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Abstract

We identify three types of attack on the intellectual property contained in software, and three cor-

responding technical defenses. A potent defense against reverse engineering is obfuscation, a process

that renders software unintelligible but still functional. A defense against software piracy is water-

marking, a process that makes it possible to determine the origin of software. A defense against

tampering is tamper-proofing, so that unauthorized modifications to software (for example to remove

a watermark) will result in non-functional code. We briefly survey the available technology for each

type of defense.
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Figure 1: Attacks by malicious clients and hosts.
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1 Background – Malicious Clients vs. Malicious Hosts

Until recently, most computer security research was concerned with protecting the integrity of a benign

host and its data from attacks, for example from malicious client programs (Figure 1(a)). This assumption

of a benign host is present in Neumann’s influential taxonomy of “computer-related risks,” in which the job

of a security expert is to design and administer computer systems that will fulfill “certain stringent security

requirements most of the time” [64, p. 4]. Other security experts express similar worldviews, sometimes

by choosing a title such as “Principles and Practices for Securing IT Systems” [82]; sometimes by making

explicit definitions that presuppose benign hosts “... a security flaw is a part of a program that can cause

the system to violate its security properties” [48]; sometimes in an explanation “... vulnerabilities to the

system ... could be exploited to provide unauthorized access or use.” [42, p. 51]; and sometimes in a

statement of purpose “[we take] the viewpoint of the system owner.” [52].

The benign-host worldview is the basis of the Java security model, which is designed to protect a host

from attacks by a potentially malicious downloaded applet or a virus-infested installed application. These

attacks usually take the form of destroying or otherwise compromising local data on the host machine.

To defend itself and its data against a malicious client, a host will typically restrict the actions that

the client is allowed to perform. In the Java security model, the host uses bytecode verification to ensure

the type safety of the untrusted client. Additionally, untrusted code (such as applets) is prevented from

performing certain operations, such as writing to the local file system. A similar technique is Software

Fault Isolation [53,90,91], which modifies the client code so that it is unable to write outside its designated

area (the “sandbox”).
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A recent surge of interest in “mobile agent” systems has caused researchers to focus attention on a

fundamentally different view of security [17,88]. See Figure 1(b), illustrating a benign client code being

threatened by the host on which it has been downloaded or installed. A “malicious host attack” typically

takes the form of intellectual property violations. The client code may contain trade secrets or copyrighted

material that, should the integrity of the client be violated, will incur financial losses to the owner of the

client. We will next consider three malicious-host attack scenarios.

1.1 Malicious host attacks

Software piracy, the illegal copying and resale of applications, is a 12 billion dollar per year industry [67].

Piracy is therefore a major concern for anyone who sells software. In the early days of the personal

computer revolution, software developers experimented vigorously with various forms of technical pro-

tection [34,37,56–59,79,96] against illegal copying. Some early copy protection schemes have been aban-

doned, since they were highly annoying to honest users who could not even make backup copies of legally

purchased software, or who lost the hardware “dongle” required to activate it. A number of dongle manu-

facturers are still in business; one is frank enough to state “... the software interrogating the dongle [may

be] the weakest part of the system... Any dongle manufacturer who claims that their system is unbeatable

is lying.” [83].

Software piracy is likely to continue so long as it continues to be easy, delivers immediate tangible or

intangible rewards to the pirate, and is socially acceptable [51]. Our goal in this paper is to make piracy

more difficult. We note that software piracy is socially acceptable in settings that encourage a belief in

insiders’ entitlement [72], price discrimination [33], “cooperation is more important than copyright” [81],

or traditional Confucian ethics [16] – but also see [85].

Many software developers also worry about their applications being reverse engineered [4,55,76,78,

87]. Several court cases have been tried in which a valuable piece of code was extracted from an appli-

cation and incorporated into a competitor’s code. Such threats have recently become more of a concern

since, more and more, programs are distributed in easily decompilable formats rather than native binary

code [68,89]. Important examples include the Java class file format and ANDF [54].
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Figure 2: Attacks against software intellectual property.

(a) Software piracy attack. Bob makes illegal copies of Alice’s program P and resells them.
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(b) Malicious reverse engineering attack. Bob extracts a module M from Alice’s program P
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(c) Tampering attack. Bob either extracts the media content from the digital container C or
modifies C so that he has to pay less for playing the media.
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A related threat is software tampering. Many mobile agents and e-commerce application programs

must, by their very nature, contain encryption keys or other secret information. Pirates who are able to

extract, modify, or otherwise tamper with this information can incur significant financial losses to the

intellectual property owner.

These three types of attack (software piracy, malicious reverse engineering, and tampering) are illus-

trated in Figure 2:

� In Figure 2(a) Bob makes copies of an application he has legally purchased from Alice, and illegally
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sells them to unsuspecting customers.

� In Figure 2(b) Bob decompiles and reverse engineers an application he has bought from Alice in

order to reuse one of her modules in his own program.

� In Figure 2(c), finally, Bob receives a “digital container” [27,43,44,98] (also known as Cryptolope

and DigiBox) from Alice, consisting of some digital media content as well as code that transfers

a certain amount of electronic money to Alice’s account whenever the media is played. Bob can

attempt to tamper with the digital container either to modify the amount that he has to pay or to

extract the media content itself. In the latter case, Bob can continue to enjoy the content for free or

even resell it to a third party.

1.2 Defenses against malicious host attacks

It should be noted that it is much more difficult to defend a client than it is to defend a host. To defend

a host against a malicious client, all that is needed is to restrict the actions that the client is allowed to

perform.

Unfortunately, no such defense is available to protect a client against a host attack. Once the client

code resides on the host machine, the host can make use of any conceivable technique to extract sensitive

data from the client, or to otherwise violate its integrity. The only limiting factors are the computational

resources the host can expend on analyzing the client code.

While it is generally believed that complete protection of client code is an unattainable goal [7], recent

results (by ourselves and others) have shown that some degree of protection can be achieved. Recently,

software watermarking [22,28,35,60], tamper-proofing [5,6,38,77], and obfuscation [20,23–25,38,49,65,

92] have emerged as feasible technical means for the intellectual property protection of software. (Other

promising techniques, such as traitor tracing [14], secret sharing [8], reference states [39] and secure

evaluation [2,77] are still in the hands of theorists.) Obfuscation attempts to transform a program into an

equivalent one that is harder to reverse engineer. Tamper-proofing causes a program to malfunction when

it detects that it has been modified. Software watermarking embeds a copyright notice in the software code

to allow the owners of the software to assert their intellectual property rights. Software fingerprinting is
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a similar technique that embeds a unique customer identification number into each distributed copy of an

application in order to facilitate the tracking and prosecution of copyright violators.

These three types of defenses (software watermarking, obfuscation, and tamper-proofing) are illus-

trated in Figure 3:

� In Figure 3(a) Alice watermarks her program P . At 1
 the watermark W is incorporated into the

original program, using a secret key K. At 2
 Bob steals a copy of P 0 and Charles extracts its

watermark using K to show that P 0 is owned by Alice.

� In Figure 3(b), Alice attempts to protect a secret S stored in her program by adding special tamper-

proofing code. This code is able to detect if Bob has tampered with S, and, if that is the case, the

code will make the program fail.

� In Figure 3(c), Alice protects her program from reverse engineering by obfuscating it. The ob-

fuscating transformations make the program harder for Bob to understand, while maintaining its

semantics.

It should be noted that there is a vast body of practical research and development on hardware assisted

software protection. The available art for hardware-assisted security is based on memory devices such as

floppy disks [31], CD-ROMs [97], modern removable storage media (hard disk, recordable DVD, secure

digital memory card) and video playback units [1]; secure processors [50]; smart cards [10]; and hardware

dongles [15,58,83].1 Many of these schemes are trade secrets, although some are the subject of patent

disclosures. They have received little attention in the academic literature. Some hardware based schemes

— in particular, dongles — have had some commercial success, especially for high-end, low quantity

software. In general, however, they have a poor reputation among users who find them cumbersome and

intrusive. We will not consider hardware based software protection methods further in this paper.

We note, in passing, that software piracy, reverse engineering and tampering can be discussed from the

traditional “benign-host worldview” of computer security, in which every computer system is (or should

be) designed to provide security. In this worldview, a software pirate is defined as anyone who subverts
1A dongle is a device sold with a software application to protect against piracy. The device attaches to a computer’s I/O

port and is queried by the application at regular intervals. If the dongle does not respond, the application will refuse to run.
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Figure 3: Defenses against malicious host attacks.

(a) Software watermarking. Alice watermarks her program using a secret key K.
Charles extracts the watermark using the same key.
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(b) Tamperproofing. Alice protects a secret S by adding tamper-proofing code T
that makes the program fail if S has been tampered with.
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(c) Obfuscation. Alice transforms her program into an equivalent one (using obfus-
cating transformations T1 � � �T3) to prevent Bob from reverse engineering it.

T1 T2 T3

Alice Bob

P P 0

system security for the purpose of stealing intellectual property in software on that system. However,

this worldview begs the question of “who defines the security objectives for a system?”, a question which

is especially vexing for any system with multiple designers and administrators such as the world-wide

web. Accordingly, in this paper we avoid the vexed question by dismissing the traditional underlying

assumption of a “benign host”. Instead we assume that any host may be malicious, as we analyze computer

security in this paper from the viewpoint of the owner of the client software. We leave it to others to

commence the study of computer security from the diverse viewpoints of a representative range of users

of an open system. We expect that such user-centric security analysis will be a challenging and important

field of study, if only because some users will surely disagree with some of the security design objectives

of any (possibly-compromised) software client running on any possibly-hostile host.
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2 Obfuscation

Security through obscurity has long been viewed with disdain in the security and cryptography commu-

nities. There are, however, situations where higher levels of protection than that achievable through

obscurity at the present time does not seem achievable. For example, the media player in Figure 2(c)

accepts digital containers which hold, among other things: the media itself (encrypted), (partial) crypto-

graphic keys, and a set of business rules describing if the consumer may play the media, resell it, store it,

etc. The media player itself also contains partial cryptographic keys as well as algorithms for decoding,

decrypting, and playing the media. To prevent illegal use of the contents, these algorithms and keys must

be protected from an adversary. If the media player is implemented in software this means preventing

an attacker from reverse engineering the security sensitive part of the code. As far as we know, there do

not exist any techniques for preventing attacks by reverse engineering stronger than what is afforded by

obscuring the purpose of the code.

In [25] and [24] we explore new approaches to code obfuscation, based on the following statement of

the code obfuscation problem.

Given a set of obfuscating transformations T = fT1; � � � ; Tng, and a program P consisting

of source code objects (classes, methods, statements, etc.) fS1; � � � ;Skg, find a new program

P 0
= f� � � ; S 0

j
= Ti(Sj); � � �g such that:

� P 0 has the same observable behavior as P , i.e. the transformations are semantics-

preserving;

� The obscurity of P 0 maximized, i.e. understanding and reverse engineering P 0 will be

strictly more time-consuming than understanding and reverse engineering P ;

� The resilience of each transformation Ti(Sj) is maximized, i.e. it will either be difficult

to construct an automatic tool to undo the transformations, or executing such a tool will

be extremely time-consuming;

� The stealth of each transformation Ti(Sj) is maximized, i.e. the statistical properties of

S 0

j
are similar to those of Sj;
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� The cost (the execution time/space penalty incurred by the transformations) of P 0 is

minimized.

Code obfuscation is very similar to code optimization, except that with obfuscation we are maximizing

obscurity while minimizing execution time, whereas with optimization we are just minimizing execution

time.

An upper bound on the time needed by an adversary to reverse engineer a program P is the time

needed to do a black-box study of P (i.e. study the input-output relations of P ) plus the time needed to

encode the discovered relations in a new program. Most malicious reverse engineers, however, will also

do a white-box study of P , i.e. they will de-compile and examine the code itself. The ultimate goal of

code obfuscation is to construct P 0 (an obfuscated version of P ) for which a white-box study will yield

no useful information. In other words, we would like the actual time needed to reverse engineer P 0 to

approach the upper bound needed to reverse engineer P .

2.1 Lexical Transformations

The advent of Java, whose strongly typed bytecode and architecture-neutral class files make programs

easy to decompile, has left programmers scurrying for ways to protect their intellectual property. On

our website [21], we list a number of “Java obfuscation tools,” most of which modify only the lexical

structure of the program. Typically, they do nothing more than to scramble identifiers. Such lexical

transforms will surely be annoying to a reverse engineer, and therefore will prevent some thievery of

intellectual property in software. However any determined reverse engineer will be able to read past the

scrambling of identifiers in order to discover what the code is really doing.

2.2 Control Transformations

In [25] we introduced several control-altering transformations. These control transformations rely on the

existence of opaque predicates. A predicate P is opaque if its outcome is known at obfuscation time, but

is difficult for the deobfuscator to deduce. We write P F (P T ) if P always evaluates to False (True),

and P ? if P may sometimes evaluate to True and sometimes to False.
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Figure 4: Control transformation by opaque predicate insertion.
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Given such opaque predicates it is possible to construct obfuscating transformations that break up the

flow-of-control of a procedure. In Figure 4(a) we split up the block pA;Bq by inserting an opaquely true

predicate P T which makes it appear as if B is only executed sometimes. In Figure 4(b), B is split into

two different obfuscated versions B and B 0. The opaque predicate P ? selects either of them at runtime. In

Figure 4(c), finally, P T always selects B over BBug, a buggy version of B.

There are many control transformations similar to those in Figure 4, some of which are discussed

in [25]. The resilience of these transformations is directly related to the resilience of the opaque predicates

on which they rely. It is therefore essential that we are able to manufacture strong opaque predicates.

Equally important is the cost and stealth of opaque predicates. An introduced predicate that differs

wildly from what is in the original program will be unacceptable, since it will be easy for a reverse engineer

to detect. Similarly, a predicate is unacceptable if it introduces excessive computational overhead.

Since we expect most deobfuscators to employ various static analysis techniques, it seems natural

to base the construction of opaque predicates on problems which these techniques cannot handle well.

In particular, precise static analysis of pointer-based structures and parallel regions is known to be in-

tractable [29,41,70]. In [25] we discuss two general methods for generating resilient and cheap opaque

predicates that are based on the intractability of these static analysis problems.

Figure 5 shows a simple example of how strong opaque predicates can be constructed based on the

intractability of alias analysis. The basic idea is to extend the program to be obfuscated with code that

builds a set of complex dynamic structures. A number of global pointers reference nodes within these
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Figure 5: Strong opaque predicates based on the intractability of alias analysis.
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structures. The introduced code will occasionally update the structures (modifying pointers, adding nodes,

splitting and merging structures, etc), but will maintain certain invariants, such as “pointers p and q will

never refer to the same heap location”, or “there may be a path from pointer p to pointer q”, etc. These

invariants are then used to manufacture opaque predicates as needed.

For example, in Figure 5(a) through (c) we can ask the opaque query pif (f==g)? then � � �q,

since the two pointers f and g move around in the same structure and could possibly alias each other.

Then, after the one component in (c) is split into two components in (d), we can ask the query pif

(f==g)F then � � �q, since f and g now move around in different structures. Finally, in Figure 5(f),

the two components have been merged, and we can again ask the query pif (f==g)? then � � �q.

It should be noted that although theoretical studies have shown alias analysis to be hard, it is to the

best of our knowledge unknown whether a random instance of aliasing is hard. However, many years

of experience from optimizing compilers have shown us that it is very difficult to construct fast and

precise alias analyzers. We also have a good understanding where such analyzers fail: they typically

have problems with deeply nested recursive structures and with destructive operations (such as Split,

Merge, Delete above). We therefore conjecture that carefully constructed instances of aliasing will be
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Figure 6: A data transformation that splits boolean variables.

(a)

g(V ) f(p; q)

p q V 2p+ q

0 0 False 0
0 1 True 1
1 0 True 2
1 1 False 3

(b)

A
AND[A,B] 0 1 2 3

0 3 0 0 0
B 1 3 1 2 3

2 0 2 1 3
3 3 0 0 3

(c)

(1) bool A,B,C;
(2) B = False;
(3) C = False;
(4) C = A & B;
(5) C = A & B;
(6) if (A) � � �;
(7) if (B) � � �;

T
)

(1’) short a1,a2,b1,b2,c1,c2;
(2’) b1=0; b2=0;
(3’) c1=1; c2=1;
(4’) x=AND[2*a1+a2,2*b1+b2]; c1=x/2; c2=x%2;
(5’) c1=(a1 ˆ a2) & (b1 ˆ b2); c2=0;
(6’) x=2*a1+a2; if ((x==1) || (x==2)) � � �;
(7’) if (b1 ˆ b2) � � �;

a good source of opaque predicates. It is an open problem whether alias analysis will eventually be shown

to be average case complete [94].

2.3 Data Transformations

In [24] we present several transformations that obfuscate data structures. As an example, consider the

Variable Splitting transformation in Figure 6. In this example a boolean variable V is split into two integer

variables p and q, using the new representation shown in Figure 6(a). Given this new representation, we

create new implementations for the built-in boolean operations. Only the implementation of & is shown

in Figure 6(b).

In Figure 6(c) we show the result of splitting three boolean variables A, B, and C into short variables

a1 and a2, b1 and b2, and c1 and c2, respectively. An interesting aspect of our chosen representation

is that there are several possible ways to compute the same boolean expression. Statements (2’) and (3’),

for example, look different, although they both assign False to a variable. Similarly, while statements

(4’) and (5’) are completely different, they both compute pA&Bq.
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2.4 Other Defenses Against Reverse Engineering

In a general sense, we can consider an “obfuscation” to be anything that slows down or dissuades a reverse

engineer. We list two such methods below, and we describe two others near the end of the next section.

Anti-Disassembly. We may write the machine code in an executable distribution in such a way that

a disassembler is unlikely to be able to print out an accurate rendition of the assembly code. Cohen

describes several such techniques, applicable to any machine codes with variable-length byte-addressable

instructions, such as the Intel x86 series. For example, “... we can include jump instructions whose last

byte (usually the address jumped to) corresponds to a desired operation code, and place the code jumped

to appropriately so that the jump works and the proper return address is in the middle of the previously

executed instruction. In this way, we reuse the last bytes of the jump location as operation codes on the

next pass through the code.” [20].

Anti-Debugging. We may disable or confuse a debugger, for example by writing code that actively uses

all available interrupts (including the breakpoint interrupt) [84]. If we know what debugger the reverse-

engineer is likely to be using, then our code may be able “attack” the debugger by writing into its address

area [20]. We can write time-sensitive code, for example involving races between processes on two CPUs,

that will terminate its operation whenever a debugger is probing a process intensively – because this will

slow down its operation [84].

3 Watermarking

Watermarking embeds a secret message into a cover message. In media watermarking [3,9,45,66] the

secret is usually a copyright notice and the cover a digital image or an audio or video production. Water-

marking an object discourages intellectual property theft, or when such theft has occurred, allows us to

prove ownership.

Fingerprinting is similar to watermarking, except a different secret message is embedded in every

distributed cover message. This may allow us not only to detect when theft has occurred, but also to
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trace the copyright violator. A typical fingerprint includes a vendor, product, and customer identification

numbers.

Our interest is in the watermarking and fingerprinting of software [22,28,35,40,46,60,69,75], a prob-

lem that has received much less attention than media watermarking. We can describe the software water-

marking problem as follows:

Embed a structure W (the watermark) into a program P such that:

� W can be reliably located and extracted from P (the embedding is resilient to de-

watermarking attacks);

� W is large (the embedding has a high data rate);

� embedding W into P does not adversely affect the performance of P (the embedding is

cheap);

� embedding W into P does not change any statistical properties of P (the embedding is

stealthy);

� W has a mathematical property that allows us to argue that its presence in P is the result

of deliberate actions.

Any software watermarking technique will exhibit a trade-off between resilience, data rate, cost, and

stealth. For example, the resilience of a watermark can easily be increased by exploiting redundancy (i.e.

including the mark several times in the cover program), but this will result in a reduction in bandwidth.

In many situations a high data rate may be unnecessary. For example, a 32-bit integer could provide

10 bits of vendor and product information as well as a 22-bit customer identification number. In other

situations, however, we might want the watermark to contain some internal structure that will allow us to

detect tampering (parity or error-correcting bits may be used for this purpose) or which allows us to argue

that the watermark has some unique property that could not have occurred by chance. For example, the

watermark could be the product of two large primes which only the owner of the watermarked program

knows how to factor.

It should be noted that there are two possible interpretations of stealth, static stealth and dynamic
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stealth. A watermark is statically stealthy if a static analysis reveals no statistical differences between the

original and the watermarked program. Similarly, the watermark is dynamically stealthy if a execution

trace of the program (say, an address trace or an instruction trace) reveals no differences. An attacker

may, of course, analyze a program statically or dynamically or both in order to discover the location of a

watermark. In this paper we (like many others, for example Wang [93]) will mostly consider attacks by

static analysis.

Goldreich and Ostrovsky [32], on the other hand, provide a theoretical treatment of oblivious ma-

chines, computational devices that leak no run-time information to an attacker about the internal execution

of a program. In particular, when running an oblivious program twice on different inputs (that have the

same running time) the program will access exactly the same sequence of memory locations.

Similarly, Aucsmith [5] presents a practical obfuscation method designed not to leak information

about execution paths and data accesses. The idea is to break up the program in segments which are

continuously relocated in memory. Every time a particular piece of code is executed, it will be moved to

a different segment of memory, therefore making an address trace of no value to an adversary. We will

discuss this technique further in Section 4.

3.1 Threat-model

To evaluate the resilience of a watermarking technique (how well the mark will resist intentional attempts

at removal), we must first define our threat-model. In other words, what constitutes a reasonable level

of attack, and what specific techniques is an attacker likely to employ? It is generally accepted that no

software protection scheme will withstand a determined manual attack, where the software is inspected

by a human reverse engineer for an extensive period of time. Of more interest are automated or class

attacks where an automated watermark removal tool that is effective against a whole class of watermarks

is constructed.

Assume the following scenario: Alice watermarks a program P with watermark W and key K, and

then sells P to Bob. Before Bob can sell P on to Douglas he must ensure that the watermark has been

rendered useless, or else Alice will be able to prove that her program has been stolen. Figure 7 illustrates
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the kinds of de-watermarking attacks available to Bob:

� In Figure 7(a) Bob launches an additive attack by adding his own watermark W1 to Alice’s wa-

termarked program P 0. This is an effective attack if it is impossible to detect that Alice’s mark

temporally precedes Bob’s.

� In Figure 7(b) Bob launches a distortive attack on Alice’s watermarked program P 0. A distortive at-

tack applies a sequence of semantics-preserving transformations uniformly over the entire program,

in the hope that

a) the distorted watermark W 0 can no longer be recognized, and

b) the distorted program P 00 does not become so degraded (i.e. slow or large) that it no longer

has any value to Bob.

� In Figure 7(c) Bob buys several copies of Alice’s program P , each with a different fingerprint

(serial-number) F . By comparing the different copies of the program Bob is able to locate the

fingerprints and can then easily remove them.

We will assume a threat-model consisting primarily of distortive attacks, in the form of various types of

semantics-preserving code transformations. Ideally, we would like our watermarks to survive translation

(such as compilation, decompilation, and binary translation [26]), optimization, and obfuscation.

3.2 Static watermarking techniques

Software watermarks come in two flavors, static and dynamic. Static watermarks are stored in the applica-

tion executable itself, whereas dynamic watermarks are constructed at runtime and stored in the dynamic

state of the program. While static watermarks have been around for a long time, dynamic marks were

only introduced recently in [22].

Moskowitz [60] and Davidson [28] are two techniques representative of typical static watermarks.

Moskowitz describes a static data watermarking method in which the watermark is embedded in an image

using one of the many media watermarking algorithms. This image is then stored in the static data section
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Figure 7: Attacks on watermarks and fingerprints.

(a) An effective additive attack.
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of the program. Davidson [28] describes a static code watermark in which a fingerprint is encoded in the

basic block sequence of a program’s control flow graphs.

Venkatesan et. al. [86] present what appears to be the strongest known static software watermarking

technique. The idea is to treat the source program as a control flow graph G of basic blocks, to which a

watermark graph W is added forming a new control flow graph H:

G H

+
W

G and W are merged by adding code to the watermarked program that introduces new control flow edges
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between the two graphs. These edges (dashed in the figure above) can be realized for example by using

opaque predicates.

To detect the watermark the extractor needs to

a) reconstruct the control flow graph of the watermarked program,

b) identify which of the nodes of the control flow graph belong to the watermark graph (or, at least

identify most of these nodes), and

c) reconstruct the watermark graph itself.

To identify the watermark nodes the authors suggest to “store one or more bits at a node that flags when a

node is in W by using some padded data. . . ”. This is a serious weakness of the algorithm. If the method

by which watermark nodes are marked is publically known (and we would normally expect this to be the

case) then destroying the mark is trivial: simply scramble the mark bits in each watermark node. Even

if the exact marking method is unknown, and adversary can apply a variety of local code optimization

techniques (such as peephole optimization, register re-allocation, and instruction scheduling) that will

completely restructure every basic block of the program. This will make watermark recognition virtually

impossible.

Thus, unfortunately, all currently known static watermarks are susceptible to simple distortive de-

watermarking attacks. For example, any code motion optimization technique will destroy Davidson’s

method. Code obfuscation techniques that radically change the control flow or reorganize data will also

successfully thwart the recognition of static watermarks.

3.3 Dynamic watermarking techniques

There are three kinds of dynamic watermarks. In each case, the mark is recognized by running the

watermarked program with a predetermined input sequence I=I1� � �Ik. This highly unusual and secret

input makes the application enter a state which represents the watermark.

There are three dynamic watermarking techniques:
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Easter Egg Watermarks The defining characteristic of an Easter Egg watermark is that, when the spe-

cial input sequence is entered, it performs some action that is immediately perceptible by the user.

Typically, a copyright message or an unexpected image is displayed. For example, entering the

URL pabout:mozillaq in Netscape 4.0 will make a fire-breathing creature appear. The

main problem with Easter Egg watermarks is that they seem to be easy to locate. There are even

several web-site repositories of such watermarks, e.g. [62].

Execution Trace Watermarks Unlike Easter Egg watermarks, Execution Trace watermarks produce no

special output. Instead, the watermark is embedded within the trace (either instructions or addresses,

or both) of the program as it is being run with the special input I . The watermark is extracted by

monitoring some (possibly statistical) property of the address trace and/or the sequence of operators

executed. Unfortunately, many simple optimizing and obfuscating transformations will obliterate

Execution Trace watermarks.

Data Structure Watermarks Like Execution Trace watermarks, Data Structure watermarks do not gen-

erate any output. Rather, the watermark becomes embedded within the state (global, heap, and stack

data, etc.) of the program as it is being run with the special input I. The watermark is extracted

by examining the current values held in the program’s variables after the end of the input sequence

has been reached. Unfortunately, many data structure watermarks are also susceptible to attacks

by obfuscation. Several obfuscating transformations have been devised which will effectively de-

stroy the dynamic state (while maintaining semantic equivalence) and make watermark recognition

impossible.

3.4 Dynamic Graph Watermarking

In [22] we describe a new Data Structure watermarking technique called Dynamic Graph Watermarking.

The central idea is to embed a watermark in the topology of a dynamically built graph structure. Code that

builds this graph is then inserted into the program to be watermarked. Because of pointer aliasing effects,

the graph-building code will be hard to analyze and detect, and it can be shown that it will be impervious

to most de-watermarking attacks by code optimization and code obfuscation.
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Figure 8: Graphic embeddings of watermarks.

(a) Radix-6 encoding. The right pointer
field holds the next field, the left pointer
encodes a base-k digit.

61� 73 = 3 � 64 + 2 � 63 + 3 � 62 + 4 � 61 + 1 � 60

(b) Enumeration encoding. These are the
1st, 2nd, 22nd, and 48th trees in an enumer-
ation of the oriented trees with seven ver-
tices.

1: 2: 22:

48:

The watermarking algorithm runs in three steps:

1. Select a number n with a unique signature property. For example, let n = p� q, where p and q are

prime.

2. Embed n in the topology of a graph G. Figure 8(a) shows a Radix-k embedding in a circular

linked list, and Figure 8(b) shows how we can embed n by selecting the n:th graph in a particular

enumeration of a particular class of graphs. Many other such embeddings are possible.

3. Construct a program W which builds G. Embed W in the program to be watermarked such that

when the program is run with a particular input sequence I, G is built.

To recognize the mark, the watermarked program is run with I as input, G is extracted from the heap, n

is extracted from G, and n is factored. We refer to [22] for a more detailed exposition.

4 Tamper-proofing

There are many situations where we would like to stop anyone from executing our program if it has been

altered in any way. For example, a program P should not be allowed to run if (1) P is watermarked

and the code that builds the mark has been altered, (2) a virus has been attached to P , or (3) P is an
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e-commerce application and the security-sensitive part of its code has been modified. To prevent such

tampering attacks we can add tamper-proofing code to our program. This code should

a) detect if the program has been altered, and

b) cause the program to fail when tampering is evident.

Ideally, detection and failure should be widely dispersed in time and space to confuse a potential attacker.

Simple-minded tamper-proofing code like pif (tampered with()) i = 1/0q is unacceptable, for

example, because it is easily defeated by locating the point of failure and then reversing the test of the

detection code.

There are three principal ways to detect tampering:

1. We can examine the executable program itself to see if it is identical to the original one. To speed

up the test, a message-digest algorithm such as MD5 [71] can be used.

2. We can examine the validity of intermediate results produced by the program. This technique is

known as program (or result) checking [12,13,30,73,74,95] and has been touted as an alternative to

program verification and testing.

3. We can encrypt the executable, thereby preventing anyone from modifying it successfully unless

they are able to decrypt it. The decryption routines must be protected from reverse-engineering by

hardware means, by obfuscation, or both.

In our literature search, we find only a few publications that describe tamperproofing methods. One

commercial website describes a tamperproofing system that uses continual self-examination and encryp-

tion (methods 1 and 3 above), along with its own keyboard handler for password input [63]. Torrubia

and Mora describe an encryption method in which the protected code is arranged in nested loops, and the

loop-entry code decrypts the body of the loop [84]. In both cases, anti-debugging measures are taken to

make it difficult for a reverse-engineer to examine the code.

Aucsmith and Graunke’s encryption method [5,6] breaks up a binary program into individually en-

crypted segments. The tamper-proofed program is executed by decrypting and jumping to segments based
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in part on a sequence of pseudo-random values generated from a key. After a segment has been executed

it is re-encrypted so that only one segment is ever in plaintext. The process is constructed so that any state

the program is in is a function of all previous states. Thus, should even one bit of the protected program be

tampered with, the program is virtually guaranteed to eventually fail, and the point of failure may occur

millions of instructions away from the point of detection.

Tamper-proofing of type-safe distribution formats such as Java bytecode is more difficult than tamper-

proofing assembly code. For example, Aucsmith’s technique requires a decryption and jump, which is

possible in Java bytecode, however it cannot be done stealthily since it will always involve a call to a class

loader from the standard Java library. One hacker claims to have quickly defeated several of the early

protection schemes for Java bytecodes, generally by disassembling to discover the authentication code,

and then by applying patches either to jump around it or to ignore its result [47].

Tamper-proofing by program checking is more likely to work well in Java, since it does not require us

to examine classfiles directly. Some such detection techniques were discussed in [22], in the context of

tamper-proofing software watermarks.

4.1 Tamper-proofing Viruses

It is interesting to compare the work done on software protection with the on-going struggle between

virus writers and virus detector writers. A computer virus [11,18,19,80] is a piece of code that has the

ability to reproduce by attaching itself to other programs, disks, data files, etc. Most viruses are malicious,

performing destructive operations on infected systems, although good viruses have also been discussed.

Virus writers employ many obfuscation-like techniques to protect a virus from detection, and tamper-

proofing-like techniques to protect it from being easily removed from the infected host program. So-called

armored viruses add extra code to a virus to make it difficult to analyze. Polymorphic (or self-mutating)

viruses generate new versions of themselves as part of the infection process. This is, in many ways, similar

to Aucsmith’s technique, although viruses tend to mutate only on infection while Aucsmith mutates the

code continuously.
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5 Discussion

We have identified three types of attacks by malicious hosts on the intellectual property contained in

software. Any of these attacks may be dissuaded by legal means, if the software is protected by patent,

copyright, contract or trade secrecy laws. However, it is generally difficult to discover that an attack on

intellectual property in software has occurred. After an attack is discovered, it may be expensive or even

impossible to obtain a remedy in courtroom proceedings. For these reasons, we believe that technical

defenses (known in legal circles as “self-help”) will continue to be important for any software developer

who is concerned about malicious hosts.

The most common attack on intellectual property in software is software piracy. This typically takes

the form of unauthorized copying. Nowadays, most licensed software has a weak form of technical

protection against illegal copying, typically a password activation scheme. Such schemes can generally

be circumvented easily by an expert hacker [47], or indeed by anyone who is willing to undertake a search

for “warez” sites and “cracks” newsgroups on the Internet [72].

Software watermarking provides an alternate form of protection against piracy. To the extent that

a watermark is stealthy, a software pirate will unwittingly copy the watermark along with the software

being stolen. To the extent that a watermarks is resilient, it will survive a pirate’s attempts at removal.

The watermark must also be detectable by the original developer of the software. In this paper, we have

argued that our dynamic watermarking techniques are more stealthy and more resilient than the existing

alternative technology of static watermarks.

A second form of attack on intellectual property in software is reverse engineering. A malicious

reverse engineer seeks to understand a software product well enough to use its secret methodology without

negotiating for a license. Reverse engineers can be discouraged slightly by lexical transformations on the

software, such as the scrambling or “stripping” of variable names. In this paper we have described many

other, more powerful obfuscations, that obscure the control and data structures of the software.

We identify tampering as a third form of attack on intellectual property in software. Sometimes tam-

pering will occur in conjunction with the other forms of attack. For example, a reverse engineer may

tamper with code in order to extract the modules of interest, or in order to “see how it works”. Also, a
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software pirate may tamper with code in an attempt to remove its watermark. However, tampering may

occur independently of the other attacks, for example if someone wishes to corrupt an e-commerce ap-

plication so that it provides unauthorized discounts or free services. In all cases, an appropriate technical

self-help is to render the code tamper-proof. If a tamper-proof code is modified in any way, it will no

longer be functional. In this paper, we have described several previously published methods for tamper-

proofing code.

All of the methods described in this paper provide at least a modicum of protection for software

against attacks by malicious hosts. Future research will show exactly which attacks these methods are

vulnerable to, and to what extent they can be improved. Particularly interesting are recent theoretical

results [7,36,61] which point the way towards a deeper understanding of the limits of software protection.
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