
A Framework for System Security ?

Clark Thomborson

Department of Computer Science
The University of Auckland, New Zealand

cthombor@cs.auckland.ac.nz

March 4, 2009

Abstract. Actors in our general framework for secure systems can exert
four types of control over other actors’ systems, depending on the tem-
porality (prospective vs. retrospective) of the control and on the power
relationship (hierarchical vs. peering) between the actors. We make clear
distinctions between security, functionality, trust, and distrust by identi-
fying two orthogonal properties: feedback and assessment. We distinguish
four types of system requirements using two more orthogonal properties:
strictness and activity. We use our terminology to describe specialised
types of secure systems such as access control systems, Clark-Wilson sys-
tems, and the Collaboration Oriented Architecture recently proposed by
The Jericho Forum.
Keywords: Security, Trust, Distrust, Security Requirements,
Security Models

1 Introduction

There are many competing definitions for the word “security”, even in the re-
stricted context of computerised systems. We prefer a very broad definition,
saying that a system is secure if its owner ever estimated its probable losses
from adverse events, such as eavesdropping. We say that a system is secured
if its owner modified it, with the intent of reducing the expected frequency or
severity of adverse events. These definitions are in common use but are easily
misinterpreted. An unsupported assertion that a system is secure, or that it has
been secured, does not reveal anything about its likely behaviour. Details of the
estimate of losses and evidence that this estimate is accurate are necessary for
a meaningful assurance that a system is safe to use. One form of assurance is
a security proof , which is a logical argument demonstrating that a system can
suffer no losses from a specific range of adverse events if the system is operating
in accordance with the assumptions (axioms) of the argument.

In this chapter, we propose a conceptual framework for the design and anal-
ysis of secure systems. Our goal is to give theoreticians and practitioners a com-
mon language in which to express their own, more specialised, concepts. When
? This is a preprint version of a contributed chapter in the Handbook of Computer and

Information Security, ed. Mark Stamp, Springer, to appear April 2009.



used by theoreticians, our framework forms a meta-model in which the axioms
of other security models can be expressed. When used by practitioners, our
framework provides a well-structured language for describing the requirements,
designs, and evaluations of secure systems.

The first half of our chapter is devoted to explaining the concepts in our
framework, and how they fit together. We then discuss applications of our frame-
work to existing and future systems. Along the way, we provide definitions for
commonly used terms in system security.

1.1 Systems, Owners, Security and Functionality

The fundamental concept in our framework is the system – a structured entity
which interacts with other systems. We subdivide each interaction into a series
of primitive actions, where each action is a transmission event of mass, energy,
or information from one system (the provider) that is accompanied by zero or
more reception events at other systems (the receivers).

Systems are composed of actors. Every system has a distinguished actor, its
constitution. The minimal system is a single, constitutional, actor.

The constitution of a system contains a listing of its actors and their relation-
ships, a specification of the interactional behaviour of these actors with other
internal actors and with other systems, and a specification of how the system’s
constitution will change as a result of its interactions.

The listings and specifications in a constitution need not be complete de-
scriptions of a system’s structure and input-output behaviour. Any insistence
on completeness would make it impossible to model systems with actors having
random, partially unknown, or purposeful behaviour. Furthermore, we can gen-
erally prove some useful properties about a system based on an incomplete, but
carefully chosen, constitution.

Every system has an owner , and every owner is a system. We use the term
subsystem as a synonym for “owned system”. If a constitutional actor is its own
subsystem, i.e. if it owns itself, we call it a sentient actor . We say that a system
is sentient , if it contains at least one sentient actor. If a system is not sentient,
we call it an automaton. Only sentient systems may own other systems. For
example, we may have a three-actor system where one actor is the constitution
of the system, and where the other two actors are owned by the three-actor
system. The three-actor system is sentient, because one of its actors owns itself.
The other two systems are automata.

If a real-world actor plays important roles in multiple systems, then a model
of this actor in our framework will have a different aliased actor for each of these
roles. Only constitutional actors may have aliases. A constitution may specify
how to create, destroy, and change these aliases.

Sentient systems are used to model organisations containing humans, such
as clubs and corporations. Computers and other inanimate objects are modelled
as automata. Individual humans are modelled as sentient actors.

Our insistence that owners are sentient is a fundamental assumption of our
framework. The owner of a system is the ultimate judge, in our framework, of

2



what the system should and shouldn’t do. The actual behaviour of a system will,
in general, diverge from the owner’s desires and fears about its behaviour. The
role of the system analyst, in our framework, is to provide advice to the owner
on these divergences.

We invite the analytically-inclined reader to attempt to develop a general
framework for secure systems that is based on some socio-legal construct other
than a property right. If this alternative basis for a security framework yields any
increase in its analytic power, generality, or clarity, then we would be interested
to hear of it.

Functionality and Security. If a system’s owner ascribes a net benefit to a col-
lection of transmission and reception events, we say this collection of events is
functional behaviour of the system. If an owner ascribes a net loss to a collec-
tion of their system’s reception and transmission events, we say this collection
of events is a security fault of the system. An owner makes judgements about
whether any collection of system events contains one or more faults or func-
tional behaviours. These judgements may occur either before or after the event.
An owner may refrain from judging, and an owner may change their mind about
a prior judgement. Clearly, if an owner is inconsistent in their judgements, their
systems cannot be consistently secure or functional.

An analyst records the judgements of a system’s owner in a judgement actor
for that system. The judgement actor need not be distinct from the consti-
tution of the system. When a system’s judgement actor receives a description
of (possible) transmission and reception events, it either transmits a summary
judgement on these events or else it refrains from transmitting anything, i.e. it
withholds judgement. The detailed content of a judgement transmission varies,
depending on the system being modelled and on the analyst’s preferences. A sin-
gle judgement transmission may describe multiple security faults and functional
behaviours.

A descriptive and interpretive report of a judgement actor’s responses to a
series of system events is called an analysis of this system. If this report considers
only security faults, then it is a security analysis. If an analysis considers only
functional behaviour, then it is a functional analysis. A summary of the rules
by which a judgement actor makes judgements is called a system requirement . A
summary of the environmental conditions that would induce the analysed series
of events is called the workload of the analysis. An analysis will generally indi-
cate whether or not a system meets its requirements under a typical workload,
that is, whether it is likely to have no security faults and to exhibit all functional
behaviours if it is operated under these environmental conditions. An analysis
report is unlikely to be complete, and it may contain errors. Completeness and
accuracy are, however, desirable aspects of an analysis. If no judgements are
likely to occur, or if the judgements are uninformative, then the analysis should
indicate that the system lacks effective security or functional requirements. If
the judgements are inconsistent, the analysis should describe the likely incon-
sistencies and summarise the judgements that are likely to be consistent. If a
judgement actor or a constitution can be changed without its owner’s agreement,

3



the analysis should indicate the extent to which these changes are likely to affect
its security and functionality as these were defined by its original judgement ac-
tor and constitution. An analysis may also contain some suggestions for system
improvement.

An analyst may introduce ambiguity into a model, in order to study cases
where no one can accurately predict what an adversary might do and to study
situations about which the analyst has incomplete information. For example,
an analyst may construct a system with a partially-specified number of sentient
actors with partially-specified constitutions. This system may be a subsystem of
a complete system model, where the other subsystem is the system under attack.

An attacking subsystem is called a threat model in the technical literature.
After constructing a system and a threat model, the analyst may be able to
prove that no collection of attackers of this type could cause a security fault. An
analyst will build a probabilistic threat model if they want to estimate a fault
rate. An analyst will build a sentient threat model if they have some knowledge
of the attackers’ motivations. To the extent that an analyst can “think like
an attacker”, a war-gaming exercise will reveal some offensive manoeuvers and
corresponding defensive strategies [10].

The accuracy of any system analysis will depend on the accuracy of the
assumed workload. The workload may change over time, as a result of changes
in the system and its environment. If the environment is complex, for example if
it includes resourceful adversaries and allies of the system owner, then workload
changes cannot be predicted with high accuracy.

1.2 Qualitative vs. Quantitative Security

In this section we briefly explore the typical limitations of a system analysis.
We start by distinguishing qualitative analysis from quantitative analysis. The
latter is numerical, requiring an analyst to estimate the probabilities of relevant
classes of events in relevant populations, and also to estimate the owner’s costs
and benefits in relevant contingencies. Qualitative analysis, by contrast, is non-
numeric. The goal of a qualitative analysis is to explain, not to measure. A
successful qualitative analysis of a system is a precondition for its quantitative
analysis, for in the absence of a meaningful explanation, any measurement would
be devoid of meaning. We offer the following, qualitative, analysis of some other
preconditions of a quantitative measurement of security.

A proposed metric for a security property must be validated , by the owner of
the system, or by their trusted agent, as being a meaningful and relevant sum-
mary of the security faults in a typical operating environment for the system.
Otherwise there would be no point in paying the cost of measuring this property
in this environment. The cost of measurement includes the cost of designing and
implementing the measurement apparatus. Some preliminary experimentation
with this apparatus is required to establish the precision (or lack of noise) and
accuracy (or lack of bias) of a typical measurement with this apparatus. These
quantities are well-defined, in the scientific sense, only if we have confidence in
the objectivity of an observer, and if we have a sample population, a sampling

4



procedure, a measurement procedure, and some assumption about the ground
truth for the value of the measured property in the sample population. A typ-
ical simplifying assumption on ground truth is that the measurement error is
Gaussian with a mean of zero. This assumption is often invalidated by an ex-
perimental error which introduces a large, undetected, bias. Functional aspects
of computer systems performance are routinely defined and measured [8], but
computer systems security is more problematic.

Some security-related parameters are estimated routinely by insurance com-
panies, major software companies, and major consulting houses using the meth-
ods of actuarial analysis. Such analyses are based on the premise that the future
behaviour of a population will resemble the past behaviour of a population. A
time-series of a summary statistic on the past behaviour of a collection of similar
systems can, with this premise, be extrapolated to predict the value of this sum-
mary statistic. The precision of this extrapolation can be easily estimated, based
on its predictive power for prefixes of the known time series. The accuracy of this
extrapolation is difficult to estimate, for an actuarial model can be invalidated
if the population changes in some unexpected way. For example, an actuarial
model of a security property of a set of workstations might be invalidated by
a change in their operating system. However, if the timeseries contains many
instances of change in the operating system, then its actuarial model can be val-
idated for use on a population with an unstable operating system. The range of
actuarial analysis will extend whenever a population of similar computer systems
becomes sufficiently large and stable to be predictable, whenever a timeseries of
security-related events is available for this population, and whenever there is a
profitable market for the resulting actuarial predictions.

There are a number of methods whereby an unvalidated, but still valuable,
estimate of a security parameter may be made on a system which is not part
of a well-characterised population. Analysts and owners of novel systems are
faced with decision-theoretic problems akin to those faced by a 16th-century
naval captain in uncharted waters. It is rarely an appropriate decision to build
a highly accurate chart (a validated model) of the navigational options in the
immediate vicinity of one’s ship, because this will generally cause dangerous
delays in one’s progress toward an ultimate goal.

1.3 Security Requirements and Optimal Design

Having briefly surveyed the difficulty of quantitative analysis, and the prospects
for eventual success in such endeavours, we return to the fundamental problem
of developing a qualitative model of a secure system. Any modeller must create
a simplified representation of the most important aspects of this system. In our
experience, the most difficult aspect of qualitative system analysis is discovering
what its owner wants it to do, and what they fear it might do. This is the problem
of requirements elicitation, expressed in emotive terms. Many other expressions
are possible. For example, if the owner is most concerned with the economic
aspects of the system, then their desires and fears are most naturally expressed
as benefits and costs. Moralistic owners may consider rights and wrongs. If the

5



owner is a corporation, then its desires and fears are naturally expressed as goals
and risks.

A functional requirement can take one of two mathematical forms: an ac-
ceptable lower bound or constraint on positive judgements of system events, or
an optimisation criterion in which the number of positive judgements is max-
imised. Similarly, there are two mathematical forms for a security requirement :
an upper-bounding constraint on negative judgements, or a minimisation crite-
rion on negative judgements. The analyst should consider both receptions and
transmissions. Constraints involving only transmissions from the system under
analysis are called behavioural constraints. Constraints involving only receptions
by the system under analysis are called environmental constraints.

Generally, the owner will have some control over the behaviour of their sys-
tem. The analyst is thus faced with the fundamental problem in control theory ,
of finding a way to control the system, given whatever information about the
system is observable, such that it will meet all its constraints and optimise all
its criteria.

Generally, other sentient actors will have control over aspects of the envi-
ronment in which the owner’s system is operating. The analyst is thus faced
with the fundamental problem in game theory , of finding an optimal strategy
for the owner, given some assumptions about the behavioural possibilities and
motivation of the other actors.

Generally, it is impossible to optimise all criteria while meeting all con-
straints. The frequency of occurrence of each type of fault and function might
be traded against every other type. This problem can sometimes be finessed,
if the owner assigns a monetary value to each fault and function, and if they
are unconcerned about anything other than their final (expected) cash position.
However, in general, owners will also be concerned about capital risk, cashflow,
and intangibles such as reputation.

In the usual case, the system model has multiple objectives which cannot all
be achieved simultaneously; the model is inaccurate; and the model, although
inaccurate, is nonetheless so complex that exact analysis is impossible. Analysts
will thus, typically, recommend suboptimal incremental changes to its existing
design or control procedures. Each recommended change may offer improvements
in some respects, while decreasing its security or performance in other respects.
Each analyst is likely to recommend a different set of changes. An analyst may
disagree with another analyst’s recommendations and summary findings. We
expect the frequency and severity of disagreements among reputable analysts
to decrease over time, as the design and analysis of sentient systems becomes
a mature engineering discipline. Our framework offers a language, and a set of
concepts, for the development of this discipline.

1.4 Architectural and Economic Controls; Peerages; Objectivity

We have already discussed the fundamentals of our framework, noting in particu-
lar that the judgement actor is a representation of the system owner’s desires and
fears with respect to their system’s behaviour. In this section we complete our

6



framework’s taxonomy of relationships between actors. We also start to define
our taxonomy of control.

There are three fundamental types of relationships between the actors in our
model. An actor may be an alias of another actor; an actor may be superior
to another actor; and an actor may be a peer of another actor. We have al-
ready defined the aliasing relation. Below, we define the superior and peering
relationships.

The superior relationship is a generalisation of the ownership relation we
defined in section 1.1. An actor is the superior of another actor if the former
has some important power or control over the latter, inferior , actor. In the case
that the inferior is a constitutional actor, then the superior is the owner of the
system defined by that constitution. Analysis is greatly simplified in models
where the scope of control of a constitution is defined by the transitive closure
of its inferiors, for this scoping rule will ensure that every subsystem is a subset
of its owning system. This subset relation gives a natural precedence in cases
of constitutional conflict: the constitution of the owning system has precedence
over the constitutions of its subsystems.

Our notion of superiority is extremely broad, encompassing any exercise of
power that is essentially unilateral or non-negotiated. To take an extreme ex-
ample, we would model a slave as a sentient actor with an alias that is inferior
to another sentient actor. A slave is not completely powerless, for they have
at least some observational power over their slaveholder. If this observational
power is important to the analysis, then the analyst will introduce an alias of
the slaveholder that is inferior to the slave. The constitutional actor of the slave-
holder is a representation of those aspects of the slaveholder’s behaviour which
are observable by their slave. The constitutional actor of the slave specifies the
behavioural responses of the slave to their observations of the slaveholder and
to any other reception events.

If an analyst is able to make predictions about the likely judgements of
a system’s judgement actor under the expected workload presented by its su-
periors, then these superiors are exerting architectural controls in the analyst’s
model. Intuitively, architectural controls are all of the worldly constraints that an
owner feels to be inescapable – effectively beyond their control. Any commonly-
understood “law of physics” is an architectural control in any model which in-
cludes a superior actor that enforces this law. The edicts of sentient superiors,
such as religious, legal, or governmental agencies, are architectural controls on
any owner who obeys these edicts without estimating the costs and benefits of
possible disobedience.

Another type of influence on system requirements, called economic controls,
result from an owner’s expectations regarding the costs and benefits from their
expectations of functions and faults. As indicated in the previous section, these
costs and benefits are not necessarily scalars, although they might be expressed in
dollar amounts. Generally, economic controls are expressed in the optimisation
criteria for an analytic model of a system, whereas architectural controls are
expressed in its feasibility constraints.

7



Economic controls are exerted by the “invisible hand” of a marketplace de-
fined and operated by a peerage. A peerage contains a collection of actors in
a peering relationship with each other. Informally, a peerage is a relationship
between equals. Formally, a peering relationship is any reflexive, symmetric, and
transitive relation between actors.

A peerage is a system; therefore it has a constitutional actor. The constitu-
tional actor of a peerage is an automaton that is in a superior relationship to
the peers.

A peerage must have a trusted servant which is inferior to each of the peers.
The trusted servant mediates all discussions and decisions within the peerage,
and it mediates their communications with any external systems. These external
systems may be peers, inferiors, or superiors of the peerage; if the peerage has
a multiplicity of relations with external systems then its trusted servant has an
alias to handle each of these relations. For example, a regulated marketplace is
modelled as a peerage whose constitutional actor is owned by its regulator. The
trusted servant of the peerage handles the communications of the peerage with
its owner. The peers can communicate anonymously to the owner, if the trusted
servant does not breach the anonymity through their communications with the
owner, and if the aliases of peers are not leaking identity information to the
owner. This is not a complete taxonomy of threats, by the way, for an owner
might find a way to subvert the constitution of the peerage, e.g. by installing a
wiretap on the peers’ communication channel. The general case of a constitu-
tional subversion would be modelled as an owner-controlled alias that is superior
to the constitutional actor of the peerage. The primary subversion threat is the
replacement of the trusted servant by an alias of the owner. A lesser threat is
that the owner could add owner-controlled aliases to the peerage, and thereby
“stuff the ballot box.”

An important element in the constitutional actor of a peerage is a decision-
making procedure such as a process for forming a ballot, tabulating votes, and
determining an outcome. In an extreme case, a peerage may have only two mem-
bers, where one of these members can outvote the other. Even in this case, the
minority peer may have some residual control if it is defined in the constitution,
or if it is granted by the owner (if any) of the peerage. Such imbalanced peerages
are used to express, in our framework, the essentially-economic calculations of a
person who considers the risks and rewards of disobeying a superior’s edict.

Our simplified pantheon of organisations has only two members – peerages
and hierarchies. In a hierarchy , every system other than the hierarch has exactly
one superior system; the hierarch is sentient; and the hierarch is the owner of the
hierarchy. The superior relation in a hierarchy is thus irreflexive, asymmetric,
and intransitive.

We note, in passing, that the relations in our framework can express more
complex organisational possibilities, such as a peerage that isn’t owned by its
trusted servant, and a hierarchy that isn’t owned by its hierarch. The advan-
tages and disadvantages of various hybrid architectures have been explored by

8



constitutional scholars (e.g. in the 18th-Century Federalist Papers), and by the
designers of autonomous systems.

Example. We illustrate the concepts of systems, actors, relationships, and ar-
chitectural controls by considering a five-actor model of an employee’s use of an
outsourced service. The employee is modelled as two actors, one of which owns
itself (representing their personal capacity) and an alias (representing their work-
related role). The employee alias is inferior to a self-owned actor representing
their employer. The outsourced service is a sentient (self-owned) actor, with an
alias that is inferior to the employee. This simple model is sufficient to discuss
the fundamental issues of outsourcing in a commercial context. A typical desire
of the employer in such a system is that their business will be more profitable as
a result of their employee’s access to the outsourced service. A typical fear of the
employer is that the outsourcing has exposed them to some additional security
risks. If the employer or analyst has estimated the business’s exposure to these
additional risks, then their mitigations (if any) can be classified as architectural
or economic controls. The analyst may use an information-flow methodology to
consider the possible functions and faults of each element of the system. When
transmission events from the aliased service to the service actor are being con-
sidered, the analyst will develop rules for the employer’s judgement actor which
will distinguish functional activity from faulting activity on this link. This link
activity is not directly observable by the employer, but may be inferred from
events which occur on the employer-employee link. Alternatively, it may not
be inferrable but is still feared, for example if an employee’s service request
is a disclosure of company-confidential information, then the outsourced ser-
vice provider may be able to learn this information through their service alias.
The analyst may recommend an architectural control for this risk, such as an
employer-controlled filter on the link between the employee and the service alias.
A possible economic control for this disclosure risk is a contractual arrangement,
whereby the risk is priced into the service arrangement, reducing its monetary
cost to the employer, in which case it constitutes a form of self-insurance. An ex-
ample of an architectural control is an advise-and-consent regime for any changes
to the service alias. An analyst for the service provider might suggest an eco-
nomic control, such as a self-insurance, to mitigate the risk of the employer’s
allegation of a disclosure. An analyst for the employee might suggest an archi-
tectural control, such as avoiding situations in which they might be accused of
improper disclosures via their service requests. To the extent that these three
analysts agree on a ground truth, their models of the system will predict similar
outcomes. All analysts should be aware of the possibility that the behaviour of
the aliased service, as defined in an inferior-of-an-inferior role in the employer’s
constitution, may differ from its behaviour as defined in an aliased role in the
constitution of the outsourced service provider. This constitutional conflict is the
analysts’ representation of their fundamental uncertainty over what will really
happen in the real world scenario they are attempting to model.

9



Subjectivity and Objectivity We do not expect analysts to agree, in all respects,
with the owner’s evaluation of the controls pertaining to their system. We be-
lieve that it is the analyst’s primary task to analyse a system. This includes an
accurate analysis of the owner’s desires, fears, and likely behaviour in foreseeable
scenarios. After the system is analysed, the analyst might suggest refinements to
the model so that it conforms more closely to the analyst’s (presumably expert!)
opinion. Curiously, the interaction of an analyst with the owner, and the re-
sulting changes to the owner’s system, could be modelled within our framework
– if the analyst chooses to represent themselves as a sentient actor within the
system model. We will leave the exploration of such systems to post-modernists,
semioticians, and industrial psychologists. Our interest and expertise is in the
scientific-engineering domain. The remainder of this chapter is predicated on an
assumption of objectivity: we assume that a system can be analysed without
significantly disturbing it.

Our terminology of control is adopted from Lessig [11]. Our primary contri-
butions are to formally state Lessig’s modalities of regulation and to indicate
how these controls can influence system design and operation.

1.5 Legal and Normative Controls

Lessig distinguishes the prospective modalities of control from the retrospective
modalities. A prospective control is determined and exerted before the event, and
has a clear affect on a system’s judgement actor or constitution. A retrospective
control is determined and exerted after the event, by an external party.

Economic and architectural controls are exerted prospectively, as indicated
in the previous section. The owner is a peer in the marketplace which, collec-
tively, defined the optimisation criteria for the judgement actor in their system.
The owner was compelled to accept all of the architectural constraints on their
system.

The retrospective counterparts of economic and architectural control are re-
spectively normal control and legal control . The former is exerted by a peerage,
and the latter is exerted by a superior. The peerage or superior makes a ret-
rospective judgement after obtaining a report of some alleged behaviour of the
owner’s system. This judgement is delivered to the owner’s system by at least
one transmission event, called a control signal , from the controlling system to
the controlled system. The constitution of a system determines how it responds
when it receives a control signal. As noted previously, we leave it to the owner to
decide whether any reception event is desirable, undesirable, or inconsequential;
and we leave it to the analyst to develop a description of the judgement actor
that is predictive of such decisions by the owner.

Judicial and social institutions, in the real world, are somewhat predictable
in their behaviour. The analyst should therefore determine whether an owner has
made any conscious predictions of legal or social judgements. These predictions
should be incorporated into the judgement actor of the system, as architectural
constraints or economic criteria.

10



1.6 Four Types of Security

Having identified four types of control, we are now able to identify four types of
security.

Architectural security. A system is architecturally secure if the owner has evalu-
ated the likelihood of a security fault being reported by the system’s judgement
actor. The owner may take advice from other actors when designing their judge-
ment actor, and when evaluating its likely behaviour. Such advice is called an
assurance, as noted in the first paragraph of this chapter. We make no require-
ment on the expertise or probity of the assuring actor, although these are clearly
desirable properties.

Economic security. An economically secure system has an insurance policy con-
sisting of a specification of the set of adverse events (security faults) which are
covered by the policy, an amount of compensation to be paid by the insur-
ing party to the owner following any of these adverse events, and a dispute-
mediation procedure in case of a dispute over the insurance policy. We in-
clude self-insurances in this category. A self-insurance policy needs no dispute-
resolution mechanism and consists only of a quantitative risk assessment, the
list of adverse events covered by the policy, the expected cost of each adverse
event per occurrence, and the expected frequency of occurrence of each event. In
the context of economic security, security risk has a quantitative definition: it is
the annualised cost of an insurance policy. Components of risk can be attached
to individual threats, that is, to specific types of adversarial activity. Economic
security is the natural focus of an actuary or a quantitatively-minded business
analyst. Its research frontiers are explored in academic conferences such as the
annual Workshop on the Economics of Information Security. Practitioners of
economic security are generally accredited by a professional organisation such
as ISACA, and use a standardised modelling language such as SysML. There is
significant divergence in the terminology used by practitioners [7] and theorists
of economic security. We offer our framework as a discipline-neutral common
language, but we do not expect it to supplant the specialised terminology that
has been developed for use in specific contexts.

Legal security. A system is legally secure if its owner believes it to be subject
to legal controls. Because legal control is retrospective, legal security cannot be
precisely assessed; and to the extent a future legal judgement has been precisely
assessed, it forms an architectural control or an economic control. An owner may
take advice from other actors, when forming their beliefs, regarding the law of
contracts, on safe-haven provisions, and on other relevant matters. Legal security
is the natural focus of an executive officer concerned with legal compliance and
legal risks, of a governmental policy-maker concerned with the societal risks
posed by insecure systems, and of a parent concerned with the familial risks
posed by their children’s online activity.

11



Normative security. A system is normatively secure if its owner knows of any
social conventions which might effectively punish them in their role as the owner
of a purportedly-abusive system. As with legal security, normative security can-
not be assessed with precision. Normative security is the natural province of
ethicists, social scientists, policy-makers, developers of security measures which
are actively supported by legitimate users, and sociologically-oriented computer
scientists interested in the formation, maintenance and destruction of virtual
communities.

Readers may wonder, at this juncture, how a service-providing system might
be analysed by a non-owning user. This analysis will become possible if the
owner has published a model of the behavioural aspects of their system. This
published model need not reveal any more detail of the owner’s judgement actor
and constitution than is required to predict their system’s externally-observable
behaviour. The analyst should use this published model as an automaton, add
a sentient actor representing the non-owning user, and then add an alias of that
actor representing their non-owning usage role. This sentient alias is the com-
bined constitutional and judgement actor for a subsystem that also includes the
service-providing automaton. The non-owning user’s desires and fears, relative
to this service provision, become the requirements in the judgement actor.

1.7 Types of Feedback and Assessment

In this section we explore the notions of trust and distrust in our framework.
These are generally accepted as important concepts in secure systems, but their
meanings are contested. We develop a principled definition, by identifying an-
other conceptual dichotomy. Already, we have dichotomised on the dimensions
of temporality (retrospective vs. prospective) and power relationship (hierarchi-
cal vs. peer), in order to distinguish the four types of system control and the
corresponding four types of system security. We have also dichotomised between
function and security, on a conceptual dimension we call feedback , with opposing
poles of positive feedback for functionality and negative feedback for security.

Our fourth conceptual dimension is assessment , with three possibilities: cog-
nitive assessment , optimistic non-assessment , and pessimistic non-assessment .
We draw our inspiration from Niklas Luhmann [12], a prominent social theorist.
Luhmann asserts that modern systems are so complex that we must use them, or
refrain from using them, without making a complete examination of their risks,
benefits and alternatives.

The distinctive element of trust, in Luhmann’s definition, is that it is a
reliance without a careful examination. An analyst cannot hope to evaluate trust
with any accuracy by querying the owner, for the mere posing of a question about
trust is likely to trigger an examination and thereby reduce trust dramatically.
If we had a reliable calculus of decision-making, then we could quantify trust
as the irrational portion of an owner’s decision to continue operating a system.
The rational portion of this decision is their security and functional assessment.
This line of thought motivates the following definitions.

12



To the extent that an owner has not carefully examined their potential risks
and rewards from system ownership and operation, but “do it anyway”, their
system is trusted . Functionality and security requirements are the result of a
cognitive assessment, respectively of a positive and negative feedback to the
user. Trust and distrust are the results of some other form of assessment or
non-assessment which, for lack of a better word, we might call intuitive. We
realise that this is a gross oversimplification of human psychology and sociology.
Our intent is to categorise the primary attributes of a secure system, and this
includes giving a precise technical meaning to the contested terms “trust” and
“distrust” within the context of our framework. We do not expect that the
resulting definitions will interest psychologists or sociologists; but we do hope to
clarify future scientific and engineering discourse about secure systems.

Mistrust is occasionally defined as an absence of trust, but in our framework
we distinguish a distrusting decision from a trusting decision. When an owner
distrusts, they are deciding against taking an action, even though they haven’t
analysed the situation carefully. The distrusting owner has decided that their
system is “not good” in some vaguely apprehended way. By contrast, the trusting
owner thinks or feels, vaguely, that their system is “not bad”.

The dimensions of temporality and relationship are as relevant for trust,
distrust, and functionality as they are for security. Binary distinctions on these
two dimensions allow us to distinguish four types of trust, four types of distrust,
and four types of functionality.

We discuss the four types of trust briefly below. Space restrictions preclude
any detailed exploration of our categories of functionality and distrust.

1. An owner places architectural trust in a system to the extent they believe
it to be lawful, well-designed, moral, or “good” in any other way that is
referenced to a superior power. Architectural trust is the natural province of
democratic governments, religious leaders, and engineers.

2. An owner places economic trust in a system to the extent they believe its
ownership to be a beneficial attribute within their peerage. The standing of
an owner within their peerage may be measured in any currency, for example
dollars, by which the peerage makes an invidious distinction. Economic trust
is the natural province of marketers, advertisers, and vendors.

3. An owner places legal trust in a system to the extent they are optimistic that
it will be helpful in any future contingencies involving a superior power. Legal
trust is the natural province of lawyers, priests, and repair technicians.

4. An owner places some normative trust in a system to the extent they are
optimistic it will be helpful in any future contingencies involving a peer-
age. Normative trust is the natural province of financial advisors, financial
regulators, colleagues, friends, and family.

We explore just one example here. In the previous section we discussed the
case of a non-owning user. The environmental requirements of this actor are
trusted, rather than secured, to the extent that the non-owning user lacks con-
trol over discrepancies between the behavioural model and the actual behaviour

13



of the non-owned system. If the behavioural model was published within a peer-
age, then the non-owning user might place normative trust in the post-facto
judgements of their peerage, and economic trust in the proposition that their
peerage would not permit a blatantly false model to be published.

1.8 Alternatives to our classification.

We invite our readers to reflect on our categories and dimensions whenever they
encounter alternative definitions of trust, distrust, functionality, and security.
There are a bewildering number of alternative definitions for these terms, and we
will not attempt to survey them. In our experience, the apparent contradiction
is usually resolved by analysing the alternative definition along the four axes
of assessment, temporality, power, and feedback. Occasionally, the alternative
definition is based on a dimension that is orthogonal to any of our four. More
often, the definition is not firmly grounded in any taxonomic system and is
therefore likely to be unclear if used outside of the context in which it was
defined.

Our framework is based firmly on the owner’s perspective. By contrast, the
SQuaRE approach is user-centric [1]. The users of a SQuaRE-standard software
product constitute a market for this product, and the SQuaRE metrics are all
of the economic variety. The SQuaRE approach to economic functionality and
security is much more detailed than the framework described here. SQuaRE
makes clear distinctions between the internal, external, and quality-in-use (QIU)
metrics of a software component that is being produced by a well-controlled
process. The internal metrics are evaluated by white-box testing and the external
metrics are evaluated by black-box testing . In black-box testing, the judgements
of a (possibly simulated) end-user are based solely on the normal observables
of a system, i.e. on its transmission events as a function of its workload. In
white-box testing, judgements are based on a subset of all events occurring
within the system under test. The QIU metrics are based on observations and
polls of a population of end-users making normal use of the system. Curiously,
the QIU metrics fall into four categories, whereas there are six categories of
metrics in the internal and external quality model of SQuaRE. Future theorists of
economic quality will, we believe, eventually devise a coherent taxonomic theory
to resolve this apparent disparity. An essential requirement of such a theory is a
compact description of an important population (a market) of end-users which
is sufficient to predict the market’s response to a novel good or service. Our
framework sidesteps this difficulty, by insisting that a market is a collection of
peer systems. Individual systems are modelled from their owner’s perspective;
and market behaviour is an emergent property of the peered individuals.

In security analyses, behavioural predictions of the (likely) attackers are of
paramount importance. Any system that is designed in the absence of knowledge
about a marketplace is unlikely to be economically viable; and any system that
is designed in the absence of knowledge of its future attackers is unlikely to resist
their attacks.

14



In our framework, system models can be constructed either with, or with-
out, an attacking subsystem. In analytic contexts where the attacker is well-
characterised, such as in retrospective analyses of incidents involving legal and
normative security, our framework should be extended to include a logically-
coherent and complete offensive taxonomy.

Redwine recently published a coherent, offensively-focussed, discussion of se-
cure systems in a hierarchy. His taxonomy has not, as yet, been extended to
cover systems in a peerage; nor does it have a coherent and complete coverage
of functionality and reliability; nor does it have a coherent and complete classifi-
cation of the attacker’s (presumed) motivations and powers. Even so, Redwine’s
discussion is valuable, for it clearly identifies important aspects of a offensively-
focussed framework. His attackers, defenders, and bystanders are considering
their benefits, losses, and uncertainties when planning their future actions [10].
His benefits and losses are congruent with the judgement actors in our frame-
work. His uncertainties would result in either trust or distrust requirements in
our framework, depending on whether they are optimistically or pessimistically
resolved by the system owner. The lower levels of Redwine’s offensive model
involve considerations of an owner’s purposes, conditions, actions and results.
There is a novel element here: an analyst would follow Redwine’s advice, within
our framework, by introducing an automaton to represent the owner’s strat-
egy and state of knowledge with respect to their system and its environment.
In addition, the judgement actor should be augmented so that increases in the
uncertainty of the strategic actor is a fault, decreases in its uncertainty are func-
tional behaviour, its strategic mistakes are faults, and its strategic advances are
functional.

2 Applications

We devote the remainder of this chapter to applications of our model. We focus
our attention on systems of general interest, with the goal of illustrating the
definitional and conceptual support our framework would provide for a broad
range of future work in security.

2.1 Trust Boundaries

System security is often explained and analysed by identifying a set of trusted
subsystems and a set of untrusted subsystems. The attacker in such models is
presumed to start out in the untrusted portion of the system, and the attacker’s
goal is to become trusted. Such systems are sometimes illustrated by drawing a
trust boundary between the untrusted and the trusted portions of the system.
An asset , such as a valuable good or desirable service, is is accessible only to
trusted actors. A bank’s vault can thus be modeled as a trust boundary.

The distinguishing feature of a trust boundary is that the system’s owner is
trusting every system (sentient or automaton) that lies within the trust bound-
ary. A prudent owner will secure their trust boundaries with some architectural,

15



economic, normative, or legal controls. For example, an owner might gain archi-
tectural security by placing a sentient guard at the trust boundary. If the guard
is bonded, then economic security is increased. To the extent that any aspect of
a trust boundary is not cognitively assessed, it is trusted rather than secured.

Trust boundaries are commonplace in our social arrangements. Familial rela-
tionships are usually trusting, and thus a family is usually a trusted subsystem.
Marriages, divorces, births, deaths, feuds, and reconciliations change this trust
boundary.

Trust boundaries are also commonplace in our legal arrangements. For exam-
ple, a trustee is a person who manages the assets in a legally constituted trust.
We would represent this situation in our model with an automaton represent-
ing the assets and a constitution representing the trust deed. The trustee is the
trusted owner of this trusted subsystem. Petitioners to the trust are untrusted
actors who may be given access to the assets of the trust at the discretion of the
trustee. Security theorists will immediately recognise this as an access-control
system; we will investigate these systems more carefully in the next section.

A distrust boundary separates the distrusted actors from the remainder of a
system. We have never seen this term used in a security analysis, but it would be
useful when describing prisons and security alarm systems. All sentient actors in
such systems have an obligation or prohibition requirement which, if violated,
would cause them to become distrusted. The judgement actor of the attack-
ing subsystem would require its aliases to violate this obligation or prohibition
without becoming distrusted.

A number of trust-management systems have been proposed and imple-
mented recently. A typical system of this type will exert some control on the
actions of a trusted employee. Reputation-management systems are sometimes
confused with trust-management systems but are easily distinguished in our
framework. A reputation-management system offers its users advice on whether
they should trust or distrust some other person or system. This advice is based
on the reputation of that other person or system, as reported by the other users
of the system. A trust-management system can be constructed from an employee
alias, a reputation-management system, a constitutional actor, and a judgement
actor able to observe external accesses to a corporate asset. The judgement actor
reports a security fault if the employee permits an external actor to access the
corporate asset without taking and following the advice of the reputation man-
agement system. The employee in this system are architectually trusted, because
they can grant external access to the corporate asset. A trust-management sys-
tem helps a corporation gain legal security over this trust boundary, by detecting
and retaining evidence of untrustworthy behaviour.

Competent security architects are careful when defining trust boundaries in
their system. Systems are most secure, in the architectural sense, when there
is minimal scope for trusted behaviour, that is, when the number of trusted
components and people is minimised and when the trusted components and
people have a minimal range of permitted activities. However, a sole focus on
architectural security is inappropriate if an owner is also concerned about func-

16



tionality, normative security, economic security, or legal security. A competent
system architect will consider all relevant security and functional requirements
before proposing a design. We hope that our taxonomy will provide a language
in which owners might communicate a full range of their desires and fears to a
system architect.

2.2 Data Security and Access Control

No analytic power can be gained from constructing a model that is as compli-
cated as the situation that is being modelled. The goal of a system modeller is
thus to suppress unimportant detail while maintaining an accurate representa-
tion of all behaviour of interest. In this section, we explore some of the simplest
systems which exhibit security properties of practical interest. During this explo-
ration, we indicate how the most commonly-used words in security engineering
can be defined within our model.

The simplest automaton has just a single mode of operation: it holds one bit
of information which can be read. A slightly more complex single-bit automaton
can be modified (that is, written) in addition to being read. An automaton that
can only be read or written is a data element .

The simplest and most studied security system consists of an automaton
(the guard), a single-bit read-only data element to be protected by the guard, a
collection of actors (users) whom the guard might allow to read the data, and
the sentient owner of the system. The trusted subsystem consists of the guard,
the owner, and the data. All users are initially untrusted. Users are inferior to
the guard. The guard is inferior to the owner.

The guard in this simple access control system has two primary responsibil-
ities – to permit authorised reads, and to prohibit unauthorised reads. A guard
who discharges the latter responsibility is protecting the confidentiality of the
data. A guard who discharges the former responsibility is protecting the avail-
ability of the data.

Confidentiality and availability are achievable only if the guard distinguishes
authorised actors from unauthorised ones. Most simply, a requesting actor may
transmit a secret word (an authorisation) known only to the authorised actors.
This approach is problematic if the set of authorised users changes over time. In
any event, the authorised users must be trusted to keep a secret. The latter issue
can be represented by a model in our framework. A data element represents the
shared secret, and each user has a private access control system to protect the
confidentiality of an alias of this secret. User aliases are inferiors of the guard
in the primary access control system. An adversarial actor has an alias inferior
to the guard in each access control system. The adversary can gain access to
the asset of the primary access control system if it can read the authorising
secret from any authorised user’s access control system. An analysis of this sys-
tem will reveal that the confidentiality of the primary system depends on the
confidentiality of the private access control systems. The owner thus has a trust
requirement if any of these confidentiality requirements is not fully secured.

17



In the most common implementation of access control, the guard requires
the user to present some identification, that is, some description of its owning
human or its own (possibly aliased) identity. The guard then consults an ac-
cess control list (another data element in the trusted subsystem) to discover
whether this identification corresponds to a currently-authorised actor. A guard
who demands identification will typically also demand authentication, i.e. some
proof of the claimed identity. A typical taxonomy of authentication is “what you
know” (e.g. a password), “what you have” (e.g. a security token possessed by the
human controller of the aliased user), or “who you are” (a biometric measure-
ment of the human controller of the aliased user). None of these authenticators
is completely secure, if adversaries can discover secrets held by users (in the
case of what-you-know), steal or reproduce physical assets held by users (in the
case of what-you-have), or mimic a biometric measurement (in the case of who-
you-are). Furthermore, the guard may not be fully trustworthy. Access control
systems typically include some additional security controls on their users, and
they may also include some security controls on the guard.

A typical architectural control on a guard involves a trusted recording device
(the audit recorder) whose stored records are periodically reviewed by another
trusted entity (the auditor). Almost two thousand years ago, the poet Juvenal
pointed out an obvious problem in this design, by asking “quis custodiet ip-
sos custodes” (who watches the watchers)? Adding additional watchers, or any
other entities to a trusted subsystem will surely increase the number of different
types of security fault but may nonetheless be justified if it offers some overall
functional or security advantage.

Additional threats arise if the owner of a data system provides any services
other than the reading of a single bit. An integrity threat exists in any system
where the owner is exposed to loss from unauthorised writes. Such threats are
commonly encountered, for example in systems that are recording bank balances
or contracts.

Complex threats arise in any system that handle multiple bits, especially if
the meaning of one bit is affected by the value of another bit. Such systems
provide meta-data services. Examples of meta-data include an author’s name, a
date of last change, a directory of available data items, an authorising signature,
an assertion of accuracy, the identity of a system’s owner or user, and the identity
of a system. Meta-data is required to give a context, and therefore a meaning,
to a collection of data bits. The performance of any service involving meta-data
query may affect the value of a subsequent meta-data query. Thus any provision
of a meta-data service, even a meta-data read, may be a security threat.

If we consider all meta-data services to be potential integrity threats, then
we have an appealingly short list of security requirements known as the CIA
triad: confidentiality, integrity, and availability. Any access control system re-
quires just a few security-related functions: identification, authentication, au-
thorisation, and possibly audit. This range of security engineering is called data
security . Although it may seem extremely narrow, it is of great practical impor-
tance. Access control systems can be very precisely specified (e.g. [9]), and many

18



other aspects have been heavily researched [6]. Below, we attempt only a very
rough overview of access control systems.

The Bell-La Padula (BLP) structure for access control has roles with strictly
increasing levels of read-authority. Any role with high authority can read any
data that was written by someone with an authority no higher than themselves.
A role with the highest authority is thus able to read anything, but their writings
are highly classified. A role with the lowest authority can write freely, but can
read only unclassified material. This is a useful structure of access control in any
organisation whose primary security concern is secrecy. Data flows in the BLP
structure are secured for confidentiality. Any data flow in the opposite direction
(from high to low) may either be trusted, or it may be secured by some non-BLP
security apparatus [13].

The Biba structure is the dual, with respect to read/write, of the BLP struc-
ture. The role with highest Biba authority can write anything, but their reads are
highly restricted. The Biba architecture seems to be mostly of academic interest.
However, it could be useful in organisations primarily concerned with publish-
ing documents of record, such as judicial decisions. Such documents should be
generally readable, but their authorship must be highly restricted.

In some access control systems, the outward-facing guard is replaced by an
inward-facing warden, and there are two categories of user. The prisoners are
users in possession of a secret, and for this reason they are located in the trusted
portion of the system. The outsiders are users not privy to the secret. The
warden’s job is to prevent the secret from becoming known outside the prison
walls, and so the warden will carefully scrutinise any write operations that are re-
quested by prisoners. Innocuous-looking writes may leak data, so a high-security
(but low-functionality) prison is obtained if all prisoner-writes are prohibited.

The Chinese wall structure is an extension of the prison, where outsider reads
are permitted, but any outsider who reads the secret becomes a prisoner. This
architecture is used in financial consultancy, to assure that a consultant who is
entrusted with a client’s sensitive data is not leaking this data to a competitor
who is being assisted by another consultant in the same firm.

2.3 Miscellaneous Security Requirements

The fundamental characteristic of a secure system, in our definition, is that its
owner has cognitively assessed the risks that will ensue from their system. The
fundamental characteristic of a functional system is that its owner has cognitively
assessed the benefits that will accrue from their system. We have already used
these characteristics to generate a broad categorisation of requirements as being
either security, functional or mixed. This categorisation is too broad to be very
descriptive, and additional terminology is required.

As noted in the previous section, a system’s security requirements can be
sharply defined if it offers a very narrow range of simple services, such as a
single-bit read and write. Data systems which protect isolated bits have clear
requirements for confidentiality, integrity, and availability.

19



If an audit record is required, we have an auditability requirement. If a user
or owner can delegate an access right, then these delegations may be secured,
in which case the owner would be placing a delegatibility requirement on their
system. When an owner’s system relies on any external system, and if these re-
liances can change over time, then the owner might introduce a discoverability
requirement to indicate that these reliances must be controlled. We could con-
tinue down this path, but it seems clear that the number of different requirements
will increase whenever we consider a new type of system.

2.4 Negotiation of Control

In order to extend our four-way taxonomy of requirements in a coherent way,
we consider the nature of the signals that are passed from one actor to another
in a system. In the usual taxonomy of computer systems analysis, we would dis-
tinguish data signals from control signals. Traditional analyses in data security
are focussed on the properties of data. Our framework is focussed on the prop-
erties of control. Data signals should not be ignored by an analyst, however we
assert that data signals are important in a security analysis only if they can be
interpreted as extensions or elaborations of a control signal.

Access control, in our framework, is a one-sided negotiation in which an infe-
rior system petitions a superior system for permission to access a resource. The
metaphor of access control might be extended to cover most security operations
in a hierarchy, but a more balanced form of intersystem control occurs in our
peerages.

Our approach to control negotiations is very simple. We distinguish a service
provision from a non-provision of that service. We also distinguish a forbiddance
of either a provision or a non-provision, from an option allowing a freedom of
choice between provision or a non-provision. These two distinctions yield four
types of negotiated controls. Below, we discuss how these distinctions allow us to
express access control, contracts between peers, and the other forms of control
signals that are transmitted commonly in a hierarchy or a peerage.

An obligation requires a system to provide a service to another system. The
owner of the first system is the debtor ; the owner of the second system is a cred-
itor ; and the negotiating systems are authorised to act as agents for the sentient
parties who, ultimately, are contractual parties in the legally or normatively en-
forced contract which underlies this obligation. A single service provision may
suffice for a complete discharge of the obligation, or multiple services may be
required.

Formal languages have been proposed for the interactions required to negoti-
ate, commit, and discharge an obligation [2, 3, 5]. These interactions are complex
and many variations are possible. The experience of UCITA in the US suggests
that it can be difficult to harmonise jurisdictional differences in contracts, even
within a single country. Clearly, contract law cannot be completely computerised,
because a sentient judiciary is required to resolve some disputes. However an
owner may convert any predictable aspect of an obligation into an architectural
control. If all owners in a peerage agree to this conversion, then the peerage can

20



handle its obligations more efficiently. Obligations most naturally arise in peer-
ages, but they can also be imposed by a superior on an inferior. In such cases,
the superior can unilaterally require the inferior to use a system which treats a
range of obligations as an architectural control.

An exemption is an option for the non-provision of a service. An obligation
is often accompanied by one or more exemptions indicating the cases in which
this obligation is not enforceable; and an exemption is often accompanied by
one or more obligations indicating the cases where the exemption is not in force.
For example, an obligation might have an exemption clause indicating that the
obligation is lifted if the creditor does not request the specified service within
one year.

Exemptions are diametrically opposed to obligations on a qualitative dimen-
sion which we call strictness. The two poles of this dimension are allowance and
forbiddance. An obligation is a forbiddance of a non-provision of service, whereas
an exemption is an allowance for a non-provision of service.

The second major dimension of a negotiated control is its activity , with poles
of provision and non-provision. A forbiddance of a provision is prohibition, and
an allowance of a provision is called a permission.

A superior may require their inferior systems to obey an obligation with pos-
sible exemptions, or a prohibition with possible permissions. An access control
system, in this light, is one in which the superior has given a single permission to
its inferiors – the right to access some resource. An authorisation, in the context
of an access control system, is a permission for a specific user or group of users.
The primary purpose of an identification in an access control system is to allow
the guard to retrieve the relevant permission from the access control list. An
authentication, in this context, is a proof that a claimed permission is valid. In
other contexts, authentication may be used as an architectural control to limit
losses from falsely-claimed exemptions, obligations, and prohibitions.

We associate a class of requirements with each type of control in our usual
fashion, by considering the owner’s fears and desires. Some owners desire their
system to comply in a particular way, some fear the consequences of a particular
form of non-compliance, some desire a particular form of non-compliance, and
some fear a particular form of non-compliance. If an owner has feared or desired a
contingency, it is a security or functionality requirement. Any unconsidered cases
should be classified, by the analyst, as trusted or distrusted gaps in the system’s
specification depending on whether the analyst thinks the owner is optimistic
or pessimistic about them. These gaps could be called the owner’s assumptions
about their system, but for logical coherence we will call them requirements.

Below, we name and briefly discuss each of the four categories of requirements
which are induced by the four types of control signals.

An analyst generates probity requirements by considering the owner’s fears
and desires with respect to the obligation controls received by their system.
For example, if an owner is worried that their system might not discharge a
specific type of obligation, this is a security requirement for probity. If an owner

21



is generally optimistic about the way their system handles obligations, this is a
trust requirement for probity.

Similarly, an analyst can generates diligence requirements by considering per-
missions, efficiency requirements by considering exemptions, and guijuity re-
quirements by considering prohibitions. Our newly-coined word guijuity is an
adaptation from the Mandarin word guiju. This is a Confucian ethic of right ac-
tion through the following of rules: “GuiJu FangYuan ZhiZhiYe”. Guijuity can
be understood as the previously unnamed security property which is controlled
by the X (execute permission) bit in a Unix directory entry, where the R (read)
and W (write) permission bits are controlling the narrower, and much more well-
explored, properties of confidentiality and availability. In our taxonomy, guijuity
is a broad concept encompassing all prohibitive rules. Confidentiality is a nar-
rower concept, because it is a prohibition only of a particular type of action,
namely a data-read.

The confidentiality, integrity, and availability requirements arising in access
control systems can be classified clearly in our framework, if we restrict our at-
tention to those access control systems which are implementing data security in a
BLP or Biba model. This restriction is common in most security research. In this
context, confidentiality and availability are subtypes of guijuity, and availability
is a subtype of efficiency. The confidentiality and integrity requirements arise
because the hierarch has prohibited anyone from reading or writing a document
without express authorisation. The availability requirement arises because the
hierarch has granted some authorisations, that is, some exemptions from their
overall prohibitions. No other requirements arise because the BLP and Biba
models cover only data security, and thus the only possible control signals are
requests for reads or writes.

If a system’s services are not clearly dichotomised into reads and writes, or
if it handles obligations or exemptions, then the traditional CIA taxonomy of
security requirements is incomplete. Many authors have proposed minor modi-
fications to the CIA taxonomy in order to extend its range of application. For
example, some authors suggest adding authentication to the CIA triad. This
may have the practical advantage of reminding analysts that an access-control
system is generally required to authenticate its users. However, the resulting list
is neither logically coherent, nor is it a complete list of the requirement types
and required functions in a secured system.

We assert that all requirements can be discovered from an analysis of a
system’s desired and feared responses to a control signal. For example, a non-
repudiation requirement will arise whenever an owner fears the prospect that
a debtor will refuse to provide an obligated service. The resulting dispute, if
raised to the notice of a superior or a peerage, would be judged in favour of
the owner if their credit obligation is non-repudiable. This line of analysis indi-
cates that a non-repudiation requirement is ultimately secured either legally or
normally. Subcases may be transformed into either an architectural or economic
requirement, if the owner is confident that these subcases would be handled
satisfactorily by a non-repudiation protocol with the debtor. Essentially, such

22



protocols consist of a creditor’s assertion of an obligation, along with a proof of
validity sufficient to convince the debtor that it would be preferable to honour
the obligation than to run the risks of an adverse legal or normal decision.

We offer one more example of the use of our requirements taxonomy, in order
to indicate that probity requirements can arise from a functional analysis as well
as from a security analysis. An owner of a retailing system might desire it to gain
a reputation for its prompt fulfilment of orders. This desire can be distinguished
from an owner’s fear of gaining a bad reputation or suffering a legal penalty for
being unacceptably slow when filling orders. The fear might lead to a security
requirement with a long response time in the worst case. The desire might lead
to a functional requirement for a short response time on average. A competent
analyst would consider both types of requirements when modeling the judgement
actor for this system.

In most cases, an analyst need not worry about the precise placement of a
requirement within our taxonomy. The resolution of such worries is a problem for
theorists, not for practitioners. Subsequent theoreticians may explore the impli-
cations of our taxonomy, possibly refining it or revising it. Our main hope when
writing this chapter is that analysts will be able to develop more complete and
accurate lists of requirements by considering the owner’s fears and desires about
their system’s response to an obligation, exemption, prohibition, or permission
from a superior, inferior, or peer.

3 Dynamic, Collaborative, and Future Secure Systems

The data systems described up to this point in our exposition have all been
essentially static. The population of users is fixed, the owner is fixed, constitu-
tional actors are fixed, and judgement actors are fixed. The system structure
undergoes, at most, minor changes such as the movement of an actor from a
trusted region to an untrusted region.

Most computerised systems are highly dynamic, however. Humans take up
and abandon aliases. Aliases are authorised and de-authorised to access sys-
tems. Systems are created and destroyed. Sometimes systems undergo uncon-
trolled change, for example when authorised users are permitted to execute ar-
bitrary programs (such as applets encountered when browsing web-pages) on
their workstations. Any uncontrolled changes to a system may invalidate its as-
sessor’s assumptions about system architecture. Retrospective assessors in legal
and normative systems may be unable to collect the relevant forensic evidence if
an actor raises a complaint or if the audit-recording systems were poorly designed
or implemented. Prospective assessors in the archectural and economic systems
may have great difficulty predicting what a future adversary might accomplish
easily, and their predictions may change radically on the receipt of additional
information about the system, such as a bug report or news of an exploit.

In the Clark-Wilson model for secure computer systems, any proposed change
to the system as a result of a program execution must be checked by a guard
before the changes are committed irrevocably. This seems a very promising ap-

23



proach, but we are unaware of any full implementations. One obvious difficulty,
in practice, will be to specify important security constraints in such a way that
they can be checked quickly by the guard. Precise security constraints are dif-
ficult to write even for simple, static systems. One notable exception is a stan-
dalone database systems with a static data model. The guard on such a system
can feasibly enforce the ACID properties: atomicity, consistency, isolation, and
durability. These properties ensure that the committed transactions are not at
significant risk to threats involving the loss of power, hardware failures, or the
commitment of any pending transactions. These properties have been partly
extended to distributed databases. There has also been some recent work on
defining privacy properties which, if the database is restricted in its updates,
can be effectively secured against adversaries with restricted deductive powers
or access rights.

Few architectures are rigid enough to prevent adverse changes by attackers,
users, or technicians. Owners of such systems tend to use a modified form of the
Clark-Wilson model. Changes may occur without a guard’s inspection. However
if any unacceptable changes have occurred, the system must be restored (“rolled
back”) to a prior untainted state. The system’s environment should also be rolled
back, if this is feasible; alternatively, the environment might be notified of the
rollback. Then the system’s state, and the state of its environment, should be
rolled-forward to the states they “should” have been in at the time the unaccept-
able change was detected. Clearly this is an infeasible requirement, in any case
where complete states are not retained and accurate replays are not possible.
Thus the Clark-Wilson apparatus is typically a combination of filesystem back-
ups, intrusion detection systems, incident investigations, periodic inspections of
hardware and software configurations, and ad-hoc remedial actions by technical
staff whenever they determine (rightly or wrongly) that the current system state
is corrupt. The design, control, and assessment of this Clark-Wilson apparatus is
a primary responsibility of the IT departments in corporations and governmental
agencies.

We close this chapter by considering a recent set of guidelines, from The
Jericho Forum, for the design of computing systems. These guidelines define a
collaboration oriented architecture or COA [4]. Explicit management of trust-
ing arrangements are required, as well as effective security mechanisms, so that
collaboration can be supported over an untrusted internet between trusting en-
terprises and people. In terms of our model, a COA is a system with separately-
owned subsystems. The subsystem owners may be corporations, governmental
agencies, or individuals. People who hold an employee role in one subsystem
may have a trusted-collaborator role in another subsystem, and the purpose of
the COA is to extend appropriate privileges to the trusted collaborators. We
envisage a desirable COA workstation as one which helps its user keep track of
and control the activities of their aliases. The COA workstation would also help
its user make good decisions regarding the storage, transmission, and processing
of all work-related data.

24



The COA system must have a service-oriented architecture as a subsystem, so
that its users can exchange services with collaborators both within and without
their employer’s immediate control. The collaborators may want to act as peers,
setting up a service for use within their peerage. Thus a COA must support
peer services as well as the traditional, hierarchical arrangement of client-server
computing. An identity management subsystem is required, to defend against
impersonations and also for the functionality of making introductions and dis-
coveries. The decisions of COA users should be trusted, within a broad range,
but security must be enforced around this trust boundary.

The security and functionality goals of trustworthy users should be enhanced,
not compromised, by the enforcement of security boundaries on their trusted
behaviour. In an automotive metaphor, the goal is thus to provide air bags
rather than seat belts. Regrettably, our experience of contemporary computer
systems is that they are either very insecure, with no effective safety measures;
or they have intrusive architectures, analogous to seat belts, providing security
at significant expense to functionality. We hope this chapter will help future
architects design computer systems which are functional and trustworthy for
their owners and authorised users.

References

1. M. Azuma. SQuaRE: The next generation of the ISO/IEC 9126 and 14598 interna-
tional standards series on software product quality. In Project Control: Satisfying
the Customer (Proceedings of ESCOM 2001), pages 337–346. Shaker Publishing
BV, 2001.

2. C. Bettini, S. Jajodia, X. S. Wang, and D. Wijesekera. Provisions and obligations
in policy management and security applications. In Proc. of the 28th Int’l Conf.
on Very Large Databases, pages 502–513, 2002.

3. A. D. H. Farrell, M. J. Sergot, M. Sallé, and C. Bartolini. Using the event calculus
for tracking the normative state of contracts. Int. J. Cooperative Inf. Syst., 14(2-
3):99–129, 2005.

4. P. Giorgini, F. Massacci, J. Mylopoulos, and N. Zannone. Requirements engineer-
ing for trust management: model, methodology, and reasoning. Int. J. Inf. Sec.,
5(4):257–274, 2006.

5. D. Gollman. Security models. In K. de Leeuw and J. Bergstra, editors, The History
of Information Security: A Comprehensive Handbook. Elsevier, 2007.

6. R. Jain. The Art of Computer Systems Performance Analysis: Techniques for
Experimental Design, Measurement, Simulation, and Modeling. Wiley-Interscience,
1991.

7. S. Jajodia, P. Samarati, and V. S. Subrahmanian. A logical language for expressing
authorizations. In IEEE Symposium on Security and Privacy, pages 31–42, 1997.

8. S. T. R. Jr. Towards an organization for software system security principles and
guidelines, version 1.0. Technical Report 08-01, Institute for Infrastructure and
Information Assurance, James Madison University, Feb. 2008.

9. L. Lessig. Code version 2.0. Basic Books, 2006.

10. N. Luhmann. Trust and Power. Wiley, 1979. English translation by Howard Davis
et al.

25



11. R. O’Brien and C. Rogers. Developing applications on LOCK. In Proc. 14th
National Security Conference, pages 147–156, Washington, D.C., 1991.

12. The Jericho Forum. Position paper: Collaboration oriented architectures, Apr.
2008.

13. The Open Group. Risk taxonomy, Technical standard C081, Jan. 2009.

Index

access control list, 18
access control system, 17
accuracy, 4
ACID, 24
activity, 21
actors, 2
actuarial analysis, 5
aliased actor, 2
analysis, 3
architectural controls, 7
architectural trust, 13
assessment, 12
asset, 15
assurance, 1
audit recorder, 18
auditability, 20
auditor, 18
authentication, 18
authorisation, 17
automaton, 2
availability, 17
axioms, 1

behavioural constraints, 6
Bell-La Padula, 19
Biba, 19
black-box testing, 14

Chinese wall, 19
Clark-Wilson, 23
cognitive assessment, 12
collaboration oriented architecture, 24
confidentiality, 17
constitution, 2
constraint, 6
control signal, 10
control theory, 6
creditor, 20

data element, 17
data security, 18
debtor, 20
delegatibility, 20
diligence requirements, 22
discoverability, 20
distrust boundary, 16

economic controls, 7
economic trust, 13
efficiency requirements, 22
environmental constraints, 6
exemption, 21

Federalist Papers, 9
feedback, 12
forbiddance, 21
functional analysis, 3
functional behaviour, 3
functional requirement, 6

game theory, 6
guard, 17
guijuity requirements, 22

hierarch, 8
hierarchy, 8

identification, 18
identity management, 25
inferior, 7
integrity, 18

judgement actor, 3

legal control, 10
legal trust, 13

meta-data services, 18

negative feedback, 12
non-provision, 21



non-repudiation, 22
non-repudiation protocol, 22
normal control, 10
normative trust, 13

obligation, 20
optimisation criterion, 6
optimistic non-assessment, 12
owner, 2

peerage, 8
peering, 8
permission, 21
pessimistic non-assessment, 12
positive feedback, 12
precision, 4
probity requirements, 21
prohibition, 21
provision, 21

reception events, 2
reputation-management systems, 16
requirements elicitation, 5
risk, 11

secure, 1
secured, 1

security analysis, 3
security fault, 3
security proof, 1
security requirement, 6
sentient, 2
sentient actor, 2
service-oriented architecture, 25
strictness, 21
subsystem, 2
superior, 7
system, 2
system requirement, 3

threat model, 4
threats, 11
transmission event, 2
trust boundary, 15
trust-management systems, 16
trusted, 13
trusted servant, 8

validated, 4

warden, 19
white-box testing, 14
workload, 3

27


