit tests), a lack of independent testing of releases and patches and
insufficient separation of development/test/deployment environments.

• Tools appear to be widely used in all aspects of development but generally do not
drive process. The implication is that NZ organisations apply tools in an appropriate
way i.e. to support the process rather than creating process around tool.

• By far the most-commented on category (both positive and negative comments) was
Process. Practitioners in NZ believe that the processes in place in their organisations
matter.

Contents

1 Introduction 1

2 Theoretical framework 1

3 Study overview 3

4 Employee characteristics 5
4.1 Employee expertise . 5
4.2 Employee roles and functions . 5

5 Organisational practices 7
5.1 Culture . 7

5.1.1 Understanding the product . 7
5.1.2 Approach to procedures . 9

5.2 Practices . 12
5.2.1 Planning . 12
5.2.2 Implementing . 12
5.2.3 Delivering . 14

6 Participant viewpoints on practices 16
6.1 Process . 16
6.2 Client involvement . 17
6.3 Team collaboration . 17
6.4 Tools . 17
6.5 Team structure . 18
6.6 Documents . 18
6.7 Team support . 19
6.8 Individuals . 19

7 Findings 19

1 Introduction

The purpose of this report is to present the data submitted by participants in a recent survey
of software development practices in New Zealand (NZ). The survey was open for participation
between July 2010 and April 2011. The survey is part of the Software Process and Product
Improvement (SPPI) project, funded by the New Zealand Ministry of Science and Innovation
(previously the Foundation for Science and Technology Research - FRST).

The objective of the SPPI research is to develop and apply a range of software productivity
techniques and tools to enhance the performance of the New Zealand software industry. The
research has three key theme areas, relating to process and project management improvement,
model driven engineering and software visualisation. Our research addresses the first of these.
The aim of the survey was to understand what practices are currently used by New Zealand
(NZ) software organisations to develop software. Survey findings will contribute towards our
understanding of the considerations underlying current practice selection and will also help
expose ‘practice gaps’. These are important aspects of the development process that are missing
or inadequately addressed in an organisation, leading to reduced efficiency and effectiveness and
subsequent failure to meet organisational objectives, such as quality.

The long term goal for our research is to advise the industry on practices selection in a mean-
ingful way and based on ‘as-is’ rather than ‘should-be’. This represents an acknowledgement
that many NZ software organisations do not adhere to a specific development methodology
but rather have established a set of practices that are suited to the particular contexts of the
organisation. Our aims are to help organisations increase productivity and software quality by
exposing gaps in their selected practices and by providing advice on how to address gaps to
ensure a coherent set of practices. This approach supports an improvement in the way things
are currently done, in contrast to trying to force on organisations a specific ‘one-size-fits-all’
methodology.

Data resulting from the survey is presented below. We have included some interpretation of
the data, but the main goal of the report is to enable organisations to see the submitted data
and thus to gain a representative picture of software development in NZ. We hope the report
will enable you to compare your organisation with the ‘average’ and encourage you to consider
applying some practices not currently implemented by you.

In Section 2, we overview the research model upon which the survey was based. In Section
3, we introduce the study, and in Sections 4 and 5, we provide descriptive statistics for our
results. In Section 6, we summarise participants’ viewpoints on which practices are beneficial
and which are not. We present our main findings in Section 7.

2 Theoretical framework

In this section, we overview the software practices framework used in our study. The framework
has been published in a well-respected peer-review journal [1], where it is described fully.

The framework is based on the observation that we can understand an organisation’s prac-
tices only in the context of its key objectives and operational contexts. There are many possible
such objectives, for example, relating to quality, functionality, stakeholder and user satisfaction
and cost. We illustrate with the objective quality. In Figure 1, we show the basic research
framework structure with the objective quality along the top. The objectives make up the first
framework dimension, with each objective-of-interest represented by a column in the framework.

1

Quality

Define Roadmap
Scope

Make Design
Implement
Integrate

Deliver Release
Support

Figure 1: Basic research framework

Quality

Define Roadmap
Scope

Make Design Template-based design document
Design inspection

Implement Automated unit tests
Unit tests reviewed by senior

Integrate Compliance with build process
Dedicated test team
Requirements based test plans

Deliver Release
Support

Figure 2: Make function quality : example 1

The second framework dimension allows us to organise practices according to what an or-
ganisation needs to achieve at a high level. The rationale is that focussing on the what (the
problem) allows us to capture many different approaches to how (the solution) without intro-
ducing the risk of making assumptions about the solution space. For any kind of product, the
producing organisation must

• Define what is to be made.

• Make it.

• Deliver it.

In Figure 1, these functional categories are shown down the left-hand side. The categories
are extended to include what we believe are the main sub-categories for software. Functional

Quality

Define Roadmap
Scope

Make Design Architect is subject area expert
Implement Ad-hoc unit tests

Architect available to discuss
Integrate Developer builds

Client acceptance tests
Deliver Release

Support

Figure 3: Make function quality : example 2

2

sub-categories for Define relate to approaches to long-term strategic (Roadmapping) and short-
term project (Scoping) product planning. Categories for Make consist of the generally accepted
elements of making software i.e. choosing a suitable solution (Design), implementing the pieces
of the solution (Implement) and putting it all together (Integrate). For Deliver, we include
aspects relating to the interface between development and client organisations, namely transfer
of the product (Release) and the product as part of the target system (Support). The frame-
work does not impose any ordering of the functions. The intent of the framework is to provide
a structure for asking questions and organising data, with no assumptions about practice im-
plementations. For example, with Make, there is no expectation that practices associated with
Design and Implement need be separate.

Each cell of the framework is a repository for information about the practices that relate
to the function (row) and objective (column) for that cell. The practices in a cell effectively
form the ‘solution’ for that cell i.e. how the organisation implements the function for the row
to achieve the objective for the column.

To illustrate, in Figures 2 and 3, we show two possible approaches to achieving quality
in the Make function. The two figures represent different approaches to quality. Example 1
(Figure 2) indicates a formal approach, with document templates and a dedicated test team.
Example 2 (Figure 3) depicts a more informal approach, with reliance on individual capability
and communications. Each may be appropriate in different circumstances. The framework
permits inclusion of any activity that contributes towards objectives. This means, for example,
that casual discussions in the lunch room may be included if practitioners believe these help
with understanding required product quality.

The cells of the framework are more complex than described here, but one relevant feature
is that practices in a cell are structured as practices relating to culture and those relating to
techniques. Cultural aspects relate to approaches to sharing information, for example, for-
mal documents, wiki pages, formal and informal meetings and client interfaces. Examples of
techniques are pair programming, reviews, formal gates and dedicated teams.

3 Study overview

As the aim was to explore practices by asking as many practitioners as possible, we implemented
an exploratory survey. We sourced candidates from on-line directories and organisations we
believed may have IT groups (for example, banks, insurance groups, utilities companies and ed-
ucational establishments). We also emailed government departments, user groups and software
bodies with the request that our invitation be forwarded to any group the recipient believed
might develop software. As a result, invitations to participate were issued to managers in 518
New Zealand organisations. Of these, 13 were returned, a followup revealed that 16 no longer
exist, 30 were not involved in developing software and 12 were sole developers. Of the remain-
ing 447 candidate software organisations, 330 did not respond, 35 declined to participate and
82 agreed to participate. During the survey period, 10 organisations withdrew as a result of
time constraints and a further 21 did not participate, leaving 51 organisations participating. In
accordance with ethics requirements, we asked the manager for each participating organisation
to invite employees to participate, with the understanding that participation was voluntary and
supplied data confidential.The 51 organisations were represented by 195 employee responses.

In Figure 4, we summarise some of the organisational information received from the manager
responses. Totals do not always add up to 51 as a result of missing or invalid data.

Figure 4a shows the application areas for participating organisations. Our aim is to under-
stand if our results are specific to a small number of subject areas only or are based on a more
general coverage. With confidentiality in mind, we have grouped organisations in a way that we
hope is meaningful but does not risk identification. ‘Various’ includes real estate, entertainment
and education. We note a reasonable spread of application areas.

3

0
1
2
3
4
5
6
7
8
9

0

5

10

15

20

< 5 5 - 12 13 - 50 > 50

0

5

10

15

20

a. Application area

b. Size

c. Target clients

Figure 4: Characteristics of participating organisations

As we want to have some insight into possible differences between larger and smaller organ-
isations, for example, culture and process formality, we show the spread of size in Figure 4b.
Note that this metric relates to the number of people involved in the development function.
In some cases, this refers to the whole organisation. In other cases (for example, an IT group
within a larger organisation) it refers to the smaller group only.

Figure 4c provides a summary of the target clients. ‘Government’ includes entities such as
district health boards, defense and police; ‘Corporates’ includes larger businesses and multi-
national corporate entities; ‘Private’ refers to private enterprises such as SMEs, medical prac-
tices and insurance brokers; ‘Individuals’ refers to individual citizens, for example, members of
a club or medical patients; ‘NotForProfit’ includes charities and galleries; ‘Internal’ indicates
delivery to within the larger organisation; ‘Non-specific’ indicates delivery to any of the above,
for example, a general ICT service.

Manager participants were asked to encourage participation from within their group, ac-
cording to time constraints. Approximately 40 % of organisations were represented by 3 or
more employee responses, with 21 % represented by 7 or more.

In addition to a section on employee characteristics, the questionaire included sections on
practices relating to culture and practices relating to techniques, grouped according to the
functional categories shown in Figure 1 above. A final section asked respondents to describe
the three practices that most supported their work and three that were most detrimental.

Our approach to analysis was to first analyse the complete set of responses with no regard as
to contributions from different organisations. The second step was to understand how the data
from individual organisations affected the overall findings. For example, a finding in the sample
that a practice is ‘Sometimes’ carried out may be a consequence of some organisations ‘Always’
implementing the practice and others ‘Never’ implementing it. The majority of participating
organisations (37) were represented by three or fewer participants and 6 by more than ten
participants. We used a chi-square approach on the 6 most highly represented organisations to
test for statistically-significant differences between the organisation and the sample. Although
we did find some occurrences of difference, these varied from organisation to organisation and so
there is low likelihood that removing two or three organisations would significantly change the
distributions found in the complete sample data. This means that we will treat the descriptions
presented below as characterising the complete sample set.

4

Figure 5: Employee expertise levels

4 Employee characteristics

In this Section, we present the results of analysing the characteristics of the employees respon-
dents.

4.1 Employee expertise

We wanted to know to what extent participants were supported in their work by their knowl-
edge and experience. We asked about knowledge of the application area, and experience with
procedures and tools used. The results are shown in Figure 5. The median and mode values lie
in the ‘High’ category, with few reports of ‘Low’ expertise.

4.2 Employee roles and functions

We asked participants to tell us about their roles and the functions they implement. Our
aim was to understand whether organisations tended to have dedicated experts or whether
employees had to be flexible and participate in a number of roles and functions. We show the
results in Figure 6.

Of the 195 employees, only 64 (33 %) have 1 or 2 roles, 48 (25 %) have 3 roles and 82 (42 %)
have 4 or more roles. The average number of roles per employee is 3.5 (Figure 6a). The average
number of functions per employee is 5.64, with the mode at 4 and the median at 5 (Figure 6c).

The above suggests that individuals tend to be generalists rather than having specific areas
of technical expertise. We next consider the possibility that the questions we asked about roles
and functions may have been misleading. For example, an employee whose main job is low level
design and code is likely to have also reported involvement in testing (unit testing), building
(private copy before build submission) and documentation (code commenting). This may mean
that the spread is exaggerated by a large number of ‘coder’ employees.

With all responses that included ‘Coding’ removed, we are left with 79 responses (Figure
7). From the figure, we see that of these responses most employees participate in between 2
and 5 functions with an average of 3.96 i.e. the spread remains substantial. We also observe
from the data that most functions are well-represented.

We finally wanted to test if individuals tended to carry out specific kinds of functions. For
example, are people who do product specification also involved in implementation? Do those
who make the product also support it? Based on the theoretical model for this study, we divided
the functions into 3 groups:

• ‘S’pecification includes the problem specification functions i.e. Roadmap and Release
Scope

5

0
20
40
60
80

100
120
140

Frequency

a. Roles count b. Roles distribution

Frequency

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

1 2 3 4 5 6 7 8 9 10
0

20
40
60
80

100
120
140
160

Frequency

c. Functions count d. Functions distribution

Frequency

Figure 6: Number and spread of roles and functions carried out by individuals

0

10

20

30

40

50

60

Frequency

a. Functions count b. Functions distribution

Frequency

0
2
4
6
8

10
12
14
16

1 2 3 4 5 6 7 8

Figure 7: Function count and spread with ‘Coding’ responses removed

6

Frequency

a. Function groups b. Function group combinations

Frequency

0

50

100

150

200

S M D
0

10
20
30
40
50
60
70

Figure 8: Function groups and group combinations

• ‘M’ake includes the solution implementation functions Design, Code, Build, Test, Docu-
ment, Maintain

• ‘D’eliver includes the delivery functions at the client interface i.e. Release and Support

We show the results in Figure 8. From 195 employees, 67 (34 %) are involved in all groups,
189 (97 %) are involved in product implementation (Make) and 0 employees are involved in
delivery functions only.

5 Organisational practices

In this Section, we overview the analysis of the practices data. In Section 5.1, we cover culture-
related practices and in Section 5.2, we cover approaches to the ‘Define’, ‘Make’ and ‘Support’
functions.

5.1 Culture

We wanted to explore cultural aspects i.e. how organisations and individuals learn about and
understand the software product(s) to be implemented and their approach to carrying out the
work. We wanted to know how consistently a practice was implemented. For example, if
developers report carrying out unit testing, do they do so in every case, or or only some of the
time. We also wanted to analyse in a binary way (i.e. split responses into ‘Yes’ or ‘No’). We
provided a 4 point scale i.e. options were ‘Never’, ‘Seldom’, ‘Frequently’ and ‘Always’.

5.1.1 Understanding the product

In Figure 9, we show the questions on how practitioners understand the product to be made.
Figure 10 shows the responses for these questions. An observation is that there appears to be a
lack of consistency in an individual’s approach i.e. few report ‘Always’ or ‘Never’ carrying out
a practice.

7

Figure 9: Understanding the product : questions

0

20

40

60

80

100

120

Never Seldom Frequently Always

Comprehensive docs

Informal docs

Planned meetings

InternalDiscussions

ClientDiscussions

Innovate

InfoSupplied

SearchForInfo

InterpretDocs

Figure 10: Understanding the product : responses

8

0

20

40

60

80

100

120

Documents Internal
Discussions

Client
Discussions

Interpret
Innovate

Never

Seldom

Frequently

Always

0

20

40

60

80

100

120

140

160

Documents Internal
Discussions

Client
Discussions

Interpret
Innovate

No

Yes

0
20
40
60
80

100
120
140
160

Info Supplied Search for
Info

No

Yes

a. Strategy by groups

b. Summary by groups

c. Finding information summary

Figure 11: Understanding the product : summaries

Other observations are:

• There is an equal mix of informal and comprehensive documentation.

• Internal discussions are widely practised.

• Informal access to clients is not well supported.

• The need to innovate and interpret documentation is widespread.

• There is a need for practitioners to actively search for the information they need.

In Figure 11, we group the data in different ways. In Figure 11a, we group according to
whether the source of understanding is documents, discussions within the development group,
client discussions or personal interpretation and innovation. In Figure 11b, we amalgamate
the ‘Seldom’ and ‘Never’ responses into a ‘No’ category and the ‘Sometimes’ and ‘Always’
responses into a ‘Yes’ category. In Figure 11c, we summarise responses relating to availability
of information.

73 % of respondents report having to interpret documented instructions and/or innovate,
70 % of responses report understanding is supported by discussions with team members and
only 33 % report informal discussions with clients. A culture of internal knowledge sharing and
interpretation and innovation is suggested, with low access to clients. 82 % of responses report
a need to actively search for the information required. 45 % of responses report that relevant
information is ‘Seldom’ or ‘Never’ supplied.

5.1.2 Approach to procedures

In Figure 12, we show the questions that relate to how practitioners approach the procedures
to be carried out. Figure 13 shows the responses for these questions and in Figure 14, we show
the same information with responses grouped as ‘Yes’ (‘Always’ and ‘Frequently’) and ‘No’
(‘Seldom’ and ‘Never’).

Again we observe that practitioners appear to apply a range of approaches in an inconsistent
way, rather than either relying on a single approach, such as following documented procedures,
or consistently (‘Always’) implementing a practice. We also observe a reliance on collaboration
and the experience and application area knowledge of individuals.

9

Figure 12: Approach to procedures : questions

Figure 13: Approach to procedures : responses

Figure 14: Approach to procedures : summary

10

Figure 15: Defining the software product : questions

Figure 16: Defining the software product : responses

11

5.2 Practices

In this Section, we report responses to questions about how practitioners go about planning,
implementing and delivering software products. As we would like to understand the charac-
teristics of organisations who ‘Always’ or ‘Never’ implement specific practices i.e. focus on the
extremes, we introduced a single ‘middle’ category and options were ‘Never’, ‘Sometimes’ and
‘Always’. As a pragmatic means of highlighting ‘interesting’ results, we discuss responses where
the ‘Always’ and ‘Never’ responses differ by a factor of 3 and the greater value represents more
than 20 percent of the total responses.

5.2.1 Planning

In Figure 15, we show the questions that relate to how practitioners approach defining the
product. Responses are shown in Figure 16. The two graphs represent the same information
with the axes exchanged.

Some observations from these graphs and relating to the above statements are:

• 42 percent of respondents report ‘always’ implementing team planning for releases.

• 24 percent ‘always’ receive product requirements from outside the group.

• 30 percent ‘always’ plan releases well in advance.

5.2.2 Implementing

In Figure 17, we show the questions for how practitioners approach implementing the software
product.

Responses relating to requirements, design and coding practices are shown in Figure 18.
Some observations are:

• 48 percent of respondents ‘always’ apply an iterative approach for new development.

• 33 percent report that developers are ‘always’ responsible for high level design and im-
plementation.

• 37 percent ‘never’ follow a strict design review process.

• 23 percent ‘always’ review designs informally within the team.

Responses relating to build and test practices are shown in Figure 19. Some observations
are:

• 52 percent ‘never’ have unit tests reviewed.

• 40 percent ‘never’ implement test-driven development.

• 38 percent ‘always’ build on feature completion.

• 46 percent ‘always’ follow a documented build process.

• 55 percent report that developers and testers ‘always’ work closely together.

• 72 percent report that developers ‘never’ work with an allocated tester.

12

Figure 17: Implementing the software : questions

Figure 18: Implementing the software : requirements, design and code

13

Figure 19: Implementing the software : build and test

5.2.3 Delivering

In Figure 20, we show the questions for how practitioners approach delivering the software
product.

Responses relating to releasing the software are shown in Figure 21. Some observations are:

• 45 percent ‘always ’ have a formal release gate.

• 45-51 percent report representatives from development and QA are ‘always’ involved in
the release decision-making.

• 73 percent report QA ‘never’ makes the release decision alone.

• 46 to 54 percent report ‘always’ releasing only fully tested new features, upgrades and
patches.

• 26 percent report ‘never’ releasing urgent patches without comprehensive testing.

• 46 percent report ‘always’ collaborating closely with clients when releasing software.

• 64 percent report ‘always’ having a separate release environment.

Responses relating to supporting the software in the client environment are shown in Figure
22. Some observations are:

• 53 percent of respondents report that development, QA and support ‘always’ work closely
together.

• 74 percent ‘always’ use a tool for tracking support issues.

• 34 percent report developers ‘never’ work with clients on-site.

• 80 percent ‘never’ having problems with on-site code changes.

14

Figure 20: Delivering the software : questions

Figure 21: Delivering the software : release to client

15

Figure 22: Delivering the software : support in client environment

6 Participant viewpoints on practices

We asked participants which practices they believed to be beneficial to the organisation and
which were not. Practices other than those included in earlier questions were acceptable. In
this Section, we overview the major findings. A more detailed analysis will be addressed as
future work.

We grouped responses into a number of categories as suggested by the data. The categories
are presented below according to the level of representation in comments:

• process

• client involvement

• team collaboration

• tools

• team structure

• documents

• team support

• individuals

6.1 Process

Participants from 41 organisations expressed opinions about approaches to process in 294 com-
ments. 168 comments representing 36 organisations cited benefits, the most common of which
were: agile, iterative approach (21 comments representing 15 organisations); approaches to
managing and tracking requirements and issues (16 comments representing 13 organisations);
frequent/continuous/automated builds (27 comments representing 11 organisations); release
management (14 comments representing 11 organisations); design and code reviews (15 com-
ments representing 8 organisations); unit testing (14 comments representing 8 organisations);
separation of environments for development/build/test/production (9 comments representing 8
organisations).

124 comments representing 34 organisations reported unhelpful process practices, relating
to: requirements and issue management and tracking (21 comments representing 18 organi-
sations); project management (23 comments representing 14 organisations); unit testing (10

16

comments representing 10 organisations); design and code reviews (9 comments representing
10 organisations).

6.2 Client involvement

Participants from 23 organisations made 41 positive comments about their organisation’s strong
collaborative relationship with clients. Collaborations were reported at all points throughout
the project and included requirements, design, testing and release. Cited benefits include: helps
ensure client needs are understood; products are focussed on the needs of the client; subject
area expertise can be more easily increased; problems can be more easily resolved and decisions
made; clients are more enthusiastic about participation in early-adopter programmes; client
numbers increase as a result of word-of-mouth advocacy.

Participants from 14 organisations reported some unhelpful client-related practices. These
included poor communications, failure to set clear expectations, relying upon users to do ac-
ceptance testing, and being too reactive to individual client demands both during planning and
throughout the project. Cited issues include: constantly changing roadmap; features that are
unfriendly, unused or inconsistent with the planned product line; release dependencies; extensive
rework to correct misunderstandings; developer frustration; unhappy clients.

6.3 Team collaboration

Participants from 21 organisations in 45 comments believe that strong team communication
and collaboration contribute to success. Approaches reported included informal, open sharing
of information, keeping the team informed about product direction and strategy, daily planned
meetings, roles working closely together and team decision-making. Benefits cited include:
reduction of gaps in outcomes as everyone knows what is going on; improved quality of ideas;
identification of potential issues early on resulting in less rework and faster delivery.

Participants from 12 organisations in 15 comments believe that communications are ineffec-
tive and problematic within their organisation. Reported issues include: knowledge not shared
between application area experts and developers means assumptions are made that result in
later rework; development and test personnel have different understanding about the product
so testers waste time testing the wrong thing; support teams not given relevant information and
so developers end up supporting the support team; poor communications between developers
and on-site personnel leading to ineffective fault handling; duplication of work; failure to share
status information means that team members don’t know about project status.

6.4 Tools

Participants from 21 organisations in 44 comments believe the use of specific tools is beneficial.
Participants from 8 organisations in 10 comments believe that their organisation’s use of tools
could be improved.

Tools include those for project tracking, client communication tracking, requirements-enhancements-
defect tracking, design, version control, client issue tracking, change requests, development
environments, build and test tools and test environments.

Beneficial approaches cited include using single project tracking tool with transparent doc-
umentation so you can see project status at a glance, use of open source tools for increased
development speed due to strong community support, strict work flow options so that only
certain steps are possible depending upon the state the issue is in, automated build and test,
source control that lets you replicate customer systems and versions, issue log linked with defect
tracking tool to provide traceability and visibility for issues and all change requests in the same
place.

17

Issues leading to ineffectiveness include: difficult-to-use or overlapping tools make it difficult
to know what to do; missing, poor or out of date tool or technology in a key area; develop-
ment/test environments that are difficult to set up.

6.5 Team structure

Participants from 19 organisations in 32 comments believe that the structure of the team
contributes to success. Participants from 7 organisations in 11 comments express dissatisfaction
with specific structures. Structures commented on included having dedicated roles for client
advocacy, BA, architects and QA, and having dedicated groups for testing, customer response
and release management. Most commonly cited was the need for a dedicated tester or test team
(18 comments representing 12 organisations).

Cited benefits included: build product knowledge within the team (dedicated BA); build
strong client relationships and trust (dedicated client advocacy); ensure designs and imple-
mentation remain focussed on the business aspect of the requirements (dedicated architect);
consistency in product look-and-feel (dedicated architect); product tested from client perspec-
tive (dedicated test); client more likely to trust product changes (dedicated test); better service
to clients (dedicated customer response); developers protected from client-related interruptions
(dedicated customer response); better support for transition to production (dedicated release
management).

Cited issues included: client is confused and does not use the appropriate support channel;
developers are not sufficiently client focussed to make effective high-level design, test and re-
lease decisions; developers have increased involvement in supporting/training the support team;
dependencies and bottlenecks, for example, when outsourcing development or having a single
group deliver to many groups.

6.6 Documents

Participants from 16 organisations in 33 statements highlighted their organisation’s approach
to documentation as beneficial. Participants from 16 organisations in 22 comments believe
that documentation in their organisation is unclear, piecemeal, scattered or too technical. 4
organisations in 7 comments believe that a focus on extensive documentation is detrimental.

Comprehensive and up-to-date requirements and/or technical specifications are beneficial
because: result in better product understanding; need all information in one place (no one
person has all the information); help clients understand what will be delivered; ensure all
parties (development, QA and client) have a common understanding; provide a solid basis for
testing; is vital as a starting point for understanding previous product-related decisions and
existing product structure; is required as standard in the application area; ensure a consistent
look-and-feel in the product or product line.

Practices reported as unhelpful include: no, unclear or scattered process documents wastes
time trying to find out what to do; overly technical requirements leave the user unable to sign off;
not doing enough formal design before coding so insufficient understanding; not documenting
code well makes it difficult to get up to speed on an unfamiliar area; not writing test plans at
the same time as requirements are being written means that features are not properly thought
through; not documenting unit tests means issues aren’t picked up after rework; managers
talking about improving documentation but doing nothing about it.

A focus on documentation is detrimental because: adhering to existing document templates
absolves the author and reviewers of any responsibility to think and so the documents end
up containing little informational value and reviewers just check all the sections have been
completed; tend to reuse existing templates that are inappropriate for the current project;
documentation backlogs as it takes too long to upgrade documents during the project; it is not
‘correct’ or ‘good’ just because it’s documented.

18

6.7 Team support

Participants from 3 organisations in 6 comments reported helpful approaches for supporting
software teams. However, participants from 14 organisations in 19 comments reported practices
that detract from the team’s ability to work well.

Comments related to a proactive approach to motivating the team, to training / mentoring
and to resourcing of projects.

Participants reported that insufficient training, no time to keep up to date with new tech-
nologies and the unavailability of mentors affected expertise and capability levels, leaving them
unable to work effectively. Problems reported included designers unsure about architectural
decisions that might impact future product direction, developers struggling to work with newer
technologies, testers unsure about the details of features to be tested and support personnel
being forced to interrupt developers for help in supporting clients. Participants reported is-
sues with inappropriate resourcing strategies. These included under-resourcing of projects and
being given assignments that were incompatible with personal capabilities and skills, without
provision for appropriate mentoring. Also reported as problematic (7 organisations) was being
called away from a development task to carry out a support task or to help the support group.
While understanding the importance of the support work, participants expressed that being
interrupted mid-development was detrimental to focus.

The three organisations represented in both beneficial and unhelpful practices had different
aspects reported in each, for example, ‘strong’ in training but ‘weak’ in resourcing.

6.8 Individuals

Participants from 6 organisations in 10 statements commented that the levels of expertise and
competence of individual team members were key to the organisation’s success. Specifically
commented on were specification writing by someone with very good business and product
knowledge and QA test carried out by personnel with good understanding of the client business
processes. Suggestions were that only extremely good people should be hired and that those
who cannot abstract will always have a detrimental effect, regardless of processes implemented.

However, the risks involved in dependence upon expert staff members included loss of in-
tellectual property on staff turnover, reliance during a project on subject matter experts who
are not freely available to offer guidance and analysts who develop solutions based on instinct
that is wrong and results in costly rework. Four statements representing four organisations
complained about lack of project manager experience, poorly trained developers and hiring
outsourced staff with low application sector knowledge.

7 Findings

In this report, we have presented the data from an exploratory survey of software practices
involving 195 participants from 51 New Zealand software organisations. We have included
some interpretation of the data, but the main goal of the report is to enable organisations to
see the submitted data and thus to gain a representative picture of software development in
NZ.

The main findings from the study are :

• Organisations do not follow standard process models such as Waterfall, SCRUM or XP,
but rather adapt practices to suit the specific organisational contexts. Furthermore, the
data suggests that individuals do not follow practices in a consistent way. As exact
adherence to a process is encouraged to balance performance trade-offs, the risk of gaps
is clearly large in the New Zealand context.

19

• Software development in New Zealand tends to be implementation-centric, with a culture
of collaboration, informality and reliance upon personal capability.

• Individuals tend to be involved in several aspects of product creation. This may indicate
a strength in that decision-making is often carried out in a collaborative way with several
roles included.

• A majority of respondents claimed to be ‘agile’. This claim was backed up by extensive
use of iteration, but close informal contact with customers was not practiced.

• We found major issues with clarity and accessibility of requirements. This indicates an
ineffectiveness in requirements practices and represents a possible gap endemic in the NZ
approach to developing software.

• We also found a significant number of issues with practices relating to product quality.
These include ineffective or missing design-and-code-checking practices (for example, re-
views and unit tests), a lack of independent testing of releases and patches and insufficient
separation of development/test/deployment environments.

• Tools appear to be widely used in all aspects of development but generally do not drive
process. The implication is that NZ organisations apply tools in an appropriate way i.e.
to support the process rather than creating process around tool.

• By far the most-commented on category (both positive and negative comments) was
Process. Practitioners in NZ believe that the processes in place in their organisations
matter.

Acknowledgment

This research is part of the Software Process and Product Improvement (SPPI) project, funded
by the New Zealand Ministry of Science and Innovation (previously the Foundation for Science
and Technology Research - FRST). We would like to thank the organisations and individuals
who agreed to take part in our study.

References

[1] Diana Kirk and Ewan Tempero. A lightweight framework for describing software practices.
The Journal of Systems and Software, 85(3):581–594, 2012. DOI: 10.1016/j.jss.2011.09.024.

Revision history

Version Author Description

February 2012 Diana Kirk/Ewan Tempero First release
June 2012 Diana Kirk/Ewan Tempero Minor updates based on analysis of contribution

of individual organisations.

20

