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Abstract. We explore the power of steganographic computation in an
game-theoretic setting, where n stegocommunicants are attempting to
complete a shared computation, and where a well-resourced censor is
attempting to prevent the computation. For example, when collabora-
tively discovering the minimum value (mini xi) in a public n-vector X,
each stegocommunicant reads a randomly-selected element during each
timestep. Each then transmits the index i of the smallest value they have
seen to a randomly-selected collaborator. We prove that most stegocom-
municants will learn the minimum value in O(logn) time, w.h.p., if at
most 10% of their population is censored in any timestep. The censor in
our model retains a copy of all intercepted messages, using this informa-
tion to optimally select the targets of their censorship at the beginning
of each timestep. Our model of stegocomputation is relevant to stegosys-
tems in which: 1) the stegoencoding is determined by the address of the
recipient, 2) the censor does not have sufficient computational resource
to stegodecode more than a fixed fraction (nominally 10%) of the mes-
sages in flight, and 3) the censor cannot store any messages other than
the ones it has stegodecoded.
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1 Introduction

Stegocommunication is similar to encrypted communication, because both in-
volve the transmission and reception of messages under adversarial conditions.

Stegocommunication is distinguished from encrypted communication, be-
cause the former avoids revealing that messages are being transmitted, whereas
the latter prevents an adversary from reading or falsifying messages.

Stegoencoding is sometimes deprecated as “weak encryption”, because any
stegoencoded message can be decoded, with a modest expenditure of computa-
tional resource, by an adversary who has contextual information about the mes-
sage. By contrast, a strongly encrypted message can be read only by a skilled
adversary who deploys massive computational resource. Furthermore, crypto-
graphic techniques can be used to protect message integrity, whereas the in-
tegrity of a steganographic message can be attacked by any adversary who is



able to decode it. However, a system’s availability is adversely affected by its
reliance on a cryptoprotocol, whenever a legitimate user has lost access to their
key material, and whenever a cryptographic service is unavailable for an ex-
tended period of time. As we will show in this paper, a stegoprotocol can assure
the successful completion of a shared computation for most of its participants;
but this availability assurance comes at some expense in confidentiality. In this
regard, our stegoprotocols are complementary to cryptoprotocols.

The Dolev-Yao model is widely accepted as the basis for cryptoprotocol de-
sign, because its axioms of strong cryptography and key-material secrecy are
feasibly assured in many real-world situations, and because these axioms are
sufficient to support a wide range of useful cryptoprotocols.

The primary contribution of this paper is an axiomatic model for stegoproto-
col design. The adversary in our model is actively intercepting and interrupting,
but is neither modifying nor impersonating.

We present and justify our model in Section 2. In Section 3, we illustrate our
model by fully analysing a very small stegogame. In Section 4, we prove that
stegocommunicants cannot conduct a secret ballot. In Section 5, we sketch a
proof that stegocommunicants cannot be prevented from using a collaborative
process to discover the minimum value in a public dataset of n values. In the
concluding section, we summarise our findings and discuss some implications.

2 An Axiomatic Model of Stegocomputation

Axiom 1 Each stegocommunicant can perform O(1) randomized computations
on O(logc1 n)-bit words, during each timestep, for some fixed constant c1. Their
multi-headed adversary, whom we name the Hydra, cannot predict the outputs of
any stegocommunicant’s private pseudorandom number generator.

We strictly bound the computational power of stegocommunicants. We think
it reasonable to assume that real-world stegocommunicants are able to take
actions when cannot be predicted by their surveillants.

Axiom 2 Each stegocommunicant has a unique name gi, which is drawn at
random from a set of size O(nc2) for some constant c2 > 3.

Randomly-selected names are sometimes called gensyms by LISP program-
mers, so our notation is mnemonic. For convenience when describing our stego-
protocols, we assume that the i-th stegocommunicant is named Gia, that the
j-th is named Genji (when j 6= i), and that the k-th is named Ganika (when
k 6= i and k 6= j).

Axiom 3 During each timestep, each stegocommunicant can send a stegomes-
sage to one other stegocommunicant. If the destination of the stegomessage is
unspecified, it is transmitted to a randomly selected stegocommunicant – and
no one, not even the Hydra, can predict this random choice. Alternatively, the
stegomessage may be addressed to someone already known (by gensym) to the
stegotransmitter.



We introduce this axiom to model a globally-accessible social network with
millions or billions of participants. The participants in this network have agreed
to accept a small number of messages per day from unknown sources, despite
the risks of receiving objectionable messages, in order to participate in a public
consensus-formation process which cannot effectively be censored by any gov-
ernment.

Random-introductions in social-networking systems are currently available in
https://www.facebook.com/RandomFriendAdder/ and http://kikcontacts.

com/random.

Axiom 4 No stegocommunicant knows their index i in any compact range 1..c3n,
for any constant c3 ≥ 1.

We leave it as an open problem to develop a stegoprotocol for mapping gen-
syms onto 1..n. We note that such a compact enumeration would allow stego-
communicants to map their names onto the nodes in a shuffle-exchange graph or
other powerful structure for parallel computation. If it turns out to be infeasible
for a compact indexing to be stegocomputed, then it would be interesting to
explore the properties of a stegomodel in which gensyms are drawn at random
from a set of size c3n.

For analytic convenience, we assume the Hydra always defines (at least im-
plicitly) a bijection of 1..n onto inboxes, as well as a bijection of 1..n onto gen-
syms. When we refer to the i-th stegocommunicant, we are using the Hydra’s
bijections. Each stegocommunicant Gia therefore knows her own name, but not
her index i.

Axiom 5 The Hydra censors at most αn of the stegocommunicants in each
timestep.

To assure this axiom in a real-world setting, stegocommunicants could make
public postings on a popular, governmentally-sanctioned, social-networking sys-
tem that supports random-sharing of public posts. Censors would be expected to
block postings with abnormally high entropy, because these are likely to be en-
crypted. However messages which closely resemble normal traffic [8,5,6,7] would
evade mass censorship: the censor must search each one, individually, for stego-
content.

In a practical implementation of a stegocommunication system that obeys
Axiom 5, stegotransmitters could randomly-share ten of their public postings
each day (or week), using the “share-to-random” facility of Axiom 3. One of
these random-shares is the cover message for that day’s stegotransmission, us-
ing a stegosystem that is keyed to some recent public postings by the sender.
The recipient of each random-share must expend some computational resource
to search through all possible stegokeyings to discover its stegocontent, if any.
Note that this stegochannel is, essentially, employing a cryptographic system
with a keyspace that is small enough to allow stegodecoding of individual mes-
sages by individual recipients, but is large enough to prevent the Hydra from
stegodecoding more than αn messages per timestep.

https://www.facebook.com/RandomFriendAdder/
http://kikcontacts.com/random
http://kikcontacts.com/random


Axiom 6 The stegocommunications network delivers a stegomessage if and only
if there is no contention for the recipient’s inbox. The stegocommunicant asso-
ciated with this inbox is unaware of the message delivery if they are currently
being censored; in this case, the Hydra reads the message.

This axiom could be assured by a communication-services provider which
allocates one fixed-size inbox to each stegocommunicant. It is analytically at-
tractive, because it makes our computational model very similar to the well-
studied Exclusive Read Exclusive Write (EREW) Parallel Random Access Ma-
chine (PRAM) [3].

Axiom 7 The case of no incoming messages is indistinguishable from the case
of multiple incoming messages in an inbox, for the intended recipient and for the
Hydra.

We introduce this indistinguishability solely to simplify our analysis. In a
real-world deployment, this axiom could be violated by a governmental censor
who instrumented the communications fabric for traffic analysis, allowing it to
know how many stegomessages were sent to each stegocommunicant in each time
period. We leave it to future work to analyse the properties of our model without
this simplifying assumption.

Axiom 8 The stegocommunicants’ goal is a computation of a randomised func-
tion f(A,X) in polylog(n) time. The vector A has one private component per
stegocommunicant. The vector X is a globally-accessible, uncensorable, write-
once vector of length O(n). The value of each component of the domain and
range of f() is encoded in a bitstring of length polylogarithmic in n. For any
distribution on the domain (A,X), the stegocommunicants win the game if their
computation is complete, accurate, and widely-dispersed (as defined immediately
below) with high probability, i.e. with chance of failure O(n−c) for fixed c > 0.

1. Complete: A value for each of the components of f() is declared.
2. Accurate: No stegocommunicant declares an incorrect value for any compo-

nent of f().
3. Widely dispersed: At least half of the stegocommunicants declare a value for

at least one component of f().

We introduce the vector A of private information to model information that
is generated by individual stegocommunicants, and which they are attempting
to share with other stegocommunicants.

Each element in the vector X is written only once per stegocomputation. De-
pending on the problem, X could be O(n) words of randomly-generated data,
data collected from O(n) real-world sensors, or data written by stegocommuni-
cants. For example, if Gia were initially provided with her index i, she could
write her vote into cell xi; and the problem to be solved might be to collate the
votes. In an implementation, xi could be a designated area on Gia’s timeline or
blog.

The completion conditions are complex. We think they are best understood
by working through an illustrative example in the next section.



Axiom 9 All stegocommunicants follow the same (randomized) stegoprotocol,
and this stegoprotocol is known to the Hydra.

This axiom distinguishes our model sharply from distributed computing
models in which a fraction of the participants are untrustworthy. Furthermore,
distributed computing models are usually analysed for their worst-case perfor-
mance, rather than for the w.h.p. bounds of our Axiom 8.

No axiom can ever be fully assured in a real-world system. Trustworthiness
axioms, such as this one, are especially problematic. The trustworthiness of any
stegocommunicant may change over time, and no person or computer system is
completely trustworthy – there is always some chance of faulty behaviour. In this
respect, our model is inaccurate: it provides an upper-bound, rather than an un-
biased estimate, of the likelihood that any real-world set of n stegocommunicants
can successfully complete a stegocomputation over a censorious communication
network.

We note that the result of any stegocomputation may be assessed for ac-
curacy in a subsequent stegocomputation. We leave the development of such
trustworthiness-assessment stegoprotocols to future work.

3 Private 3-Majority

In this section, we illustrate our model by analysing a stegogame on n = 3
stegocommunicants s1, s2, and s3. Their adversary is a one-headed Hydra (α =
1/3).

Each stegocommunicant has a private bit ai. Their shared goal is to evaluate
the majority predicate on their private bits, f(A) = (

∑
i ai > 1), after a single

round (T = 1) of communication. Each stegocommunicant must either declare
her answer, or remain silent, at the end of this round.

By our last axiom, the stegocommunicants win their game if a majority of
stegocommunicants declare a correct answer, and if nobody declares an incorrect
answer.

Below, we evaluate the stegocommunicants’ winning probability under a
plausibly-optimal stegoprotocol, when their private bits ai are independent Bernoulli
variates with p = 0.5. If this were a formal analysis rather than an illustration
of our model, we would prove (or disprove!) our conjecture that this probability
distribution is pessimal for the stegocommunicants.

In our exemplary stegoprotocol, each stegocommunicant Gia (si) chooses a
target Genji (sj) uniformly at random under the constraint that j 6= i. The
body of Gia’s message is her random value ai. If Genji receives Gia’s message,
he reports the value max(ai, aj) at time t = 1. Otherwise Genji reports the value
aj .

In our model, a message is received by its intended recipient unless one or
more of the following conditions arise:

– the sender is censored,
– the receiver is censored, or



– there are multiple message-arrivals in the receiver’s inbox.

Informally: when Gia is censored, her outgoing message is routed to the Hydra
rather than to Gia’s intended recipient. Furthermore, a censored Gia is unable
to access her own inbox – because one of the heads of the Hydra is accessing this
exclusive-read memory. If multiple messages arrive in Gia’s inbox during a single
round, this write-contention causes this inbox to be unreadable. Accordingly,
our computational model is essentially an adversarial EREW PRAM, with the
inboxes taking the role of memory cells in the PRAM model. However there are
only n cells of memory, memory cells have wordsize polylogarithmic in n [2], and
every memory cell is “owned” [4] by exactly one stegocommunicant.

In our illustrative single-round stegogame, the Hydra has just one head, so
it has only two possible strategies: it may censor nobody, or it may censor one
stegocommunicant. We identify two subcases in the first strategy:

1. The stegocommunicant’s randomly-chosen messaging pattern is a 3-cycle. In
this subcase, every stegocommunicant receives a message.

2. The messaging pattern has a 2-cycle. In this subcase, one stegocommunicant
receives a message, one stegocommunicant receives no message due to inbox
contention, and one stegocommunicant has an empty inbox.

In both subcases, the stegocommunicants compute the correct value if their
votes are unanimous:

∑
i ai ∈ {0, 3}. This event occurs with probability 1/4.

In both subcases, if
∑

i ai = 1, the stegocommunicant with aj = 1 reports an
incorrect answer, causing the stegocommunicants to lose the game. This event
occurs with probability 3/8.

In the first subcase, if
∑

i ai = 2 then the stegocommunicants compute the
correct value. This event occurs with probability 3/8, so the value of the game
in the first subcase is 1(1/4) + 0(3/8) + 1(3/8) = 5/8.

In the second subcase, if
∑

i ai = 2 then the stegocommunicant with aj =
0 reports a correct answer if and only if she receives a message. This event
occurs with probability 1/3, so the value of the game in the second subcase is
1(1/4) + 0(3/8) + (1/3)(3/8) = 3/8.

Subcase 1 arises with probability 1/4, independently of the values ai, by the
following argument. Without loss of generality s1’s target is s2. With probability
0.5, s2’s target is s3; and independently with probability 0.5, s3’s target is s1.

We conclude that the stegocommunicants win the game against an uncen-
soring Hydra with probability (5/8)(1/4) + (3/8)(1− 1/4) = 14/32 = 7/16.

We leave it to the reader to perform the (rather tedious) analysis of the
Hydra’s other possible strategy, of censoring one stegocommunicant, establishing
the value of this game as 5/16.

4 Majority Voting with Unpublished Ballots

A Hydra with Ω(n) heads can effectively prevent majority voting with secret
ballots. Formally:



Theorem 1 For any constant censorship rate α > 0, the predicate (
∑

i ai ≥
n/2) can not be reliably stegocomputed.

Proof. A sufficient strategy for the Hydra is to choose αn stegocommunicants at
random, and to censor these stegocommunicants at all times. A censored stego-
communicant Gia does not communicate her ai value to anyone. The uncensored
stegocommunicants may estimate the total vote of the censored stegocommuni-
cants,

∑
{i:∃k:Ck(1)=i} ai, by random sampling. However for an input ensemble

in which ai are independent Bernoulli variates with probability p = 0.5, the
error in this estimate is Ω(ln c

√
αn) = Ω((ln(αc)

√
n) with probability Ω(n−c),

implying that the stegocommunicants will not accurately compute the majority
vote w.h.p.

5 Global Minimum-finding on a Public Vector

A Hydra with n/10 heads cannot prevent n stegocommunicants from discovering
the value of a smallest component in their globally-readable n vector X. A
suitable stegoprotocol is easily described: each stegocommunicant probes the n-
vector at random, retaining the index of the smallest value it has seen so far,
and sending this index to a randomly-selected recipient.

Theorem 2 If α ≤ 0.1, then mini(xi) can be reliably stegocomputed.

Proof sketch. Every stegocommunicant probes at random into the n-vector X
during each timestep, discovering a global minimum with probability ≥ 1/n;
this bound is tight when the global minimum is unique. Every stegocommunicant
informs a randomly-selected stegocommunicant of the index of the minimal value
it has seen to date. We use a discrete-state branching process [1] to model the
spread of knowledge about the global minimum.

6 Discussion

We have exhibited a model of stegocommunication which supports proofs of
reliable computation on a EREW PRAM model with adversarial message inter-
ceptions and interruptions.

We have proven that the adversary can prevent stegocommunicants from re-
liably computing the majority function on their private “votes”. We note that
an approximate private-vote could be stegocomputed by random-sampling. Fur-
thermore, a majority public-vote could be stegodecided unless the voting is close.

We have also proven that the adversary cannot prevent stegocommunicants
from discovering the minimum value in a public n-vector. This computational
power would allow stegocommunicants to form a public consensus on the “best
stegoprotocol” to be used in the next round of stegocomputation – if they had
a prior agreement on the metric to be used when comparing two stegoprotocols.



We note that our model bears some resemblance to models of fault-tolerant
distributed systems. However such models generally have a Byzantine trust
model, such that any communicant may be untrustworthy. Furthermore the
models generally lack a probabilistic support, but instead are analysed for worst-
case behaviour: the algorithms are required to deliver correct results under a
bounded-fault assumption e.g. that no more than 1/3 of the Byzantine gener-
als are untrustworthy. Under such models of distributed computation, runtimes
are typically polynomial in n. By contrast, our model assumes n trustworthy
stegocommunicants who have only polylog time to complete their computation.

Our primary contribution in this article is an axiomatised model of stegocom-
putation which is simple enough to be analytic, while remaining realistic enough
to guide the design of reliable stegosystems of practical use. Some foreseeable
practical uses of stegocomputation are “white-hat”, for example the reliable dis-
tribution of digital certificates in a global public-key infrastructure – when one
or more governments are actively attempting to prevent this distribution. Re-
liable stegocomputation would also be important to “black-hats”, for example
criminal gangs may someday use a stegogame to coordinate their criminal ac-
tivity, if no crime-fighting agency has sufficient powers of censorship to prevent
such coordination.
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