@ COPYRIGHT NOTICE 0

© 1993 IEEE. Personal use of this material is permitted. However, permission
to reprint/republish this material for advertising or promotional purposes or for
creating new collective works for resale or redistribution to servers or lists, or to
reuse any copyrighted component of this work in other works must be obtained
from the IEEE.

This material is presented to ensure timely dissemination of scholarly and
technical work. Copyright and all rights therein are retained by authors or by
other copyright holders. All persons copying this information are expected to
adhere to the terms and constraints invoked by each author's copyright. In most
cases, these works may not be reposted without the explicit permission of the
copyright holder.

Optimizing Carry Lookahead Adders for Semicustom CMOS

C. D. Thomborson

Computer Science Department
University of Minnesota, Duluth
Duluth, MN 55812

Abstract

We present a practical method for constructing op-
timal carry lookahead adders, of width n < 84. We
formulate this design problem as a two-dimensional
dynamic program, in which optimization is performed
with respect to both adder size and latency. Our adders
are fast, modularly built, relatively easy to lay out, and
fully exploit the timing characteristics of CMOS stan-
dard cells or gate arrays.

1 Introduction

Our work is based on Wei and Thomborson’s sys-
tematic method of designing optimal VLSI carry-
lookahead adders, using dynamic programming [1].
Recently, Chan, Oklobdzija, Schlag and Thomborson
(COST) have applied the Wei-Thomborson method
to the problem of optimizing carry-skip adders and
carry-lookahead adders with variable block widths [2].

In this paper, we show how to find optima in a
somewhat narrower class of adders than those consid-
ered by COST. Our adders are carry-lookahead struc-
tures in which the block width is two. However, since
we allow the use of NAND-OR and AND-NOR gates
in our circuits, and since our timing models are more
exact than that used by COST, our adders may out-
perform the COST adders by 6% in speed. The evi-
dence for this claim is presented in Section 5; Sections
2, 3, and 4 describe our class of adders, our timing
models, and our optimization algorithm, respectively.

2 Carry lookahead adders of block-
width 2

As shown in Figure 1, we decompose the problem
of binary addition into three stages: the preproces-
sor, the carry lookahead circuitry, and the postpro-

1066-1396/93 $3.00 © 1993 IEEE

119

Y. Sun

Computer Science Department
University of Minnesota, Duluth
Duluth, MN 55812

Sn-1 So
4 O
postprocessor
t . . . 1
look-ahead
t . - . 1
preprocessor
H I
Gp-1,bn-1 ag,bo

Figure 1: Different component blocks in a lookahead.

cessor. The preprocessor is composed of two gates
per pair of input bits (a;, b;), computing the “prop-
agate” signal p; = a; + b; and the “generate” signal
gi = a;b;. The lookahead circuitry computes carry-in
bits ¢;—1 as a function of the propagate and gener-
ate signals from lower-order input pairs (a;, b;) for
0 < j < i. The postprocessor computes the sum bits
5; = a;®bi®ci—1 = Ti(ai+bi+ci—1)+aibici_i. Insome
applications, the postprocessor would also compute
the overflow bit 0 = ch_1 ® cne2 = Sp-1@n-1bn-1 +
Sn—1Gpn_1bn—1. In our formulation, the carry-in bit is
¢_1, the least-significant input bits are (aq, bo), and
the most-significant input bits are (a,-1, bp_1).

Since both preprocessor and postprocessor are very
simple 1-level or 2-level circuits, we focus our opti-
mization efforts on the lookahead circuitry. In this
paper, we use the standard technique of computing
c;_1 with a binary tree of operations o on propagate
and generate bits [4]:

(s, 95) o (pj, 95) = (pipj, 9i05 + 95) (1)

and

(po...pi, (2)
gi + pigi—1 + PiPi-19i-2
+...+ PiPi—1...P1PoC—1)

(po,go) 0 -...0 (pi, ;)

(po, 90) 00 (pi, gi) = (po...pi, ;) (3)

Note that o is not commutative but it is associative.
Also note that we consider only computations using
the binary operator o. By contrast, COST have con-
structed optimal adders with k-ary operators o for
2<k<A4.

To construct an optimal adder using equations (1)~
(3), we must make three types of decisions.

e What “low-level” circuit design should we use
when computing the o operator at each node in
the binary tree for ¢;_1?

e What “shape” should the binary tree take (i.e.
should it be a perfectly balanced tree or should it
have some more complicated form)?

e How should we “share” intermediate results

among the similar computations for the various
9
;7

We answer the first two of these questions by defer-
ring them, for as long as possible, in our exploration
of the design space. That is, we design several “low-
level” circuits, and let our optimization routine decide
which is the most appropriate for each computation of
o in an adder of some particular width n. Our opti-
mization routine also finds the most appropriate shape
for the binary tree.

We handle third implementation decision in the
same way as Wei and Thomborson, using buffers to
broadcast propagate and generate bits. We must, of
course, choose an appropriately-sized buffer for this
job; and, once again, we defer the problem of choice
to our optimization routine.

To summarize, we design lookahead circuits by bi-
nary decomposition, as shown in Figure 2. The black
boxes in this figure compute the o function on the bits
coming from below, producing (p, g) bits on their up-
per output lines; the white boxes are buffers. Black
boxes have “pass-through” wires connecting their left-
and right-hand terminals. Finally, a few white boxes
have (possibly large) buffers to amplify the signals
coming from below, before feeding them to the left.
There is one such white box shown in Figure 2, near
the middle of the diagram.

120

Am

An—m

Figure 2: Block A,, with its subadders A4,, and A,_,.

We design our “black cells” from the inverting logic
available in semicustom design books. The p function
is thus a 2-NOR or a 2-NAND; the g function is thus
a 3-input OR-NAND or AND-NOR. Such gates are
included in most semicustom design books.

Some of our “white cells” are inverting low-power
buffers, used to maintain the correct signal polar-
ity. Some white cells are optimized to be just pass-
throughs. Finally, a few are high-power buffers, either
inverting or non-inverting, broadcasting signals of the
correct polarity to a row of black cells.

3 Delay model

We use two timing models in this paper. To com-
pare our results to COST, we use their model:

tna.ndm“ = tin +5-FO+20-FI
tnorew = tin +10-FO +20 - FI

tandoue = tin +5- FO+20-FI 417 (6)
tores = tin +5-FO+20-FI+17 (7)
tinve, = tin +5-FO + 12 (8)
tbufferous = tin +5-FO +12 (9)

The integer values of the COST delay units can
be transformed into nanoseconds, given the delay ¢ of
an inverter under unit load in any particular CMOS
techology. For example, in a 1.5um CMOS technology
in which an inverter has delay ¢ = 0.3 nsec, one COST
delay unit is equivalent to ¢/12 = 0.025 nsec.

These equations have been obtained by “fitting
data from an ASIC-CMOS standard cell library [5).”

Gate 1D Unit-load | Incremental
delay delay

(nsec) (nsec/gate)
2-NAND | X001 1.365 0.540
2-NOR | X004 1.100 0.605
2-AND | X930 2.145 0.350
2-OR | X936 2.330 0.365
INVERTER | X912 0.530 0.115
BUFFER | X914 2.155 0.145
AND-NOR | X945 1.820 0.680
1.775 0.500
OR-NAND | X939 2.535 0.765
2.075 0.509

Table 1: Gates with identifications, propagation de-
lays and incremental delays.

In our work, the NAND, NOR, AND and OR gates
have fan-in FI = 2.

The COST model is a good approximation, but we
believe that better adders can be obtained by using the
published timing figures for the particular semicustom
VLSI design process under consideration. For exam-
ple, National Semiconductor’s 2um standard cell data
book [6] gives the timing data of Table 1, if we take
the arithmetic average of the worst-case delays for the
HL and the LH transitions. Note that the asymmetric
AND-NOR and OR-NAND gates have one “fast” in-
put and two “slower” ones. Also note that, for simplic-
ity, we have listed only the lowest-power gate of each
functional type. Our optimization routine is given the
timing parameters for the higher-power versions, as
well, allowing it to select an optimally “sized” gate in
each instance.

4 Algorithm description

We use dynamic programming to search the huge
space of possible adder designs. We begin the process
by enumerating a few “good” 1- and 2-bit adders. We
then construct all “good” 3-bit adders using the com-
position rule of Figure 2. Note that we have several
degrees of freedom here: we can havem = lorm = 2,
we have to choose a signal polarity for the outputs of
A, and we have to choose appropriate implementa-
tions of black boxes and the broadcasting white box.

In general, our strategy is to construct all possible
k-bit adders by enumerating over all m, over all good
(k—m)-bit and m-bit adders, and over all availableim-

[adder width [COST adder | our adder [ratio ||

16 489 525 1.07
32 627 702 1.12
48 716 814 1.14
64 797 924 1.16
84 856 1029 1.20

Table 2: Delays of optimal-time adders for various
adder widths, using the timing model of COST.

plementations of black boxes and broadcasting white
boxes. We keep two lists of twenty of the “best” k-bit
adders, one for each output polarity, for use when con-
structing larger adders. In the context of this paper,
“best” means that an adder has a faster gx_; output
than any k-bit adder that is either smaller or has a
slower px—; output.

If a twenty-first “best” adder is discovered, we ran-
domly select a candidate for deletion, in such a way
that each adder has equal likelihood of appearing in
the final list. This “random pruning” heuristic is
novel. We believe it to be a valuable addition to the
list of pruning techniques described in the COST pa-

per [2].

5 Results and analysis

We developed a C-language computer program to
perform the optimization described in the previous
section. Our first set of results, shown in Table 2,
shows that our adders are 7% to 20% slower than those
of COST [2], if we are not allowed to use NAND-OR
or NOR-AND gates. This is not a surprising find-
ing, given that we are optimizing over a smaller design
space. Clearly, the use of variable-block widths in the
COST adder is a good idea, especially for large adder
widths.

Our second set of results, in Table 3, shows that
significantly faster adders can be built from 2um Na-
tional Semiconductor standard cells, if one takes ad-
vantage of the 3-input AND-NOR and NOR-AND
cells. Such cells are not included in the COST tim-
ing model, perhaps because it is not at all clear how
one might extend their functional definition to large
fanin.

Figure 3 shows a time-optimal 48-bit adder pro-
duced by our program, for the National Semiconduc-
tor standard cell timing data, using NAND-OR and
NOR-AND gates in the black cells. The size of the

adder width Restricted Unrestricted | ratio
design (nsec) | design (nsec)

16 19.67 13.74 0.70

32 24.70 18.54 0.75

48 29.08 21.72 0.75

64 32.51 24.44 0.75

84 35.86 27.94 0.78

Table 3: Delays of our adders constructed from 2um
National Semiconductor standard cells, for various
adder widths. Restricted designs do not use AND-
NOR or OR-NAND cells.

XL I0OCY

il |

Figure 3: Layout of the optimal-time 48-bit adder with
black cells using AND-NOR and OR-NAND gates.

black dots is an indication of the strength of the buffer
at that position.

Judging from the timing ratios of Table 3, we see
that an optimal width-84 carry-lookahead adder with
NAND-OR and OR-NAND gates is 1/0.78 — 1 = 28%
faster than one built only from 2-input AND, OR,
NAND, and NOR gates, buffers, and inverters. By
contrast, Table 2 shows only a 20% speedup in a
width-84 adder built of 2-, 3- and 4-input AND, OR,
NAND, and NOR gates, in comparison to an optimal
adder built of 2-input logic gates.

We tentatively conclude that the use of NOR-AND
and OR-NAND gates is of greater benefit to the de-
sign of fast adders than is the use of large-fanin gates.
Quantitatively, our best estimate is that our 84-input
adder would have worst-case delay 1.20 x 0.78 = 0.94
times that of the 84-bit COST adder, which is to say
that we expect to see approximately a 6% speedup
over that structure, in a National Semiconductor stan-
dard cell implementation. In the near future, we in-
tend to use a Mentor Graphics design system to per-
form a timing analysis on our adder, and the COST
adder, for various technologies, to see what speedups
are predicted on this “level playing field.”

122

Acknowledgements

Renato Milanesi wrote an early version of our adder
optimization routines [3]. The optimal adders found
by Renato’s implementation are exactly as fast as the
adders found by our current implementation, giving
us confidence in the accuracy of both programs.

References

[1] B. W. Y. Wei and C. D. Thomborson, Area-time
Optimal Design, IEEE Transactions on Comput-
ers, Vol.39, No.5, May 1990.

P. K. Chan, V. G. Oklobdzija, M. D. F. Schlag and
C. D. Thomborson, Delay Optimization of Carry
Skip Adders and Block Carry Lookahead Adders
Using Multidimensional Dynamic Programming,
IEEE Transactions on Computers, Vol.41, No.8,
August 1992.

(2]

R. C. Milanesi, Optimal Look-ahead Adders, M.S.
Thesis, University of Minnesota, Duluth, 1991.

(3]

R. E. Ladner and M. J. Fischer, Parallel Prefiz
Computation, Journal of ACM, October 1980.

4]

V. G. Oklobdzija and E. R. Barnes, On Imple-
menting Addition in VLSI Technology, Journal of
Parallel and Distributed Computing, Vol.5, 1988.

National Semiconductor Corporation, ASIC De-
sign Manual, CMOS Gate Arrays, CMOS Stan-
dard Cells, 1987 Edition.

[6

—

