
Reflections on What is Software Engineering

Ewan Tempero

December 19, 2008

Introduction

This essay presents various thoughts I have had regard-
ing the nature of software engineering, based on my
experience due to teaching into a software engineering
university programme and research in the area.

The Question

The starting point for this essay is the following ques-
tion:

Is there a difference between computer sci-
ence and software engineering and if so what
is it?

This is a question I have had to come up with a good an-
swer for as, since 2002, I have been at the University of
Auckland (UoA), which allows a Major in both Com-
puter Science (CS), in the Bachelor of Science (BSc),
and a Specialisation in Software Engineering (SE), in
the Bachelor of Engineering (BE). I am in the Com-
puter Science department, but since most of my teach-
ing was in the SE programme I have had to answer this
question both from potential students and potential em-
ployers. More recently, as I was preparing to go away
on Research and Study Leave (our equivalent of “sab-
batical”), I came across a discussion on this question
in Software Engineering Notes (SEN) giving opposing
views on the subject. What was interesting about this
discussion is, had I seen it when it when it was pub-
lished in 2003 I would have agreed with one side, but
I am now firmly on the other side. Since reading this
discussion, and having the luxury of time on leave to
think about such things, I’ve been thinking about why
my views have changed, which has lead to what you see
before you.

Historical Context and Motivation

At the beginning of 2002, the SE degree at UoA was
quite new — the first cohort had just begun their third
(of four) year. Being so new, there was not a lot known
about it. Potential new students (and their parents)
wanted to know if there were jobs for SE graduates,
and why they should take SE instead of CS, which had
been around for many years. Industry wanted to know
what the difference was, in order to decide whether they

wanted to hire SE graduates instead of (or even as well
as) CS. “There is no difference” was not only not a po-
litically useful answer (there must be a difference other-
wise why is UoA offering both!), it also clearly wasn’t
entirely correct. While a number of the courses in the
SE programme began life as clones of their CS coun-
terparts, most of them diverged to be different courses.
There were also other SE courses that had no equivalent
in CS, plus there were all the other engineering courses
that made up the BE. So the programmes are different,
but that could be considered a somewhat artificial dis-
tinction. Much more interesting is whether there is a
true difference between the two.

The question is not new. There have been many dis-
cussions in various venues, including many staff tea
rooms, as to what the difference is. The SEN discus-
sion I mentioned above appeared in the November 2003
issue and consisted of a letter by Bill Griswold and a re-
sponse by Peter Henderson [3]. I came across this issue
as I was cleaning up my office in preparation for going
on leave. I had somehow neglected to read it at the time
it came out and so I took a quick look at it (SEN being
one of the few periodicals I receive that I make some
effort to read).

In his letter (which was a response to a proposal for
an SE curriculum), Griswold expressed the view that
CS is Engineering, based on the observation that much
of what is associated with CS involves the construction
of artefacts. He felt that SE was a sub-discipline of CS,
and questioned whether making any distinction was of
benefit for the development of the respective fields, in
research and in teaching. Henderson (who at the time
wrote a column for SEN on software engineering edu-
cation) felt that there was a difference between CS and
SE just as there is a difference between science and en-
gineering. He felt that many graduates of CS programs
don’t have an “engineering mindset”.

At the end of 2003 (that is, after my second year
of teaching in the SE programme at UoA), I probably
would have agreed with Griswold. I almost certainly
would have agreed even only months earlier. My previ-
ous appointment of 11 years had been in the Computer
Science department at Victoria University of Welling-
ton (VUW), which offered a fairly traditional CS pro-
gramme. My own background featured fairly tradi-
tional computer science courses, however my under-
graduate major was Mathematics and my PhD was in
theoretical computer science. By the time I left VUW

1



my research and teaching were firmly in “software engi-
neering” but I considered it a sub-discipline of CS rather
than something separate.

At UoA, while I was in a department in the Fac-
ulty Of Science (FoS), as most of my teaching was in
the SE programme, I had more contact with the Fac-
ulty of Engineering (FoE), which administered the SE
programme. The structure of the SE specialisation was
strongly influenced by the structure of the BE, admin-
istered by the FoE, which had existed for nearly (at
that time) 100 years. There were “professional devel-
opment” courses at every level for all specialities, and
“mathematical modelling” (featuring lots of calculus)
for most specialities. The designers of the SE speciality
were almost entirely in the Computer Science depart-
ment (FoS) and had argued successfully that SE stu-
dents didn’t need all of the continuous mathematics,
and that more appropriate courses would replace those
courses the other engineering students took (discrete
mathematics and so on). However there was no avoid-
ing the professional development courses, as they were
part of the engineering accreditation, and there was no
avoiding the joint first year that all students took. The
first year featured almost nothing relating to software
(unless the half-course of programming in MATLAB
counted). Fortunately for the SE programme, there was
one “elective” slot at first year, and SE students were
required to take the Computer Science introduction to
programming course in that slot.1

I found the restrictions to the SE programme imposed
by the BE structure just a little bit unhelpful. I did not
see the need for an SE student to take a chemistry course
in the first year. I’m not saying that the chemistry (and
I pick on chemistry only because I don’t want to list
all courses) is no use, or that SE students would ben-
efit from seeing it, but four years is little enough as it
is and that chemistry slot could be used for a course
containing much more directly relevant material for SE
students. The line by the engineering staff as that they
wanted all students to have the same foundation so that
the students made their choices of speciality on an in-
formed basis, and that as these courses were all taught
by engineers it would help the students to acquire the
“engineering mindset”. I didn’t buy it. At the time I
didn’t see that whatever mindset mechanical or chem-
ical engineers had developed was going to be of any
value to SE students.

At the end2 of 2003, the first cohort completed the
programme. This included a “capstone” project course
where students worked in teams of two on (mostly)
staff-sponsored projects. This course was “capped off”
with a 2-day conference where all project teams pre-
sented the projects and then the following week there
was an exhibition day open to the public that students

1The first-year programme is now somewhat different, with the
changes significantly affecting the SE programme.

2In the southern hemisphere academic years tend to align with
calendar years

could show off their projects.
This is when I got to see, for the first time, a “fin-

ished engineering student” (I am carefully not saying
said student was a “finished engineer”!) I definitely saw
something in this cohort that I had not seen in computer
science graduates. It’s hard to define. There was still
the aspect of “we’ve done some cool stuff and we use
cool technology” but there was also a clear indication
of “we’ve paid attention to what the client wants” and
“we’ve paid attention to what industry practise is.” I be-
lieve this was a sign of this “engineering mindset” that
everyone had been talking about.

This was the point at which I started to became
less inclined to dismiss the “engineering” way of do-
ing things, and began to pay more attention to how they
did things. I still would prefer that the SE programme
was a little different, but am now engineer enough to
understand that’s the reality that I have to deal with.
As I don’t know exactly what is leading to the engi-
neering mindset, I’m less inclined to throw out courses
just because I don’t see they are useful, as it may be
that those courses that provide the necessary founda-
tion (that is, maybe the “traditional” engineers are right
afterall!) I now also understand that there may be some
value to making a distinction between computer science
and software engineering.

Distinguishing on Principle

Of course attaching labels to things has its dangers.
People tend to evaluate on the basis of the label rather
than the actual thing, and labels are usually far too sim-
ple for that to be the right thing to do. People use labels
as flags to rally around, to create “us” and “them”, when
other means of solving problems may be more helpful.

But we use labels to solve a problem, and its a type
of solution we use to solve many problems — divide
and conquer. We find we can better reason about things
if we can just isolate the things we care about. If the
labels provide useful distinctions, then we may be able
to make more informed decisions.

For example, with a clear distinction between SE and
CS, departments can, rather than debate whether or not
they are doing SE or CS, can decide whether they want
to be a “computer science department with a strong SE
focus” or a “software engineering department” or ac-
cept that they really do do both, or whatever. Rather
than argue that certain topics are “clearly important”
and so “must be taught”, we can examine whether the
topics are more relevant to CS or SE and include them
(or not) on the basis that the course is intended for a
CS or SE programme, rather than trying to defend this
nebulous “clearly important” criteria.

So, if we were to make a distinction between Com-
puter Science and Software Engineering, what should it
be? A reasonable starting point is to consider the dif-
ference between Science and Engineering. There are

2



many learned discussions on this but rather than rehash
them here I will stick to something simple:

Scientists try to understand reality. Engineers
try to deal with it.3

Like all slogans it presents a simplistic view of what
is actually the case, but like all slogans it has elements
of truth about it. It captures a principle that can be
used to decide when something could be considered
“science” and when it could be considered “engineer-
ing.” The distinction is that a scientist’s primary intent
is to understand how the world works, whereas the en-
gineer’s intent is to build things that have to work in the
world. There are many things that scientists “know” (in
the sense that scientists can be said to know anything)
to be true, but knowing these things doesn’t impact ev-
eryday life. But then some engineer will realise that
that thing can be exploited to provide some service or
product that otherwise could not be done, or to provide
existing services and products more efficiently.

In many discussions I’ve seen on what Engineering
is, there has been an emphasis on building something.
However I don’t see that as necessarily a defining fea-
ture of Engineering, especially in the sense that build-
ing something means it is not Science. Lots of build-
ing goes on in science. Two examples are the Hub-
ble telescope and the Large Hadron Collider. There is
no question that these involved some serious engineer-
ing, but their entire purpose is to support fundamental
science. Just because something is being constructed,
doesn’t mean no science is occurring; the question is
what purpose the construction serves.

One possible purpose of construction is to determine
what level of understanding science has reached. One
way to test a theory is to look at what artefacts it pre-
dicts can be built, and try to build them. Scientists of-
ten call this kind of activity an “experiment”, but that
doesn’t alter the fact that something is being built. An
example here is Dolly the sheep, which represented a
demonstration of the level of understanding of cloning
(among other things!) but clearly involved the construc-
tion of an artefact (and no small amount of biological
engineering).

I accept that other interpretations of these examples
exist, but I would argue that my interpretation is not in-
consistent with what happens, and so it supports my the-
sis that it is not whether or not construction takes place
that defines engineering, but what the purpose of that
construction is. If it is to help understand reality, then it
is for science; if it results in an artefact that is intended
to provide value to someone, then it is engineering.

Of course we take take these arguments to all kinds
of extremes. For example, if I’m building something
that a scientist will use for an experiment, that is, it is
an artefact that will provide value to the scientist, isn’t
that engineering? Yes! No question. The Large Hadron

3And artists try to interpret it?

Collider and my other examples are marvels of engi-
neering. My point is that the fact that such construction
took place does not mean no science was taking place
— a point I will return to later.

Another point is that, by my definitions, those who
do research in engineering are really scientists, and that
is true. Engineering researchers operate by the same
rules as scientists with regards to gathering and provi-
sion of evidence to support their claimed understanding
of reality. The kinds of evidence they gather are much
more likely to involve construction (“I demonstrate the
validity of my ideas about inductive power transfer by
building a device that is powered by it”), and the prob-
lems they consider will be much more likely to come
from problems faced by practising engineers (“Science
tells us that we should be able to transmit electricity
through the air. Let’s see if we can make that practical
for everyday use.”) but nevertheless they are scientists
(and, mostly, engineers too).

This distinction between understanding reality ver-
sus dealing with it is useful for making decisions. A
potential student who likes to explore ideas and under-
stand how things work may be better off taking a sci-
ence degree, whereas one who likes to build things and
produce final products may be better off doing engi-
neering. In deciding what courses to offer (or rather,
which courses to not offer as there is never enough time
to teach everything that might be useful in any degree
programme), and engineering department will be more
inclined to keep courses that focus on the practical re-
alities of making things work at the expense of more
“theoretical” courses (reluctantly and with great wail-
ing and gnashing of teeth on the part of some staff).

Separating Computer Science and
Software Engineering

The principle I described above is all very good for
distinguishing Science and Engineering, but it is not
much help distinguishing Computer Science and Soft-
ware Engineering (or Chemistry and Chemical Engi-
neering for that matter). I need to identify the part of
reality that’s relevant; I use “computation”. So, refining
my earlier statement gives:

Computer Scientists try to understand com-
putation, Software Engineers try to provide
computation in a useful form.

For me, CS is about understanding the nature of com-
putation at all levels, whether it’s understanding what it
means to be computable, determining how computation
can be used to at least mimic, if not duplicate, human in-
telligence, finding the best algorithms to support ad-hoc
networks for ubiquitous computing, or how to organise
data to support fast solutions to complex queries.

SE, on the other hand, is about applying what com-
puter scientists have learned to construct products that

3



do computation that are of value to people. There are
aspects to such construction that really are not much to
do with computation but nevertheless cannot be avoided
when constructing software. For example, version con-
trol is something that those constructing software prod-
ucts need to know about but which could not really be
considered a problem relating to the nature of compu-
tation (although I’m sure there are some potentially in-
teresting mathematical problems that apply to version
control).

It is possible that the lines are more blurred for CS
and SE than for other fields (e.g., Chemistry versus
Chemical Engineering, although it would surprise me
if people in those fields argued differently). It is not un-
common for someone to start with the computation puz-
zle (e.g., what algorithms to use to support searching
a very large distributed unorganised dataset) and that
same someone to engineer a solution that makes them
and lots of other people are large amount of money.
The bit that makes the money requires a great deal of
sophisticated engineering, and I doubt that Sergey and
Larry would claim otherwise, and I also suspect that
they would not argue with an interpretation that says
that Google represents a successful (and ongoing) ex-
periment demonstrating the level of their understanding
about algorithms for doing search.

So how is making this distinction useful? It can help
determine the contents of a course. For example, a
Data Structures course for a CS degree would more rea-
sonably contain details about how to perform asymp-
totic analysis of algorithms and include, for example,
detailed discussions about the different kinds of algo-
rithms for sorting. A SE version would more reason-
ably concentrate on practical issues surrounding choice
of algorithms or data structures rather than details of
the algorithms themselves, so how the mergesort algo-
rithm works is less important than under what circum-
stances it is a better choice than quicksort. A reason-
able assignment for the CS version of an Algorithms
course would be to prove the correctness of Dijkstra’s
algorithm, whereas for the SE version might require an
implementation that works for graphs with more than
10,000 vertices. And I must emphasise, this is not to say
that a CS student wouldn’t benefit from implementing
Dijstra’s algorithm and an SE student wouldn’t bene-
fit from doing the proof, but with a limited time-budget
that doesn’t allow doing both, the distinction I make
provides criteria on which to base a decision.

A similar kind of argument can be used when de-
ciding what courses to teach. It is less likely that a
course on software architecture would appear in a CS
programme than an SE one, because software architec-
ture is not so much about how computation works as
it is about how to organise provision of computation.
That said, a software architecture course that mainly
covered the formal aspects of architecture descriptions
languages, or the modelling aspects of model-driven ar-
chitecture would not be out of place in (my vision of)

a CS programme. If someone really wanted to teach
a software architecture course that focused on develop-
ment of architectures (e.g., in the vein of Bass et al.
[1] in a CS programme, then, in my view, that is a SE
course in a CS programme. This is not bad, it’s just
what it is, and it’s better to admit that than to make
definitions of CS that allow it to be considered a CS
course, or make arguments as to why such a course is
really about understanding computation (I can imagine
what such arguments would look like but don’t see why
making them is helpful.)

To give another example, there is nothing inherent
in the contents of a standard networks course (e.g., as
taught from Tanenbaum [2]) that directly supports the
development of software. Learning the sliding window
protocol is not going to be much help in figuring out
how to build a system providing control software for a
sleep apnea treatment device, and nor is understanding
the principles of wave propagation as it applies to wire-
less networks. Of course knowing such a protocol ex-
ists, or that there are issues regarding wave propagation
that must be considered when installing a system that
uses wireless communication may help a software en-
gineering produce a better system, but given the limited
time-budget, if something has to go then those topics
would be high on my list. And I would hope that any
Software Engineering is also a good Engineer, and so
knows to bring in the relevant expertise to cover gaps in
her knowledge.

On the other hand, given the degree to which soft-
ware these days uses the Internet in some way, a “net-
works” course that concentrates more on the top of the
network protocol stack, and discusses network routing
from a network security point of view, would make
good sense for an SE programme. Of course there are
other pressures that affect course content; for example
if the only staff available to teach a networks course
are more comfortable at the bottom end of the protocol
stack then it may be better to have them stick to their
expertise.

An Engineering Mindset?

Henderson claimed that many CS graduates didn’t have
this engineering mindset. Having been convinced there
may be something to this, and having a better idea of
what to look for, I am now inclined to agree with him. I
have seen solutions produced by CS graduates that only
they can use, as it requires convoluted actions on the
part of the user to get the solution to behave. While it
is less true now than it has been in the past, it is still the
case that CS graduates do not seem to understand that
just because they can make their solution work, doesn’t
mean it is useful to their customer, and they will pro-
vide some interesting justifications for why their solu-
tion works as it does.

This is even more true looking at the organisation of

4



the software. CS graduates seem to think that follow-
ing a set of rules results in good software (“But I make
all the fields private so my design is good!”) but don’t
think of the consequences of their decisions in terms
of the effect on future “users” (e.g. testers or maintain-
ers). SE may not necessarily produce better designs, but
they seem to have a more realistic understanding of how
good they are (“Yes we made that field public because
we were in a hurry to make the deadline.” accompanied
by shuffling of feet and shamefaced looks).

Now my observations are based on a fairly small
sample so must be viewed with some suspicion! How-
ever as they are consistent with this engineering mind-
set and at least one other person (Henderson) seems to
think the same, I am much more a believer. I am cer-
tainly less inclined to restructure our BE degree with-
out considerable evidence that doing so won’t destroy
whatever it is that is creating the engineering mindset.

Of course it’s not cut and dried that one programme
does and the other does not produce the mindset, but at
least at UoA one programme tries to whereas the other
does not (and nor is it appropriate that it do so). Now
that I am alerted to the mindset thing, I see it more

And I must repeat for emphasis, I am not saying that a
“computer science” programme couldn’t produce grad-
uates with this engineering mindset, what I am saying is
that this is really just an SE programme under a differ-
ent name. I would go further and say that calling such a
programme “CS” is doing noone any favours.

How did we get here?

It is worth a moment to try to understand why a dis-
cussion like this one is even necessary. I wasn’t around
when (for example) Chemical Engineering developed
as a separate field, and it wouldn’t surprise me if simi-
lar kinds of discussions took place, but the speed of the
development of both CS and SE has probably played
a part. Whereas the study and teaching of chemistry
has been around a very long time, the large-scale use of
chemistry in an industrial or everyday setting is compar-
atively recent. While the study of computation has been
around since before useful computers existed, its or-
ganisation as a field, and particularly its teaching really
only developed along with (or even trailing) the need
for teaching how to construct software. This has meant
that understanding computation and how to make it use-
ful have never really been considered separately. As a
consequence, what I am calling SE has often been part
of the same departments that provide what I’m calling
CS, and so it is unsurprising that many people see little
to separate the two, or, that SE is a part of CS.

I should also address another related field, one that
often goes under the name of Information Systems (IS).
It was pointed out to me some time ago (by someone
who was in a CS department but did software engineer-
ing) that a significant amount of SE was in fact being

done in IS, perhaps (at least at the time) more than in
CS departments.

CS departments tend to have one of three flavours —
mathematical (because those that founded the CS de-
partment came from a mathematical background), en-
gineering (came from electrical engineering), or busi-
ness (came from a business school). In some cases,
the separation has not actually occurred (or been un-
done), so that we have departments of Mathematics and
Computer Science, Electrical Engineering and Com-
puter Science, Computer and Information Systems, and
the like. My guess is that in the cases where separation
has occurred in the business flavour, what has stayed in
the business school has become IS.

Of the three flavours of CS, it is likely that it is the
business flavour that has been more interested in what
can be done with the result, than what is possible, so it is
perhaps unsurprising that there has been more interest
in SE in IS departments. However SE as a field has
developed to more than just business applications and
so it seems to be becoming more a feature of CS than it
has in the past.

As an aside, I know of at least one university in the
world with separate computer science and software en-
gineering departments (both in the same College, and
with the division roughly along the lines I am using,
as far as I can tell), and one university with separate
CS (Faculty of Science) and InformationScience (in the
Faculty of Commerce) departments, that have a similar
division.

If it ain’t broke, don’t fix it

As I noted at the beginning, I have had a particular rea-
son to think about what the difference is between CS
and SE, so in that sense there is a problem. However,
perhaps what I am proposing will create more problems
than it solves.

I’ve already noted the problems with labels — any-
one who uses what I’ve written here to support some
agenda based solely on the labels “computer science”
and “software engineer” without providing my underly-
ing philosophy is misrepresenting my argument. There
is nothing I can do about such people so I won’t try.

If following my suggestion leads to bad decisions,
then that is a problem. However I do not see how it
could lead to worse decisions than the current situation
(I may be biased in thinking this!). The current situa-
tion is that there are arguments over what the contents
of courses should be, what courses should be in pro-
grammes, and what skillsets graduates should have.

For example, I have seen any number of programmes
that claim to be appropriate for anyone considering a
career in software engineering. Given that they all pro-
vide quite different skillsets it seems hard to believe that
they can all be right, unless “software engineering” is
interpreted as “writes code,” because the only common

5



feature of these programmes is that their graduates have
had to write code during their study.

As another example, I have seen any number of dis-
cussions as to what topics should be taught in a course,
with well-reasoned (and very passionate) arguments
presented on both sides of the debate. It wasn’t that
the participants were always unaware that they were ar-
guing over CS vs SE interpretations of the course (al-
though that was sometimes the case), but that the dif-
ferent interpretations were declared to be

One specific example is accurately portraying the
skillset of graduates. Potential employers often com-
plain that they don’t know (or at least aren’t happy) with
the skillsets of those that they have hired in the past. In
least in some programmes in the world, CS graduates
can have lots of algorithm development, logic, discrete
mathematics, network design, relationship databases
(theory, not practise), but very little writing of code, and
no consideration of what is needed to determine what
the systems is supposed to do or what customers care
about (or even that customers exist). Employers expect-
ing such graduates to be prototypical software engineers
are going to be disappointed.

Even graduates who have taken those courses that
traditionally have lots of code development, such as
graphics, operating systems, artificial intelligence, and
so on, have not had to think about the practical issues
of producing software that someone else will use. The
courses they have doing the coding for have not at all
been concerned with principles relating to how to effi-
ciently create effective software. So, while such gradu-
ates may be good at producing code that does what they
want, they don’t know (or even care) what’s involved in
producing code that does what someone else wants. It
may be this attitude that most upsets employers!

This issue applies to other programmes too. I have
heard claims by some people that their programme (not
CS, SE, or IS) produces graduates suitable for SE po-
sitions. These claims can be evaluated by determining
to what degree the graduates have been taught to pro-
vide useful computing (as opposed to just writing code
as part of their degree).

According to the principle I am espousing, any pro-
gramme that claims to provide some qualification for
software engineering must contain courses where the
main principles being taught are about how to effi-
ciently create good software.

What makes an Engineer

I have been careful to not claim that graduates of soft-
ware engineering programmes are engineers. This is
not true for other engineering specialisations. Anyone
who wants to be a certified professional engineer (or
whatever the phrase is in your legal jurisdiction) must
not only complete a university programme certified by
the appropriate engineering body, but must also have

some amount of actual engineering experience. Engi-
neering firms know they are not hiring “engineers”, but
merely “graduates”, and it is their job to turn the gradu-
ates into engineers, and there are generally various pro-
grammes within companies or supplied by the particu-
lar specialisation to support this.

The software industry almost entirely fails to take
this view. The industry expects to get graduates that
are “useful” on day one, and complain about how use-
less programmes are because this is not the case. Well
that’s something of an exaggeration. There are plenty of
companies that have some sort of training programme
for new hires. However I get the impression that these
programmes are more intended to train the hires in how
the company does things, rather than turning prototypi-
cal engineers into real engineers. For example, in some
cases even those with some experience have to do the
programmes, because they have to learn the Company
Way.

Certification

This brings me to the question of certification of soft-
ware engineers. Other engineering specialisations have
various forms of certification. As noted above, their
university programmes must be certified and the gradu-
ates must complete other requirements and go through
a formal certification with the appropriate engineering
body.

Arguments have been presented that such certifica-
tion is not appropriate for software development be-
cause we don’t know that people with such certification
can be guaranteed to produce working software. Such
arguments miss the point as to what certification means.
The only guarantee that certification might provide is
that, the person being certified has, according to the ev-
idence presented, been exposed to the current best prac-
tise of some specialisation of engineering. Thus, when
that person makes an engineering decision, he or she
is likely to make the same decision as other similarly-
certified people. If the decision turns out to be wrong,
and it can be demonstrated that it isnot what other
similarly-certified people would have made, then that
person is liable.

I know I’m am drastically simplifying a very com-
plex concept but I believe that what I have described
above is the essence of certification. If I am correct
then certification of software engineers is a reasonable
idea (and in fact the UoA programme is certified by the
New Zealand signatory of the Washington Accord).

Are we there yet?

It’s possible that there is synergy created in keeping
what I have been calling CS and SE together that would
be lost (and be missed) if the separation I have argued
for takes place, I really don’t know. But, putting on

6



my Engineer’s hat, there are problems that need to be
solved in the real world — how to decide what courses
to teach, how to decide what the content of the courses
are, how to present what graduates have learned to po-
tential employers, and, if your reality includes separate
qualifications in SE and CS, the need to explain the dif-
ference. These problems need to be solved now, we
can’t wait for the perfect solution (which any engineer
knows doesn’t exist). What I have presented may not
be the best answer, but it is one that I think is good in
an engineering sense — it provides a good enough so-
lution that is of value to people right now. I hope you
think so too.

Acknowledgements

This essay was written during 2008 while I was on Re-
search and Study leave. It actually started while on a
train going through southern Sweden, while I was a vis-
iting researcher to the BESQ project at Blekinge Insti-
tute of Technology, Ronneby, Sweden, whose support I
gratefully acknowledge.

I take full blame for everything written here but don’t
claim full credit. Many of the ideas I’ve presented are
not new, and certainly not due to me. They come out of
many discussions I’ve read or participated in, especially
since being involved in the UoA programme. I can’t
possibly list (or even remember) everyone who has said
something in my presence that I have incorporated into
my thinking, but I thank you all. One person I will men-
tion is David Parnas, whose response to a question at
ASWEC 2005 crystalised my thinking on this subject,
and was really the beginning to this essay. He said it
better (and shorter!) than me, but those who weren’t
there will just have to make do with this.

References

[1] Len Bass, Paul Clements, and Rick Kazman.Soft-
ware Architecture in Practice. Addison-Wesley, 2
edition, April 2003.

[2] Andrew S. Tanenbaum.Computer Networks. Pren-
tice Hall, 4 edition, 2003.

[3] Will Tracz, editor. SIGSOFT Softw. Eng. Notes,
28(6). ACM, New York, NY, USA, November
2003. William Griswold’s letter to the editor, Pe-
ter Henderson’s reply.

7


