
The Qualitas Corpus: A Curated Collection of Java Code
for Empirical Studies

Ewan Tempero∗, Craig Anslow§, Jens Dietrich†, Ted Han∗, Jing Li∗,
Markus Lumpe‡, Hayden Melton∗, James Noble§

∗Department of Computer Science, The University of Auckland
Auckland, New Zealand. e.tempero@cs.auckland.ac.nz

† Massey University, School of Engineering and Advanced Technology
Palmerston North, New Zealand. j.b.dietrich@massey.ac.nz

‡ Faculty of Information & Communication Technologies, Swinburne University of Technology
Hawthorn, Australia. mlumpe@ict.swin.edu.au

§ School of Engineering and Computer Science, Victoria University of Wellington
Wellington, New Zealand. kjx@ecs.vuw.ac.nz

Abstract—In order to increase our ability to use measure-
ment to support software development practise we need to
do more analysis of code. However, empirical studies of code
are expensive and their results are difficult to compare. We
describe the Qualitas Corpus, a large curated collection ofopen
source Java systems. The corpus reduces the cost of performing
large empirical studies of code and supports comparison of
measurements of the same artifacts. We discuss its design,
organisation, and issues associated with its development.

Keywords-Empirical studies; curated code corpus; experi-
mental infrastructure

I. I NTRODUCTION

Measurement is fundamental to engineering, however its
use in engineering software has been limited. While many
software metrics have been proposed (e.g. [1]), few are
regularly used in industry to support decision making. A key
reason for this is that our understanding of the relationship
between measurements we know how to make and quality
attributes, such as modifiability, understandability, extensi-
bility, reusability, and testability, that we care about ispoor.
This is particularly true with respect to theories regarding
characteristics of software structure such as encapsulation,
inheritance, coupling and cohesion. Traditional engineering
disciplines have had hundreds or thousands of years of expe-
rience of comparing measurements with quality outcomes,
but central to this experience is the taking and sharing of
measurements and outcomes. In contrast there have been
few useful measurements of code. In this paper we describe
the Qualitas Corpus, infrastructure that supports taking and
sharing measurements of code artifacts.

Barriers to measuring code and understanding what the
measurements mean include access to code to measure and
the tools to do the measurement. The advent of open source
software (OSS) has meant significantly more code is now
accessible for measurement than in the past. This has led to
an increase in interest in empirical studies of code. However,

there is still a non trivial cost to gathering the artifacts from
enough OSS projects to make a study useful. One of the
main goals of the Qualitas Corpus is to substantially reduce
the cost of performing large empirical studies of code.

However, just measuring code is not enough. We need
models explaining the relationship between the measure-
ments and the quality attributes, and we need experiments
to validate those models. Validation does not come though
a single experiment — experiments must be replicated.
Replication requires at least understanding of the relation-
ship between the artifacts used in the different experiments.
In some forms of experiments, we want to use the same
artifacts so as to be able to compare results in a meaningful
way. This means we need to know in detail what artifacts
are used in any experiment, meaning an ad hoc collection
of code whose contents is unknown is not sufficient. What
is needed is acuratedcollection of code artifacts. A second
goal of the Qualitas Corpus is to support comparison of
measurements of the same artifacts, that is, to provide a
reference corpus for empirical studies of code.

The contributions of this paper are:

• We present arguments for the provision of a reference
corpus of code for empirical studies of code.

• We identify the issues regarding performing replication
of studies that analyse Java code.

• We describe the Qualitas Corpus, a curated collection
of Java code that reduces the cost and increases the
replicability of empirical studies.

The rest of the paper is organised as follows. In the
next section we present the motivation for our work, which
includes inspiration from the use of corpora in applied
linguistics and the limited empirical studies of code that have
been performed. We also discuss the use of reference collec-
tions in other areas of software engineering and in computer
science, and discuss the need for a curated collection of



code. In section III we discuss the challenges faced when
doing empirical studies of code, and from that, determine
the requirements of a curated corpus. Section IV presents
the details of the Qualitas Corpus, its current organisation,
immediate future plans, and rationale of the decisions we
have taken. Section V evaluates the Qualitas Corpus. Finally
we present our conclusions in section VI.

II. M OTIVATION AND RELATED WORK

The use of a standard collection of artifacts to support
study in an area is not new, neither in general nor in software
engineering. One area is that of applied linguistics, where
standard corpora are the basis for much of the research being
done. Hunston [2] opens her book with “It is no exagger-
ation to say that corpora, and the study of corpora, have
revolutionised the study of language, and of the applications
of language, over the last few decades.” Ironically, it is the
availability of software systems support for language corpora
that has enabled this form of research, whereas researchers
examining code artifacts have been slow to adopt this idea.
While the goals of applied linguistics research is not exactly
the same as ours, the similarities are close enough to warrant
examining how corpora are used in that field. Their use of
corpora is a major motivation for the Qualitas Corpus. We
will discuss language corpora in more detail in section III.

A. Empirical studies of Code

To answer the question of whether a code corpus is
necessary, we sample past empirical studies of code. By
“empirical study of code” we mean a study in which the
artifacts under investigation consist of source code, there
are multiple, unrelated, artifacts, and the artifacts were
developed independently of the study. This rules out, for
example, studies that included the creation of the code
artifacts, such as those by Briand et al. [3] or Lewis et al.
[4], and studies of one system, such as that by Barry [5].

Empirical studies of code have been performed for at least
four decades. As with many other things, Knuth was one of
the first to carry out empirical studies to understand what
code that is actually written looks like [6]. He presented a
static analysis of over 400 FORTRAN programmes, totalling
about 250,000 cards, and dynamic analysis of about 25
programs. He chose programs that could “run to completion”
from job submissions to Stanford’s Computation Center,
various subroutine libraries and scientific packages, contri-
butions from IBM, and personal programs. His main moti-
vation was compiler design, with the concern that compilers
may not optimise for the typical case as no-one knew what
the typical case was. The programs used were not identified.

In another early example, Chevance and Heidet studied
50 COBOL programs also looking at how language features
are used [7]. The programs were also not identified and no
details were given of size.

Open source software has existed for several decades,
with systems such as Unix, emacs, and TEX. Their use in
empirical studies is relatively recent. For example, Miller et
al. [8] studied about 90 Unix applications (including emacs,
TEX, LATEX, yacc) to determine how they responded to input.
Frakes and Pole [9] used Unix tools as the basis for a study
on methods for searching for reusable components.

During the 1990s the number of accessible systems in-
creased, particularly those written in C++, and consequently
the number of studies increased. Chidamber and Kemerer
applied their metrics to two systems, one had 634 C++
classes, the other had 1459 Smalltalk classes [1]. No further
information on the systems was given.

Bieman and Zhao studied inheritance in 19 C++ systems,
ranging from 7 classes to 922 classes in size, with 2744
classes in total [10]. They identified the systems studied,
but did not identify the versions for all systems.

Harrison et al. applied two coupling metrics to five
collections of C++ code, consisting of 96, 197, 113, 61,
and 12 classes respectively [11]. They identified the systems
involved but not the versions studied.

Chidamber et al. studied three systems, one with 45
C++ classes, one with 27 Objective C classes, and one
identifying 25 classes in design documents [12]. They were
required to restrict information about the systems studiedfor
commercial reasons.

By the end of the millennium, repositories supporting
open source development such assourceforge, as well
as the increase in effectiveness of Internet search systems,
meant a large number of systems were accessible. This
affected both the number of studies done, and often their
size. A representative set of examples include one with 3
fairly large Java systems [13], a study of 14 Java systems
[14], and a study of 35 systems, from several languages
including Java, C++, Self, and Smalltalk [15].

Two particularly large studies were by Succi et al. [16]
and Collberg et al [17]. Succi et al. studied 100 Java and 100
C++ applications. The Java applications ranged from 28 to
936 classes in size (median 83.5) and the C++ applications
ranged from 30 to 2520 classes (median 59). The actual
applications were not identified. Collberg et al. analysed
1132 Javajar files collected from the Internet. According
to their statistics they analyse a total of 102,688 classes
and 12,188 interfaces. No information was given as to what
applications were analysed.

The studies described above suggest that there is interest
in doing studies that involve analysing code and the ability
to do such studies has significantly advanced our knowledge
about the characteristics of code structure. There are several
issues with these studies however. The first is that none of
these studies use the same set of systems, making it difficult
to compare or combine results. Another is that because full
details of the systems analysed are not provided, we are
limited in our ability to replicate them. A third issue is that



it is not clear that even the authors are fully aware of what
they have studied, which we discuss further below. Finally,
while the authors have gone to some effort to gather the
artifacts needed for their study, few others are able to benefit
from that effort, meaning each new study requires duplicated
effort. The Qualitas Corpus addresses these issues.

B. Infrastructure for empirical studies

Of course the use of standard collections of artifacts to
support research in computer science and software engi-
neering is not new. The use of benchmarks for various
forms of performance testing and comparison is very mature.
One recent example is the DaCapo benchmark suite by
Blackburn et al. [18], which consists of a set of open
source, real world Java applications with non-trivial memory
loads. Another example of research infrastructure is the New
Zealand Digital Library project, which aims is to develop the
technology for the creation of digital libraries and make it
available publicly so that others can use it [19].

There are also some examples in Software Engineering.
One is the Software-artifact Infrastructure Repository (SIR)
[20]. The explicit goal of SIR is to support controlled
experimentation in software testing techniques. SIR provides
a curated set of artifacts, including the code, test suites,and
fault data. SIR represents the kind of support the Qualitas
Corpus is intended to provide. We discuss SIR’s motivation
in the section III.

Bajracharya et al. describe Sourcerer, which provides
infrastructure to support code search [21]. At the time of
publication, the Sourcerer database held 1500 real-world
open source projects, a total of 254,049 Java classes, gath-
ered from Sourceforge. Their goals are different to ours, but
it does give an indication as to what is available.

Finally, we must mention the Purdue Benchmark Suite.
This was described by Grothoff et al. in support of their
work on confined types [22]. It consisted of 33 Java systems,
5 with more than 200 classes, and a total of 46,165 classes.
At the time it was probably the largest organised collection
of Java code, and was the starting point for our work.

C. The need for curation

If two studies that analyse code give conflicting reports
of some phenomena, one obvious possible explanation is
that the studies were applied to different samples. If the two
studies claimed to be analysing the same set of systems, we
might suspect error somewhere, although it could just be that
the specific versions analysed were different. In fact, evenif
we limit our sample to be from open source Java systems,
there is still room for variation even within specific versions,
as we will now discuss.

In an ideal world, it would be sufficient for a researcher to
just analyse what was provided on the system’s download
website. However, it is not that simple. Open source Java
systems come in both deployable (“binary”) and source

versions of the code. While we are interested in analysing
the source code, in some cases it is easier to analyse the
binary version. However, it is frequently the case that what
is distributed in the source version is not the same as
what is in the binary version. The source often includes
“infrastructure” code, such as that used for testing, code
demonstrating aspects of the system, and code that supports
the installation, building, or other management tasks of the
code. Such code may not be representative of the deployed
code, and so could bias the results of the study.

In some cases, this extra code can be a significant propor-
tion of what is available. For example,jFin_DateMath
versionR1-0.0 has 109 top-level non-test classes and 38
JUnit test classes. If the goal of a study is to characterise
how inheritance is used, then theJUnit classes (which
extendTestCase) could bias the result. Another examples
is fitjava version1.1, which has 37 top level classes,
and, in addition, 22 example classes. If there are many
example classes, which are typically quite simple, then they
would bias the results in a study to characterise some aspect
of the complexity of the system design.

Another issue is identifying the infrastructure code. Dif-
ferent systems organise their source code in different ways.
In many cases, the source code is organised as different
source directories, one for the system source, one for the test
infrastructure, one for examples, and so on. However there
are many other organisations. For example,gt2 version
2.2-rc3 has nearly 90 different source directories, of
which only about 40 contain source code that is distributed
in binary form.

The presence of infrastructure code means that a decision
has to be made as to what exactly to analyse. Without careful
investigation, researchers may not even be aware that the
infrastructure code exists and that a decision needs to be
made. If this decision is not reported, then it impacts other
researchers’ ability to replicate the study. It may be possible
to avoid this problem by just analysing the binary form of
the system, as this can be expected to represent how the
system was built. Unfortunately, some systems do include
infrastructure code in the deployed form.

Another complication is third-party libraries. Since such
software is usually not under the control of the developers of
the system, including it in the analysis would be misleading
in terms of understanding what decisions have been made
by developers. Some systems include these libraries in their
distribution and some do not. Also, different systems can use
the same libraries. This means that third-party library use
must be identified, and where appropriate, excluded from
the analysis, to avoid bias due to double counting.

Identifying third-party libraries is not easy. Some systems
are deployed as many archive (jar) files, meaning it is quite
time-consuming to determine which are third-party libraries
and which are not. For example,compiere version250d
has 114 archive files in its distribution. Complicating the



identification of third-party libraries is the fact that some
systems have such libraries packaged along with the system
code, that is, the library binary code has been unpacked
and then repacked with the binary system code. This means
excluding library code is not just a matter of leaving out the
relevant archive file.

Some systems are careful to identify what third-party
systems are included in the distribution (eclipse for
example). However usually this is in simple text document
that must be processed by a human, and so some judgement
is needed.

Another means to determine what to analyse might be to
look at the code that appears in both source and binary form.
Since there is no need for third-party source to be distributed,
we might reasonably expect it would only appear in binary
form. However, this is not the case. Some systems do in
fact distribute what appears to be original source of third-
party libraries (for examplecompiere version250d has
a copy of the Apache Element Construction Set1 that differs
only in one class and that only by a few lines). Also, some
systems provide their own implementations of some third-
party libraries, further complicating what is system code and
what is not.

In conclusion, to study the code from a collection of
systems it is not sufficient to just analysis the downloaded
code, whether it is binary or the original source. Decisions
need to be made regarding exactly what is going to be
analysed. If these decisions are not reported, then the results
may be difficult to analyse (or even fully evaluate). If the
decisions are reported, then anyone wanting to replicate the
study has, as well as having to recreate the collection, the
addition burden of accurately recreating the decisions.

If the collection is curated, that is, the contents are
organised and clearly identified, then the issues described
above can be more easily managed. This is the purpose of
the Qualitas Corpus.

III. D ESIGNING A CORPUS

In discussing the need for the Software-artifact Infrastruc-
ture Repository (SIR), Do et al. identified five challenges that
need to be addressed to support controlled experimentation:
supporting replicability across experiments; supportingag-
gregation of findings; reducing the cost of controlled exper-
iments; obtaining sample representativeness; and isolating
the effects of individual factors [20]. Their conclusion was
that these challenges could be addressed to one degree or
other by creating a collection of relevant artifacts.

When collecting artifacts, the target of those artifacts
must be kept in mind. Researchers use the artifacts in SIR
to determine the effectiveness of techniques and tools for
testing software, that is, the artifacts themselves are notthe
objects of study. Similarly, benchmarks are also a collection

1http://jakarta.apache.org/ecs

of artifacts where they are not the object of study, but provide
input to systems whose performance is the object of study.
While any collection of code may be used for a variety of
purposes, our interest is in the code itself, and so we refer
to our collection as a corpus.

Corpora are now commonly used in linguistics and there
are many used in that area, such as the International Corpus
of English [23]. The development of standard corpora for
various kinds of linguistics work is an area of research in
itself. Hunston says the main argument for using a corpus
is that it provides a reliable guide to what language is like,
more reliable than the intuition of native speakers [2, p20].
This applies to programming languages as well. While both
research and trade literature contain many claims about use
of programming language features, code corpora could be
used to provide evidence for such claims.

Hunston lists four aspects that should be considered when
designing a corpus:size, content, representativeness, and
permanence. Regarding size, she makes the point that it is
possible to have too much information, making it difficult
to process it in any useful way, but that generally linguistics
researchers will take as much data as is available. For the
Qualitas Corpus, our intent is to make it as big as is practical,
given our goal of supporting replication.

According to Hunston, the content of a corpus primarily
depends on the purpose it used for, and there are usually
questions specific to a purpose that must be addressed in the
design of the corpus. However, the design of a corpus is also
impacted by what is available, and pragmatic issues such
as whether the corpus creators have permission from the
authors and publishers to make the contents available. The
primary purpose that has guided the design of the Qualitas
Corpus has been to support studies involving static analysis
of code. The choice of contents is due to the large number
of open source Java systems that are available.

The representativeness of a corpus is important for making
statements about the population it is a sample of, that is,
the generalisability of any conclusions based on its study.
Hunston describes a number of issues that impact the design
of the corpus, but notes that the real question is how the
representativeness of the corpus should be taken into account
when interpreting results. The Qualitas Corpus supports this
assessment by providing full details of where its entries came
from, as well as metadata on such things as the domain of
an entry.

Finally, Hunston notes that a corpus needs to be regularly
updated in order to remain representative of the current
usage, and so its design must support that.

IV. T HE QUALITAS CORPUS

The current release is 20090202. It has 100 systems, 23
systems with multiple versions, with 400 versions total. Its
distributed form is 5.4GB, and once installed is 18.8GB.
It contains the source and binary forms of each system



Systems

ant

ant−1.1

bin

compressed

src

ant−1.7.1

Other versions omitted

Contents omitted

Contents omitted

.properties

apache−ant−1.7.1−bin.zip

apache−ant−1.7.1−src.zip

Figure 1. Organisation of Qualitas Corpus.

version as distributed by the developers (section IV-B). The
100 systems had to meet certain criteria (section IV-C).
These criteria were developed for the first external release,
one consequence of which is that some systems that were
considered part of the corpus previously now are not as they
do not meet the criteria (section IV-I). There are questions
regarding what things are in the corpus (section IV-E). The
next release is scheduled for the middle of July 2010 (section
IV-J).

As discussed previously, the main goals for the corpus are
that it reduces the costs of studies and supports replication of
studies. These goals have impacted the criteria for inclusion
and the corpus organisation.

A. Organisation

The corpus contains of a collection ofsystems, each of
which consists of a set ofversions. Each version consists of
the original distribution (compressed) and two “unpacked”
forms, bin and src. The unpacked forms are provided in
order to reduce the costs of performing studies. Thebin form
contains the binary system as it was intended to be used,
that is, Java bytecode. Thesrc form contains everything in
the source distribution. If the binary and source forms are

ant antlr aoi argouml aspectJ axion azureus cjdbc checkstyle

cobertura colt columba compiere derby displaytag drawswf drjava

eclipse SDK emma exoportal findbugs fitjava fitlibraryforfitnesse

freecol freecs galleon ganttproject gt2 heritrix hibernate hsqldb htm-

lunit informa ireport itext ivatagroupware jFinDateMath jag james

jasml jasperreports javacc jchempaint jedit jena jext jfreechart jgraph

jgraphpad jgrapht jgroupsn jhotdraw jmeter jmoney joggplayer jparse

jpf jrat jre jrefactory jruby jsXe jspwiki jtopen jung junitlog4j lucene

marauroa megamek mvnforum myfacescore nakedobjects nekohtml

openjms oscache picocontainer pmd poi pooka proguard quartz

quickserver quilt roller rssowl sablecc sandmark springframework

squirrel sql struts sunflow tomcat trove velocity webmail weka xalan

xerces xmojo

Figure 2. Systems in the Qualitas Corpus.

distributed as a single archive file, then it is unpacked insrc
and the relevant files are copied intobin.

The original distribution is provided exactly as down-
loaded from the system’s download site. This serves several
purposes. First, it means we can distribute the corpus without
creating thebin andsrc forms, as they can be automatically
created from the distributed forms, thus reducing the size
of the corpus distribution. Second, it allows any user of the
corpus to verify that thebin andsrc forms match what was
distributed, or even create their own form of the corpus.
Third, many distributions contain artifacts other than the
code in the system, such as test and build infrastructure
and so we want to keep these in case someone wishes to
analyse them as well. We also provide metadata in the file
.properties (section IV-D).

We use a standard naming convention to identify systems
and versions. A system is identified by a string that cannot
contain any occurrence of “-”. A version is identified
by <system>-<versionid>, where<system> is the
system name, and<versionid> is some system-specific
version identifier. Where possible, we use the names used
by the original distribution. So far, the only time we have
not been able to do this is when the system name contains
“-”, which we typically replace with “_”.

Figure 1 shows an example of the distribution forant.
There are 18 versions ofant, from ant-1.1 to ant-1.
7.1. The original distribution ofant-1.7.1 consists
of apache-ant-1.7.1-bin.zip, containing the de-
ployable form of ant, which is unpacked inbin, and
apache-ant-1.7.1-src.zip containing the source
code, unpacked insrc.

B. Contents

Figure 2 lists the systems that are current represented in
the corpus. Figure 3 gives an idea of how big the systems
are, when listing the latest version of each system in the



 10

 100

 1000

 10000

 100000

T
op

 le
ve

l t
yp

es
 (

lo
g)

System ordered by top level types

System sizes

Figure 3. Distribution of sizes of systems.

Table I
DOMAINS REPRESENTED IN THE CORPUS.

Domain No.
3D/graphics/media 6
IDE 4
SDK 7
database 7
diagram/visualisation 9
games 3
middleware 15
parsers/generators/make 8
programming language 2
testing 12
tool 27

current release in order of number of top-level types (that
is, classes, interfaces, enums, and annotations). Note that the
y-axis is on a log scale. Table I shows the representativeness
of the corpus in terms of domains represented and number
of systems in each domain.

For the most part, the systems in the corpus are open
source and so the corpus can contain their distributions,
especially as what is in the corpus is exactly what was
downloaded from the system download site. One exception
to this is jre. The license agreements for the binary and
source distributions appear to not allow their inclusion in
the corpus. Sincejre is an interesting system to analyse,
we consider it part of the corpus however corpus users must
download what they need from the Java distribution site.
What is provided by the corpus is the metadata similar to
that for other systems.

C. Criteria for inclusion

Currently, the criteria for a system to be included in a
release of the corpus are as follows:

1) In the previous releaseWe do not want to remove
things from a release that was in a previous release.
This allows people to have the latest release and yet
still be able to reproduce studies based on previous

releases. While we intend to continue to distributed
previous releases, we assume most people would pre-
fer not to have to juggle multiple versions of the
corpus.

2) Written in Java The choice of Java is due to both
the amount of open source code available (far more
than C# at the moment, although perhaps not as
much as C++) and the relative ease with which it can
be analysed (unlike, for example, C++). Should the
opportunity arise, other languages will be added, but
doing so is not a priority at the moment.

3) Distributes both source and binary forms One
advantage with Java is that its “compiled” form is
also fairly easy to analyse, easier than for the source
code in fact (section IV-E), however there are slight
differences between the source and binary forms.
Having both forms means that analysis results from
the binary form can be manually checked against the
source.
In order for it to make sense to have both source
and binary forms, the binary form must really be the
binary form of the source. It is expensive (in time) to
download source and then compile it as every project
has a different build technology (e.g.ant, bat files,
useseclipse infrastructure) that takes significant
effort to understand. We have made the decision to
simply take what is distributed by the developers, and
assume that the binary form is from the source that is
distributed. For this reason, we only include systems
that do actually distribute both forms in a clearly
identifiable way.
This rules out, for example, systems whose source are
only available through a source control system. While
in theory it should be possible to extract the source
relevant to a given binary release, being confident that
we can extract exactly the right versions of each file
is sufficiently hard that we just avoid the problem at
the moment. In the future we hope to relax this, at
least for systems where the relevant source version is
clearly labelled.

4) Distribute binary forms as a set of jar files The
binary form of systems included in the corpus must be
bundled as.jar files, that is, not.war, .ear, etc,
and not unbundled.class files. This is solely due to
the expectations of our tools for managing the corpus
and doing analysis using the corpus. This criteria will
probably be the first to completely go away.

5) Available to anyone independent of the corpus
This criteria is intended to avoid ephemeral systems
that crop up from time to time, or systems that are
only known to us that cannot be acquired by other
researchers. This allows the possibility of others to
independently check the decisions we have made.
This is the hardest one to meet, as we can not be



sure when development will stop on some system.
Some systems we used (and analysed) before the first
external release of the corpus have suffered this fate,
and so are not in the corpus. In fact we already have
the situation where the version of a system we have in
the corpus is now apparently no longer available, as
the developers only appear to keep (or make available
at least) the most recent versions. Due to criteria 1,
we have chosen to keep these, even though they do
not meet this criteria.

6) Identifiable contents As discussed in section II-C,
it is not always easy to determine what the contents
of a system are. If there is uncertainty regarding the
contents of a system, we do not include it.
For example, the binary form ofnetbeans has 400+
jar files. Trying to determine what is relevant and what
is not has proven to be a challenge that we are still
struggling with, and so it is not in the corpus (yet).

These criteria were developed to simplify some aspects
of the management of the corpus. Eventually hope some of
them will be relaxed (e.g. 2 and 4) or will have less impact
(e.g. 6).

D. Metadata

As part of the curation process we gather metadata about
each system version, and one of our near-term goals is to
increase this information (section IV-J). The corpus provides
this metadata in part to resolve the issues discussed in sec-
tion II-C Ideally we would like have the exact specification
as to what the developers consider to be “in” the system
however it is a very time consuming process to get such
information and it is not clear that even the developers would
necessarily agree amongst themselves. Instead, we follow
these two principles:

• Do not include something in a given system if it could
also appear in some other system in the corpus. This
will avoid (or at least reduce) double-counting of code
measurements that are done over the entire corpus.

• Make some decision about what is in a system and
document it. This means that even if the decision is
not necessarily the best, others trying to reproduce a
given analysis will know what actually was analysed.

One place where metadata is kept is in a.properties
file (see Figure 1). This file is formatted so that it can
be easily managed usingjava.util.Properties. For
example, the decision we have made regarding what is
identified as being in a given version of a system is recorded
in the sourcepackages field of the .properties
file. This is a space-separated list of prefixes of pack-
ages of Java types. Any type whose fully-qualified name
has one of the listed package prefixes as a prefix of
the name is considered a type that was developed for
the system, and everything else is considered as be-
ing a library type. For example, forazureus-3.0.3.

4, its sourcepackages value is “org.gudy com.
aelitis”, indicating that types such ascom.aelitis.
azureus.core.AzureusCore and org.pf.file.
FileUtil are considered part of that version ofazureus,
whereasjava.lang.String would not.

Other metadata we keep includes the release date of the
version, notes regarding the system and individual versions,
domain information, and where the system distribution came
from. The latter allows users of the corpus to check corpus
contents for themselves.

E. Issues

Given the goal of replication of studies, the biggest
challenge we have faced is clearly identifying the entities, as
discussed in section II-C. There are, however, other issues
we face. One is that systems change their name, such as the
system that used to be calledazureus now being called
vuze. This creates the problem of whether the corpus entry
should also change its name, meaning corpus users would
have to be aware of this change when comparing studies
done on different releases of the corpus, or maintaining the
old name in the corpus. We have chosen the latter approach.

Another issue is what to do when systems stop being
supported or otherwise become unavailable. One example
of this issue isjgraph, which is no longer open source.
Since we keep the original distribution as part of the corpus,
there should be no problem with simply keeping such
systems in the corpus. There is a concern however that over
time such systems will become outliers in terms of their
representativeness. For now we will just note the status of
such systems.

F. Content Management

Following criteria 1, a new release contains all the ver-
sions of systems in the previous release. There are however
some changes between releases. If there are errors in a
previous release (e.g. missing or wrong metadata, mis-named
systems or versions, problems with installation) then we
will fix them, while providing enough information to allow
people to determine how much the changes may affect
attempts to reproduce previous studies.

We have developed processes over time to support the
management of the corpus. The two main processes are for
making a new entry of a version of a system into the corpus,
and creating a distribution for release. In the early days, these
were all manual, but now, with each new release, scripts are
being developed to automate more parts of the process.

G. Distributing the Corpus

To install the copy one acquires adistribution for a
particular release. The release indicates the decision point
as to what is in the corpus and so is used for identification
in studies (section IV-H). A given distribution of a release
provides support for particular kinds of studies. For example,



one distribution contains just the most recent version of each
system in the corpus. For those interested in just “breadth”
studies, this distribution is simpler to deal with (and much
smaller to download). As the corpus grows in size we
anticipate other distributions will be provided.

Releases are identified by their date of release (in ISO
8601 format). The full distribution uses the release date,
whereas any other distribution will use the release date an-
notated to indicate which distribution it is. For example, the
current release is20090202 and the distribution containing
only the most recent versions of systems is20090202r.

H. Using the corpus

The corpus is designed to be used in a specific way. A
properly-installed distribution has the structure described in
section IV-A. If every study is performed on the complete
contents of a given release, using the metadata provided in
the corpus to identify the contents of a system (in particular
sourcepackages, section IV-D), then the results of those
studies can be compared with good confidence that compar-
ison is meaningful. Furthermore, what is actually studied
can be described succinctly by just by indicating the release
(and if necessary, particular distribution) used.

There is, however, no restriction on how the corpus can
be used. It has been quite common, for example, to use a
subset of its contents in studies. In such cases, in additionto
identifying the release, we recommend that either what has
been included be identified by listing the system versions
used, or what has been left out similarly identified. If
systems not in the corpus are also used in a study, then not
only do the system versions need to be identified, but some
discussion regarding how the issues described in section II-C
have been resolved, and, ideally, some indication as to how
others can acquire the same system code distributions.

I. History

The Qualitas Corpus was initially conceived and devel-
oped by one of us (Melton) for Ph.D. research during 2005.
Many of the systems were chosen because they have been
used in other studies (e.g., [22], [14], [15]) although not all
were still available. In its first published use (the work was
done in 2005 but published later) there were 21 systems in
the corpus [24].

The original corpus was used and added to by members of
the University of Auckland group over the next three years,
growing from 21 systems initially. It was made available for
external release in January of 2008, containing 88 systems,
21 systems with multiple versions, a total of 214 entries.
As noted earlier, some of the systems that were originally
in the corpus and used in studies before its release did not
meet the criteria used for the external distributions. By the
end of 2008, there were 100 systems in the corpus. Since
then, development of the corpus has focused on improving
the quality of the corpus, in particular the metadata.

As the corpus has developed it has undergone some
changes. The main changes have been in terms of the
metadata that is maintained, however there has also been
a change in terminology. Initially, the terminology used
was that the corpus contained “versions” of “applications”,
however “application” implied something that functioned
independently. This created confusion for such things as
jgraph or springframework, which are not useful by
themselves. We now use “versions” of “systems”.

J. Future Plans

As noted earlier, the next release is scheduled for July
2010. As well as about 90 new versions of existing systems
(but at this point, no new systems), the main change will be
the addition of significantly more metadata. We anticipate
that the next full distribution will be about 10GB, and when
it is installed will be nearly 50GB.

One aspect will be improving the domain identification
mentioned in section IV-D to use a more rigorous classifi-
cation system. The new metadata will list, for every.java
file in src and every.class file found in an archive inbin,
the actual location of the file, plus information regarding how
the Java type these files corresponds to is classified in the
corpus.

Figure 4 shows an example of the data provided. It shows
three entries forant-1.7.1 (out of 6444). The first and
third entries show that there are both.class (column 2)
and.java files (column 3) files corresponding to the Java
typesorg.apache.tools.zip.ZipEntry andorg.
apache.tools.zip.ZipExtraField. The middle
entry, for org.apache.tools.zip.ZipEntry, does
not have an entry in column 2 indicating that while there
is source code for it, it is not part of theant deployment.
Column 4 indicates whether the entry corresponds to a
type identified as being in the system (that is, matches
the sourcepackages value), with 0 indicating it does.
Column 5 provides a summary of what forms the type exists
in the corpus (0 meaning it is in bothsrc andbin, 1 for bin
only, and 2 forsrc only. The last column indicates whether
or not the entry is for a type that is considered “distributed”.
Such types should also occur inbin, so this information
can be used to identify non-public types — types that are
declared in files with different names. Such types would be
recorded as being not distributed but inbin.

The information shown in the figure is provided in a tab-
separated file, along with scripts that do basic analysis and
which can be extended by users of the corpus. The corpus
structure will changed to add ametadatadirectory alongside
bin, compressed, andsrc. This will also allow for adding
other kinds of metadata in the future.

Our plans for the future of the corpus include growing it
in size and representativeness (section V), making it easier
to use for studies, and providing more “value add” in terms
of metadata.



...
org.[...].ZipEntry apache-ant-1.7.1/lib/ant.jar apache-ant-1.7.1/[...]/ZipEntry.java 0 0 0
org.[...].ZipEntryTest apache-ant-1.7.1/[...]/ZipEntryTest.java 0 2 1
org.[...].ZipExtraField apache-ant-1.7.1/lib/ant.jar apache-ant-1.7.1/[...]/ZipExtraField.java 0 0 0
...

Figure 4. Metadata for system version content details forant-1.7.1. Some names have been elided for space.

One consequence of those outside the University of
Auckland group using the corpus has been suggestions for
systems to add. We have begun identifying suitable candi-
dates for the first post-July release from these suggestions.
We will mainly consider large systems for this release. In
the past such systems have typically been very expensive
to process, however the scripts that produce the metadata
described above will reduce that cost, making it easier to
grow the corpus this way. This should allow us to, for
example, include systems with complex structures such as
netbeans.

Another consequence of people using the corpus is the
need to perform studies different than what we originally
envisaged. One example of this is that some studies need
to have a complete deployable version of a system (e.g. for
dynamic analysis). As we originally were only thinking of
doing static analysis, we did not by default include third-
party libraries in the corpus. We have now begun developing
the infrastructure to provide versions that are deployable.

As there are more users of the corpus, more information
(such as measurements from metrics) about the systems in
the corpus is being gathered. We would like to include some
of these measurements as part of the metadata in the future.

V. D ISCUSSION

The Qualitas Corpus has been in use now for 5 years, and
has been made externally available for just over 2 years.
There have been over 30 publications describing studies
based on its use (see the website for details [25]). Increas-
ingly, the publications are by researchers not connected to
the original development group. It is in use by about 15
research groups spread across 9 countries. It is being used
for Ph.D., Masters, and undergraduate research. Some of
the users have started contributing to the development of
the corpus, as evidenced by the author list of this paper.

Looking at how the corpus has been used, primarily it has
been due to the reduced cost for developing experiments.
It is difficult to determine the cost of the development of
the corpus since early on it was done as an adjunct to
research, rather than the main goal. However it is certainly
more than 1000 hours and could easily be double that. Any
user of the corpus directly benefits from this effort. Some
users have in fact used the corpus merely as a starting point
and added other systems of interest to them. In some cases,
those other systems have been commercial systems, allowing

relatively cheap comparison between commercial and open
source code.

There has been less use of the ability to replicate exper-
iments or compare results across experiments. Given that
the corpus has only been available relatively recently, this
is perhaps not surprising. Once other measurements and
metadata become part of the corpus itself, we hope this will
change.

As Do et al. note, use of infrastructure such as the Qualitas
Corpus can be both of benefit and can introduce problems
[20]. They note that misuse by users who have not followed
directions carefully can be a problem, as we have also ex-
perienced. An example of where that can be a problem with
the corpus is not using thesourcepackages metadata
to identify system contents, meaning it is not clear which
entities have being studied.

The main issue with the corpus is its representativeness.
For now, it contains only open source Java systems. This
issue is faced by any empirical study, but any users of the
corpus must address it when discussing their results.

Hunston observes that there are limitations on the use
of corpora [2]. While the points she raises (other than
representativeness) do not directly relate to the Qualitas
Corpus, they do raise an issue that does apply. The code
in the corpus shows us what a software developerwrote,
but what it cannot tell us is what theintentof the developer
was.

VI. CONCLUSIONS

In order to increase our ability to use measurement of
code to support software development practise we need to do
more measurement of code in research. We have argued that
this requires large, curated corpora with which to conduct
code analysis empirical studies. We have discussed the issues
associated with developing such corpora and how these
might impact their design.

In this paper we have presented the Qualitas Corpus, a
curated collection of open-source Java systems. This corpus
significantly reduces the cost of empirical studies of code
by reducing the time needed to find, collect, and organise
the necessary code sets to the time needed to download the
corpus. The metadata provided with the corpus provides an
explicit record of decisions regarding what is being studied.
This means that studies conducted with the corpus are easily



replicated, and the results from different kinds of studiesare
more likely to be able to be sensibly compared.

The Qualitas Corpus is the largest curated corpus for code
analysis studies, with the current version having 400 code
sets, representing 100 unique systems. The next release will
increase that by about 25%. The corpus has been successful,
in that it is now being used by groups outside its original
creators, and the number and size of code analysis studies
has significantly increased since it has become available. We
hope that it will further encourage replication and sharing
of experimental results.

Further development is planned, with short term plans
including providing metadata describing the contents of each
system version and longer term plans increasing its size and
representativeness.

REFERENCES

[1] S. R. Chidamber and C. F. Kemerer, “A metrics suite for
object oriented design,”IEEE Trans. Softw. Eng., vol. 20,
no. 6, pp. 476–493, 1994.

[2] S. Hunston, Ed.,Corpora in Applied Linguistics. Cambridge
University Press, 2002.

[3] L. C. Briand, J. Wüst, J. W. Daly, and D. V. Porter, “Explor-
ing the relationships between design measures and software
quality in object-oriented systems,”Journal of Systems and
Software, vol. 51, no. 3, pp. 245 – 273, 2000.

[4] J. A. Lewis, S. M. Henry, D. G. Kafura, and R. S. Schul-
man, “An empirical study of the object-oriented paradigm
and software reuse,” inConference proceedings on Object-
oriented programming systems, languages, and applications,
1991, pp. 184–196.

[5] B. M. Barry, “Prototyping a real-time embedded system in
smalltalk,” in Object-Oriented Programmes Languages and
Systems, oct 1989, pp. 255–265.

[6] D. E. Knuth, “An empirical study of FORTRAN programs,”
Software–Practice and Experience, vol. 1, no. 2, pp. 105–133,
1971.

[7] R. J. Chevance and T. Heidet, “Static profile and dynamic
behavior of COBOL programs.”SIGPLAN Notices, vol. 13,
no. 4, pp. 44–57, apr 1978.

[8] B. P. Miller, L. Fredriksen, and B. So, “An empirical study
of the reliability of UNIX utilities,” Communications of the
ACM, vol. 33, no. 12, pp. 32–44, Dec. 1990.

[9] W. Frakes and T. Pole, “An empirical study of representation
methods for reusable software components,”IEEE Transac-
tions on Software Engineering, vol. 20, pp. 617–630, 1994.

[10] J. M. Bieman and J. X. Zhao, “Reuse through inheritance:
a quantitative study of C++ software,” inProceedings of the
1995 Symposium on Software reusability. New York, NY,
USA: ACM, 1995, pp. 47–52.

[11] R. Harrison, S. Counsell, and R. Nithi, “Coupling metrics for
object-oriented design,”Software Metrics, IEEE International
Symposium on, vol. 0, p. 150, 1998.

[12] S. Chidamber, D. Darcy, and C. Kemerer, “Managerial useof
metrics for object-oriented software: an exploratory analysis,”
IEEE Trans. Software Engineering, vol. 24, no. 8, pp. 629–
639, Aug. 1998.

[13] R. Wheeldon and S. Counsell, “Power law distributions in
class relationships,” inThird IEEE International Workshop on
Source Code Analysis and Manipulation (SCAM03), 2003.

[14] J. Y. Gil and I. Maman, “Micro patterns in Java code,” in
OOPSLA ’05: Proceedings of the 20th annual ACM SIG-
PLAN conference on Object oriented programming systems
languages and applications. New York, NY, USA: ACM
Press, 2005, pp. 97–116.

[15] A. Potanin, J. Noble, M. Frean, and R. Biddle, “Scale-free
geometry in OO programs,”Commun. ACM, vol. 48, no. 5,
pp. 99–103, 2005.

[16] G. Succi, W. Pedrycz, S. Djokic, P. Zuliani, and B. Russo, “An
empirical exploration of the distributions of the Chidamber
and Kemerer object-oriented metrics suite,”Empirical Softw.
Engg., vol. 10, no. 1, pp. 81–104, 2005.

[17] C. Collberg, G. Myles, and M. Stepp, “An empirical studyof
Java bytecode programs,”Softw. Pract. Exper., vol. 37, no. 6,
pp. 581–641, 2007.

[18] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton,
S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. B.
Moss, B. Moss, A. Phansalkar, D. Stefanovi, T. VanDrunen,
D. von Dincklage, , and B. Wiedermann, “The DaCapo
benchmarks: Java benchmarking development and analysis,”
in Proceedings of the 21st Annual ACM SIGPLAN Conference
on Object-Oriented Programming Systems, Languages, and
Applications, Portland, Oregan, oct 2006, pp. 169–190.

[19] I. Witten, S. Cunningham, and M. Apperley, “The New
Zealand Digital Library project,”New Zealand Libraries,
vol. 48, no. 8, pp. 146–152, 1996.

[20] H. Do, S. Elbaum, and G. Rothermel, “Supporting controlled
experimentation with testing techniques: An infrastructure
and its potential impact,”Empirical Softw. Engg., vol. 10,
no. 4, pp. 405–435, 2005.

[21] S. Bajracharya, T. Ngo, E. Linstead, Y. Dou, P. Rigor, P.Baldi,
and C. Lopes, “Sourcerer: a search engine for open source
code supporting structure-based search,” inCompanion To
the 21st ACM SIGPLAN Symposium on Object-Oriented
Programming Systems, Languages, and Applications, 2006,
pp. 681–682.

[22] C. Grothoff, J. Palsberg, and J. Vitek, “Encapsulatingobjects
with confined types,” inOOPSLA ’01: Proceedings of the
16th ACM SIGPLAN conference on Object oriented program-
ming, systems, languages, and applications. New York, NY,
USA: ACM Press, 2001, pp. 241–255.

[23] “International Corpus of English,” http://ice-corpora.net/ice,
accessed 28 May 2010, 2010.

[24] H. Melton and E. Tempero, “The CRSS metric for package
design quality,” inAustralasian Computer Science Confer-
ence. Ballarat, Australia: Australian Computer Science Com-
munications, Jan. 2007, pp. 201–210, published as CRPIT 62.

[25] Qualitas Research Group, “Qualitas Corpus Website,” http:
//www.cs.auckland.ac.nz/∼ewan/corpus, Jun. 2010.


